MB9B520M Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller The MB9B520M Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power consumption mode and competitive cost. These series are based on the Arm® Cortex®-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions such as various timers, ADCs, DACs and Communication Interfaces (USB, CAN, UART, CSIO, I2C, LIN). The products which are described in this data sheet are placed into TYPE9 product categories in “FM3 Family Peripheral Manual”. Features 32-bit Arm® Cortex®-M3 Core [USB device] Processor version: r2p1 USB2.0 Full-Speed supported Up to 72 MHz Frequency Operation Max 6 EndPoint supported Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels 24-bit System timer (Sys Tick): System timer for OS task management On-chip Memories [Flash memory] EndPoint 0 is control transfer 1, 2 can select Bulk-transfer, Interrupt-transfer or Isochronous-transfer EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer EndPoint 1 to 5 are comprised of Double Buffers. The size of each endpoint is according to the follows. • Endpoint 0, 2 to 5: 64 bytes • Endpoint 1: 256 bytes EndPoint [USB host] Dual operation Flash memory Dual Operation Flash memory has the upper bank and the lower bank. So, this series could implement erase, write and read operations for each bank simultaneously. Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank) Work area: 32 Kbytes (lower bank) Read cycle: 0 wait-cycle USB2.0 Full/Low-speed supported Bulk-transfer, interrupt-transfer and Isochronous-transfer support USB Device connected/dis-connected automatic detection Automatic processing of the IN/OUT token handshake packet Max 256-byte packet-length supported Security function for code protection Wake-up function supported [SRAM] This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus. CAN Interface SRAM0: Up to 16 Kbytes Built-in 32 message buffer Compatible with CAN Specification 2.0A/B Maximum transfer rate: 1 Mbps SRAM1: Up to 16 Kbytes Multi-function Serial Interface (Max eight channels) USB Interface The USB interface is composed of Device and Host. PLL for USB is built-in, USB clock can be generated by multiplication of Main clock. Cypress Semiconductor Corporation Document Number: 002-05649 Rev. *D • 4 channels with 16 steps×9-bit FIFO (ch.0/1/3/4), 4 channels without FIFO (ch.2/5/6/7) Operation mode is selectable from the followings for each channel. UART CSIO LIN I2 C 198 Champion Court • San Jose , CA 95134-1709 • 408-943-2600 Revised February 9, 2018 MB9B520M Series [UART] A/D Converter (Max 26 channels) Full duplex double buffer [12-bit A/D Converter] Selection with or without parity supported Successive Approximation type Built-in dedicated baud rate generator Built-in 2 units External clock available as a serial clock Conversion time: 0.8 μs @ 5 V Hardware Flow control: Automatically control the Priority conversion available (priority at 2 levels) transmission/reception by CTS/RTS (only ch.4) Various error detection functions available (parity errors, framing errors, and overrun errors) [CSIO] Full duplex double buffer Built-in dedicated baud rate generator Overrun error detection function available [LIN] LIN protocol Rev.2.1 supported Scanning conversion mode Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps) D/A Converter (Max two channels) R-2R type 10-bit resolution Base Timer (Max eight channels) Full duplex double buffer Operation mode is selectable from the followings for each channel. Master/Slave mode supported 16-bit PWM timer LIN break field generation (can be changed to 13 to 16-bit 16-bit PPG timer length) LIN break delimiter generation (can be changed to 1 to 4-bit length) Various error detection functions available (parity errors, framing errors, and overrun errors) [I2C] Standard mode (Max 100 kbps) / Fast mode (Max 400 kbps) supported DMA Controller (Eight channels) 16-/32-bit reload timer 16-/32-bit PWC timer General-Purpose I/O Port This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to. Capable of pull-up control per pin The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process simultaneously. Capable of reading pin level directly 8 independently configured and operated channels Up to 65 high-speed general-purpose I/O Ports@80pin Transfer can be started by software or request from the built-in peripherals Transfer address area: 32-bit (4 Gbytes) Transfer mode: Block transfer/Burst transfer/Demand Built-in the port relocate function Package Some ports are 5V tolerant. See “List of Pin Functions” and “I/O Circuit Type” to confirm the corresponding pins. transfer Transfer data type: byte/half-word/word Transfer block count: 1 to 16 Number of transfers: 1 to 65536 Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. Free-running Periodic (=Reload) One-shot Document Number: 002-05649 Rev. *D Page 2 of 108 MB9B520M Series Quadrature Position/Revolution Counter (QPRC) (Max two channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use as the up/down counter. The detection edge of the three external event input pins AIN, BIN and ZIN is configurable. 16-bit position counter 16-bit revolution counter Two 16-bit compare registers Multi-function Timer The Multi-function timer is composed of the following blocks. External Interrupt Controller Unit Up to 23 external interrupt input pins @ 80 pin Package Include one non-maskable interrupt (NMI) input pin Watchdog Timer (Two channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog. The "Hardware" watchdog timer is clocked by the built-in Low-speed CR oscillator. Therefore, the "Hardware" watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby RTC, Deep Standby Stop modes. 16-bit free-run timer × 3 ch./unit CRC (Cyclic Redundancy Check) Accelerator Input capture × 4 ch./unit Output compare × 6 ch./unit The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage. A/D activation compare × 2 ch./unit CCITT CRC16 and IEEE-802.3 CRC32 are supported. Waveform generator × 3 ch./unit CCITT CRC16 Generator Polynomial: 0x1021 16-bit PPG timer × 3 ch./unit IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 The following function can be used to achieve the motor control. Clock and Reset PWM signal output function Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL). DC chopper waveform output function [Clocks] Dead time function Main Clock: 4 MHz to 48 MHz Input capture function Sub Clock: 32.768 kHz A/D convertor activate function Built-in High-speed CR Clock: 4 MHz DTIF (Motor emergency stop) interrupt function Built-in Low-speed CR Clock: 100 kHz Main PLL Clock Real-time clock (RTC) The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 00 to 99. The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute. Timer interrupt function after set time or each set time. Capable of rewriting the time with continuing the time count. [Resets] Reset requests from INITX pin Power-on reset Software reset Watchdog timers reset Low-voltage detection reset Clock Super Visor reset Leap year automatic count is available. Clock Super Visor (CSV) Watch Counter Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks. The Watch counter is used for wake up from Sleep and Timer mode. If external clock failure (clock stop) is detected, reset is Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz If external frequency anomaly is detected, interrupt or reset is asserted. asserted. Document Number: 002-05649 Rev. *D Page 3 of 108 MB9B520M Series Low-Voltage Detector (LVD) Debug This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset. Serial Wire JTAG Debug Port (SWJ-DP) LVD1: error reporting via interrupt Unique value of the device (41 bits) is set. LVD2: auto-reset operation Power Supply Low-Power Consumption Mode Six low-power consumption modes supported. Sleep Unique ID Wide range voltage: VCC = 2.7 V to 5.5 V USBVCC = 3.0 V to 3.6 V (when USB is used) = 2.7 V to 5.5 V (when GPIO is used) Timer RTC Stop Deep Standby RTC (selectable between keeping the value of RAM and not) Deep Standby Stop (selectable between keeping the value of RAM and not) Document Number: 002-05649 Rev. *D Page 4 of 108 MB9B520M Series Contents 1. Product Lineup .................................................................................................................................................................. 7 2. Packages ........................................................................................................................................................................... 8 3. Pin Assignment ................................................................................................................................................................. 9 4. List of Pin Functions....................................................................................................................................................... 15 5. I/O Circuit Type................................................................................................................................................................ 33 6. Handling Precautions ..................................................................................................................................................... 39 6.1 Precautions for Product Design ................................................................................................................................... 39 6.2 Precautions for Package Mounting .............................................................................................................................. 40 6.3 Precautions for Use Environment ................................................................................................................................ 41 7. Handling Devices ............................................................................................................................................................ 42 8. Block Diagram ................................................................................................................................................................. 44 9. Memory Size .................................................................................................................................................................... 45 10. Memory Map .................................................................................................................................................................... 45 11. Pin Status in Each CPU State ........................................................................................................................................ 48 12. Electrical Characteristics ............................................................................................................................................... 54 12.1 Absolute Maximum Ratings ......................................................................................................................................... 54 12.2 Recommended Operating Conditions.......................................................................................................................... 56 12.3 DC Characteristics....................................................................................................................................................... 57 12.3.1 Current Rating .............................................................................................................................................................. 57 12.3.2 Pin Characteristics ....................................................................................................................................................... 60 12.4 AC Characteristics ....................................................................................................................................................... 61 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 61 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 62 12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 63 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) ................................... 64 12.4.5 Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL) .............. 64 12.4.6 Reset Input Characteristics .......................................................................................................................................... 65 12.4.7 Power-on Reset Timing................................................................................................................................................ 65 12.4.8 Base Timer Input Timing .............................................................................................................................................. 66 12.4.9 CSIO/UART Timing ...................................................................................................................................................... 67 12.4.10 External Input Timing ................................................................................................................................................ 75 12.4.11 Quadrature Position/Revolution Counter timing ........................................................................................................ 76 12.4.12 I2C Timing ................................................................................................................................................................. 78 12.4.13 JTAG Timing ............................................................................................................................................................. 79 12.5 12-bit A/D Converter .................................................................................................................................................... 80 12.5.1 Definition of 12-bit A/D Converter Terms ..................................................................................................................... 82 12.6 10-bit D/A Converter .................................................................................................................................................... 83 12.7 USB Characteristics .................................................................................................................................................... 84 12.8 Low-Voltage Detection Characteristics ........................................................................................................................ 88 12.8.1 Low-Voltage Detection Reset ....................................................................................................................................... 88 12.8.2 Interrupt of Low-Voltage Detection ............................................................................................................................... 89 12.9 Flash Memory Write/Erase Characteristics ................................................................................................................. 90 12.9.1 Write / Erase time......................................................................................................................................................... 90 12.9.2 Write cycles and data hold time ................................................................................................................................... 90 12.10 Return Time from Low-Power Consumption Mode ...................................................................................................... 91 12.10.1 Return Factor: Interrupt/WKUP ................................................................................................................................. 91 Document Number: 002-05649 Rev. *D Page 5 of 108 MB9B520M Series 12.10.2 Return Factor: Reset ................................................................................................................................................ 93 13. Ordering Information ...................................................................................................................................................... 95 14. Package Dimensions ...................................................................................................................................................... 96 15. Major Changes .............................................................................................................................................................. 104 Document History ............................................................................................................................................................... 107 Sales, Solutions, and Legal Information ........................................................................................................................... 108 Document Number: 002-05649 Rev. *D Page 6 of 108 MB9B520M Series 1. Product Lineup Memory Size Product name On-chip Flash memory On-chip SRAM MB9BF521K/L/M Main area Work area SRAM0 SRAM1 Total 64 Kbytes 32 Kbytes 8 Kbytes 8 Kbytes 16 Kbytes MB9BF522K/L/M 128 Kbytes 32 Kbytes 8 Kbytes 8 Kbytes 16 Kbytes MB9BF524K/L/M 256 Kbytes 32 Kbytes 16 Kbytes 16 Kbytes 32 Kbytes Function MB9BF521K MB9BF522K MB9BF524K Product name Pin count MB9BF521M MB9BF522M MB9BF524M 48 64 80/96 Cortex-M3 72 MHz 2.7 V to 5.5 V 1 ch. (Max) 1 ch. (Max) 8 ch. 4 ch. (Max) 8 ch. (Max) ch.0/1/3: FIFO ch.0/1/3/4 FIFO ch.5: No FIFO ch.2/5/6/7: No FIFO (In ch.1/5, only UART and LIN (In ch.1, only UART and LIN are available.) are available.) CPU Freq. Power supply voltage range USB2.0 (Device/Host) CAN DMAC Multi-function Serial Interface (UART/CSIO/LIN/I2C) Base Timer (PWC/Reload timer/PWM/PPG) A/D activation compare Input capture MFFree-run timer Timer Output compare Waveform generator PPG QPRC MB9BF521L MB9BF522L MB9BF524L 8 ch. (Max) 2 ch. 4 ch.* 3 ch. 6 ch. 3 ch. 3 ch. 1 unit 1 ch. Dual Timer 1 unit Real-Time Clock Watch Counter CRC Accelerator Watchdog timer 1 unit 1 unit Yes 1 ch. (SW) + 1 ch. (HW) 14 pins (Max) + NMI × 1 35 pins (Max) 14 ch. (2 units) 2 ch. (Max) Yes 2 ch. 4 MHz 100 kHz SWJ-DP Yes External Interrupts I/O ports 12-bit A/D converter 10-bit D/A converter CSV (Clock Super Visor) LVD (Low-Voltage Detector) High-speed Built-in CR Low-speed Debug Function Unique ID 2 ch. (Max) 19 pins (Max) + NMI × 1 50 pins (Max) 23 ch. (2 units) 23 pins (Max) + NMI × 1 65 pins (Max) 26 ch. (2 units) *: The external input channel which can be used is shown as follows. • ch.0 to ch.3 : MB9BF521M/F522M/F524M • ch.0, ch.2, ch.3 : MB9BF521K/F522K/F524K, MB9BF521L/F522L/F524L Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See “12.Electrical Characteristics 12.4.AC Characteristics 12.4.3 Built-in CR Oscillation Characteristics” for accuracy of built-in CR. Document Number: 002-05649 Rev. *D Page 7 of 108 MB9B520M Series 2. Packages Product name Package MB9BF521K MB9BF522K MB9BF524K MB9BF521L MB9BF522L MB9BF524L MB9BF521M MB9BF522M MB9BF524M LQFP: LQA048 (0.5 mm pitch) - - QFN: VNA048 (0.5 mm pitch) - - LQFP: LQD064 (0.5 mm pitch) - - LQFP: LQG064 (0.65 mm pitch) - - QFN: VNC064 (0.5 mm pitch) - - LQFP: LQH080 (0.5 mm pitch) - - LQFP: LQJ080 (0.65 mm pitch) - - BGA: FDG096 (0.5 mm pitch) - - : Supported Note: − See “Package Dimensions” for detailed information on each package. Document Number: 002-05649 Rev. *D Page 8 of 108 MB9B520M Series 3. Pin Assignment LQH080/LQJ080 P02/TDI P01/TCK/SWCLK P00/TRSTX 63 62 61 P04/TDO/SWO P03/TMS/SWDIO 65 64 P0B/AN16/SOT4_0/TIOB6_1/INT18_0 P0A/AN15/SIN4_0/INT00_2 P07/ADTG_0/INT23_1 68 67 66 P0D/RTS4_0/TIOA3_2/INT20_0 P0C/AN17/SCK4_0/TIOA6_1/INT19_0 70 69 P63/INT03_0 P0F/AN18/NMIX/SUBOUT_0/CROUT_1/RTCCO_0/WKUP0 P0E/CTS4_0/TIOB3_2/INT21_0 73 72 71 P61/AN20/SOT5_0/TIOB2_2/UHCONX/DTTI0X_2 P62/AN19/SCK5_0/ADTG_3 76 75 74 P80/UDM0/INT16_1 USBVCC P60/AN21/SIN5_0/TIOA2_2/INT15_1/WKUP3/IGTRG_1 78 77 VSS P81/UDP0/INT17_1 80 79 (TOP VIEW) VCC 1 60 P20/INT05_0/CROUT_0/AIN1_1 P50/AN22/INT00_0/AIN0_2/SIN3_1 2 59 P21/AN14/SIN0_0/INT06_1/BIN1_1/WKUP2 P51/AN23/INT01_0/BIN0_2/SOT3_1 3 58 P22/AN13/SOT0_0/TIOB7_1/ZIN1_1 P52/AN24/INT02_0/ZIN0_2/SCK3_1 4 57 P23/AN12/SCK0_0/TIOA7_1 P53/SIN6_0/TIOA1_2/INT07_2 5 56 P1B/AN11/SOT4_1/INT20_2/IC01_1 P54/SOT6_0/TIOB1_2/INT18_1 6 55 P1A/AN10/SIN4_1/INT05_1/IC00_1 P55/SCK6_0/ADTG_1/INT19_1 7 54 P19/AN09/SCK2_2 P56/INT08_2 8 53 P18/AN08/SOT2_2 P30/AN25/AIN0_0/TIOB0_1/INT03_2 9 52 AVRL P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2 10 51 AVRH P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2 11 50 AVCC P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 12 49 P17/AN07/SIN2_2/INT04_1 P39/DTTI0X_0/INT06_0/ADTG_2 13 48 P16/AN06/SCK0_1/INT15_0 P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 14 47 P15/AN05/SOT0_1/INT14_0/IC03_2 P3B/RTO01_0/TIOA1_1 15 46 P14/AN04/SIN0_1/INT03_1/IC02_2 P3C/RTO02_0/TIOA2_1/INT18_2 16 45 AVSS LQFP - 80 38 39 40 PE2/X0 PE3/X1 VSS 36 37 MD0 P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2 PE0/MD1 33 34 35 P4C/TIOB3_0/SCK7_1/INT12_0/AIN1_2 P4B/TIOB2_0/INT22_1/ZIN0_1/IGTRG_0 P4D/TIOB4_0/SOT7_1/INT13_0/BIN1_2 31 32 P4A/TIOB1_0/SCK3_2/INT21_1/BIN0_1/DA1_0 28 29 30 INITX P48/SIN3_2/INT14_1 P49/TIOB0_0/SOT3_2/INT20_1/AIN0_1/DA0_0 25 26 27 P46/X0A VCC P47/X1A 41 23 20 24 P10/AN00 VSS C 42 VSS 19 VCC P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1 21 P12/AN02/SOT1_1/TX1_2/IC00_2 43 22 44 18 P44/TIOA4_0/INT10_0 17 P45/TIOA5_0/INT11_0 P3D/RTO03_0/TIOA3_1 P3E/RTO04_0/TIOA4_1/INT19_2 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 9 of 108 MB9B520M Series LQD064/LQG064 P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 52 51 50 49 P0A/AN15/SIN4_0/INT00_2 P04/TDO/SWO 54 53 P0C/AN17/SCK4_0/TIOA6_1/INT19_0 P0B/AN16/SOT4_0/TIOB6_1/INT18_0 56 55 P62/AN19/SCK5_0/ADTG_3 P0F/AN18/NMIX/SUBOUT_0/CROUT_1/RTCCO_0/WKUP0 58 57 P60/AN21/SIN5_0/TIOA2_2/INT15_1/WKUP3/IGTRG_1 P61/AN20/SOT5_0/TIOB2_2/UHCONX/DTTI0X_2 60 59 P80/UDM0/INT16_1 USBVCC 62 61 VSS P81/UDP0/INT17_1 64 63 (TOP VIEW) VCC 1 48 P21/AN14/SIN0_0/INT06_1/WKUP2 P50/AN22/INT00_0/AIN0_2/SIN3_1 2 47 P22/AN13/SOT0_0/TIOB7_1 P51/AN23/INT01_0/BIN0_2/SOT3_1 3 46 P23/AN12/SCK0_0/TIOA7_1 P52/AN24/INT02_0/ZIN0_2/SCK3_1 4 45 P19/AN09/SCK2_2 P30/AN25/AIN0_0/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2 6 43 AVRL P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/DTTI0X_0/INT06_0/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 10 39 P15/AN05/SOT0_1/INT14_0/IC03_2 P3B/RTO01_0/TIOA1_1 11 38 P14/AN04/SIN0_1/INT03_1/IC02_2 P3C/RTO02_0/TIOA2_1/INT18_2 12 37 AVSS P3D/RTO03_0/TIOA3_1 13 36 P12/AN02/SOT1_1/TX1_2/IC00_2 P3E/RTO04_0/TIOA4_1/INT19_2 14 35 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 29 30 31 32 PE3/X1 VSS PE0/MD1 MD0 27 28 P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2 PE2/X0 25 26 P4C/TIOB3_0/SCK7_1/INT12_0/AIN1_2 P4B/TIOB2_0/INT22_1/ZIN0_1/IGTRG_0 P4D/TIOB4_0/SOT7_1/INT13_0/BIN1_2 23 24 P4A/TIOB1_0/SCK3_2/INT21_1/BIN0_1/DA1_0 21 22 INITX 19 20 P46/X0A P47/X1A P49/TIOB0_0/SOT3_2/INT20_1/AIN0_1/DA0_0 17 18 C VCC LQFP - 64 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 10 of 108 MB9B520M Series VNC064 VSS P81/UDP0/INT17_1 P80/UDM0/INT16_1 USBVCC P60/AN21/SIN5_0/TIOA2_2/INT15_1/WKUP3/IGTRG_1 P61/AN20/SOT5_0/TIOB2_2/UHCONX/DTTI0X_2 P62/AN19/SCK5_0/ADTG_3 P0F/AN18/NMIX/SUBOUT_0/CROUT_1/RTCCO_0/WKUP0 P0C/AN17/SCK4_0/TIOA6_1/INT19_0 P0B/AN16/SOT4_0/TIOB6_1/INT18_0 P0A/AN15/SIN4_0/INT00_2 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 (TOP VIEW) VCC 1 48 P21/AN14/SIN0_0/INT06_1/WKUP2 P50/AN22/INT00_0/AIN0_2/SIN3_1 2 47 P22/AN13/SOT0_0/TIOB7_1 P51/AN23/INT01_0/BIN0_2/SOT3_1 3 46 P23/AN12/SCK0_0/TIOA7_1 P52/AN24/INT02_0/ZIN0_2/SCK3_1 4 45 P19/AN09/SCK2_2 P30/AN25/AIN0_0/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/AN26/BIN0_0/TIOB1_1/SCK6_1/INT04_2 6 43 AVRL P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/DTTI0X_0/INT06_0/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 10 39 P15/AN05/SOT0_1/INT14_0/IC03_2 P3B/RTO01_0/TIOA1_1 11 38 P14/AN04/SIN0_1/INT03_1/IC02_2 P3C/RTO02_0/TIOA2_1/INT18_2 12 37 AVSS P3D/RTO03_0/TIOA3_1 13 36 P12/AN02/SOT1_1/TX1_2/IC00_2 P3E/RTO04_0/TIOA4_1/INT19_2 14 35 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/WKUP1 P3F/RTO05_0/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 C VCC P46/X0A P47/X1A INITX P49/TIOB0_0/SOT3_2/INT20_1/AIN0_1/DA0_0 P4A/TIOB1_0/SCK3_2/INT21_1/BIN0_1/DA1_0 P4B/TIOB2_0/INT22_1/ZIN0_1/IGTRG_0 P4C/TIOB3_0/SCK7_1/INT12_0/AIN1_2 P4D/TIOB4_0/SOT7_1/INT13_0/BIN1_2 P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS QFN - 64 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 11 of 108 MB9B520M Series LQA048 P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 40 39 38 37 P0F/AN18/NMIX/SUBOUT_0/CROUT_1/RTCCO_0/WKUP0 P04/TDO/SWO 42 41 P60/AN21/SIN5_0/TIOA2_2/INT15_1/WKUP3/IGTRG_1 P61/AN20/SOT5_0/TIOB2_2/UHCONX/DTTI0X_2 44 43 P80/UDM0/INT16_1 USBVCC 46 45 VSS P81/UDP0/INT17_1 48 47 (TOP VIEW) VCC 1 36 P21/AN14/SIN0_0/INT06_1/WKUP2 P50/AN22/INT00_0/AIN0_2/SIN3_1 2 35 P22/AN13/SOT0_0/TIOB7_1 P51/AN23/INT01_0/BIN0_2/SOT3_1 3 34 P23/AN12/SCK0_0/TIOA7_1 P52/AN24/INT02_0/ZIN0_2/SCK3_1 4 33 AVRL P39/DTTI0X_0/INT06_0/ADTG_2 5 32 AVRH P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 6 31 AVCC P3B/RTO01_0/TIOA1_1 7 30 P15/AN05/SOT0_1/INT14_0/IC03_2 P3C/RTO02_0/TIOA2_1/INT18_2 8 29 P14/AN04/SIN0_1/INT03_1/IC02_2 P3D/RTO03_0/TIOA3_1 9 28 AVSS P3E/RTO04_0/TIOA4_1/INT19_2 10 27 P12/AN02/SOT1_1/TX1_2/IC00_2 P3F/RTO05_0/TIOA5_1 11 26 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/WKUP1 VSS 12 25 P10/AN00 21 22 23 24 PE3/X1 VSS PE0/MD1 MD0 19 20 P4A/TIOB1_0/INT21_1/DA1_0 PE2/X0 17 18 INITX 15 16 P46/X0A P47/X1A P49/TIOB0_0/INT20_1/DA0_0 13 14 C VCC LQFP - 48 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 12 of 108 MB9B520M Series VNA048 P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 40 39 38 37 P0F/AN18/NMIX/SUBOUT_0/CROUT_1/RTCCO_0/WKUP0 P04/TDO/SWO 42 41 P60/AN21/SIN5_0/TIOA2_2/INT15_1/WKUP3/IGTRG_1 P61/AN20/SOT5_0/TIOB2_2/UHCONX/DTTI0X_2 44 43 P80/UDM0/INT16_1 USBVCC 46 45 VSS P81/UDP0/INT17_1 48 47 (TOP VIEW) VCC 1 36 P21/AN14/SIN0_0/INT06_1/WKUP2 P50/AN22/INT00_0/AIN0_2/SIN3_1 2 35 P22/AN13/SOT0_0/TIOB7_1 P51/AN23/INT01_0/BIN0_2/SOT3_1 3 34 P23/AN12/SCK0_0/TIOA7_1 P52/AN24/INT02_0/ZIN0_2/SCK3_1 4 33 AVRL P39/DTTI0X_0/INT06_0/ADTG_2 5 32 AVRH P3A/RTO00_0/TIOA0_1/INT07_0/SUBOUT_2/RTCCO_2 6 31 AVCC P3B/RTO01_0/TIOA1_1 7 30 P15/AN05/SOT0_1/INT14_0/IC03_2 P3C/RTO02_0/TIOA2_1/INT18_2 8 29 P14/AN04/SIN0_1/INT03_1/IC02_2 P3D/RTO03_0/TIOA3_1 9 28 AVSS P3E/RTO04_0/TIOA4_1/INT19_2 10 27 P12/AN02/SOT1_1/TX1_2/IC00_2 P3F/RTO05_0/TIOA5_1 11 26 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/WKUP1 VSS 12 25 P10/AN00 21 22 23 24 PE3/X1 VSS PE0/MD1 MD0 19 20 P4A/TIOB1_0/INT21_1/DA1_0 PE2/X0 17 18 INITX 15 16 P46/X0A P47/X1A P49/TIOB0_0/INT20_1/DA0_0 13 14 C VCC QFN - 48 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 13 of 108 MB9B520M Series FDG096 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A VSS UDP0 UDM0 USBVCC VSS AN18 VSS P07 TMS/ SWDIO TRSTX VSS B VCC VSS AN24 AN20 P63 P0D AN17 TDO/ SWO TCK/ SWCLK VSS TDI C AN22 AN23 VSS AN21 AN19 P0E AN16 AN15 VSS P20 AN14 D P53 P54 P55 Index AN13 AN12 VSS E P56 AN25 AN26 AN11 AN10 AN09 F VSS VSS VSS AN08 AN07 AVRH G P32 P33 P39 AN06 AN05 AVRL H P3A P3B P3C AN04 AVSS AVCC J P3D P3E VSS P3F P48 P4A P4D AN02 VSS AN01 AN00 K VCC VSS X1A INITX P45 P49 P4C P4E MD1 VSS VCC L VSS C X0A VSS P44 VSS P4B MD0 X0 X1 VSS Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05649 Rev. *D Page 14 of 108 MB9B520M Series 4. List of Pin Functions List of pin numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No LQFP-80 1 LQFP-64 QFN-64 BGA-96 B1 1 1 I/O circuit type Pin Name LQFP-48 QFN-48 VCC Pin state type - P50 INT00_0 2 C1 2 2 AIN0_2 F N F N F N E L E L E L E L F N SIN3_1 AN22 P51 INT01_0 3 C2 3 3 BIN0_2 SOT3_1 (SDA3_1) AN23 P52 INT02_0 4 B3 4 4 ZIN0_2 SCK3_1 (SCL3_1) AN24 P53 5 D1 - - SIN6_0 TIOA1_2 INT07_2 P54 6 D2 - - SOT6_0 (SDA6_0) TIOB1_2 INT18_1 P55 7 D3 - - SCK6_0 (SCL6_0) ADTG_1 INT19_1 8 E1 - - P56 INT08_2 P30 AIN0_0 9 E2 5 - TIOB0_1 INT03_2 AN25 Document Number: 002-05649 Rev. *D Page 15 of 108 MB9B520M Series Pin No LQFP-80 LQFP-64 QFN-64 BGA-96 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P31 BIN0_0 TIOB1_1 10 E3 6 - SCK6_1 (SCL6_1) F N E L E L E L G L G K G L G K INT04_2 AN26 P32 ZIN0_0 11 G1 7 - TIOB2_1 SOT6_1 (SDA6_1) INT05_2 P33 INT04_0 12 G2 8 - TIOB3_1 SIN6_1 ADTG_6 P39 13 G3 9 5 DTTI0X_0 INT06_0 ADTG_2 P3A RTO00_0 (PPG00_0) 14 H1 10 6 TIOA0_1 INT07_0 SUBOUT_2 RTCCO_2 P3B 15 H2 11 7 RTO01_0 (PPG00_0) TIOA1_1 P3C 16 H3 12 8 RTO02_0 (PPG02_0) TIOA2_1 INT18_2 P3D 17 J1 13 9 RTO03_0 (PPG02_0) TIOA3_1 Document Number: 002-05649 Rev. *D Page 16 of 108 MB9B520M Series Pin No LQFP-80 LQFP-64 QFN-64 BGA-96 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P3E 18 J2 14 10 RTO04_0 (PPG04_0) G L G K TIOA4_1 INT19_2 P3F 19 J4 15 11 20 L1 16 12 21 L5 - - 22 K5 - - 23 L2 17 24 L4 - 25 K1 18 RTO05_0 (PPG04_0) TIOA5_1 - 13 VSS P44 TIOA4_0 INT10_0 P45 TIOA5_0 INT11_0 C - VSS - 14 VCC - 26 L3 19 15 27 K3 20 16 28 K4 21 17 P46 X0A P47 X1A INITX G L G L - D F D G B C E L L L L L P48 29 J5 - - INT14_1 SIN3_2 P49 18 30 K6 22 TIOB0_0 INT20_1 DA0_0 - SOT3_2 (SDA3_2) AIN0_1 P4A 19 31 J6 23 TIOB1_0 INT21_1 DA1_0 - SCK3_2 (SCL3_2) BIN0_1 Document Number: 002-05649 Rev. *D Page 17 of 108 MB9B520M Series Pin No LQFP-80 LQFP-64 QFN-64 BGA-96 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P4B TIOB2_0 32 L7 24 - INT22_1 E L I* L I* L I* L C E K D A A A B IGTRG_0 ZIN0_1 P4C TIOB3_0 33 K7 25 - SCK7_1 (SCL7_1) INT12_0 AIN1_2 P4D TIOB4_0 34 J7 26 - SOT7_1 (SDA7_1) INT13_0 BIN1_2 P4E TIOB5_0 35 K8 27 - INT06_2 SIN7_1 ZIN1_2 36 K9 28 20 37 L8 29 21 MD1 PE0 MD0 X0 38 L9 30 22 39 L10 31 23 40 L11 32 24 VSS - 41 K11 33 - VCC - 42 J11 34 25 PE2 X1 PE3 P10 AN00 F M F N F M P11 AN01 SIN1_1 43 J10 35 26 INT02_1 RX1_2 FRCK0_2 WKUP1 P12 AN02 44 J8 36 27 SOT1_1 (SDA1_1) TX1_2 IC00_2 Document Number: 002-05649 Rev. *D Page 18 of 108 MB9B520M Series Pin No LQFP-80 45 LQFP-64 QFN-64 BGA-96 H10 37 28 I/O circuit type Pin Name LQFP-48 QFN-48 AVSS Pin state type - P14 AN04 46 H9 38 29 INT03_1 F N F N F N F N IC02_2 SIN0_1 P15 AN05 47 G10 39 30 IC03_2 SOT0_1 (SDA0_1) INT14_0 P16 AN06 48 G9 - - SCK0_1 (SCL0_1) INT15_0 P17 AN07 49 F10 40 - 50 H11 41 31 AVCC - 51 F11 42 32 AVRH - 52 G11 43 33 AVRL - SIN2_2 INT04_1 P18 53 F9 44 - AN08 SOT2_2 (SDA2_2) F M F M F N P19 54 E11 45 - AN09 SCK2_2 (SCL2_2) P1A AN10 55 E10 - - SIN4_1 INT05_1 IC00_1 Document Number: 002-05649 Rev. *D Page 19 of 108 MB9B520M Series Pin No LQFP-80 LQFP-64 QFN-64 BGA-96 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P1B AN11 56 E9 - - SOT4_1 (SDA4_1) F N F M F M F N E N E J E J E J E J E J E L IC01_1 INT20_2 P23 57 D10 46 34 SCK0_0 (SCL0_0) TIOA7_1 AN12 P22 58 D9 47 35 SOT0_0 (SDA0_0) TIOB7_1 AN13 - - ZIN1_1 P21 SIN0_0 59 C11 48 36 INT06_1 WKUP2 BIN1_1 AN14 P20 60 C10 - - INT05_0 CROUT_0 AIN1_1 61 A10 49 37 62 B9 50 38 P00 TRSTX P01 TCK SWCLK 63 B11 51 39 64 A9 52 40 P02 TDI P03 TMS SWDIO P04 65 B8 53 41 TDO SWO P07 66 A8 - - ADTG_0 INT23_1 Document Number: 002-05649 Rev. *D Page 20 of 108 MB9B520M Series Pin No LQFP-64 BGA-96 QFN-64 LQFP-80 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P0A 67 C8 54 - SIN4_0 INT00_2 J* N J* N J* N E L E L F I E L F M F M AN15 P0B 68 C7 55 - SOT4_0 (SDA4_0) TIOB6_1 AN16 INT18_0 P0C 69 B7 56 - SCK4_0 (SCL4_0) TIOA6_1 INT19_0 AN17 P0D 70 B6 - - RTS4_0 TIOA3_2 INT20_0 P0E 71 C6 - - CTS4_0 TIOB3_2 INT21_0 P0F NMIX SUBOUT_0 72 A6 57 42 CROUT_1 RTCCO_0 WKUP0 AN18 73 B5 - - P63 INT03_0 P62 74 C5 58 - SCK5_0 (SCL5_0) ADTG_3 AN19 P61 SOT5_0 (SDA5_0) 75 B4 59 43 TIOB2_2 UHCONX DTTI0X_2 AN20 Document Number: 002-05649 Rev. *D Page 21 of 108 MB9B520M Series Pin No LQFP-80 LQFP-64 QFN-64 BGA-96 I/O circuit type Pin Name LQFP-48 QFN-48 Pin state type P60 SIN5_0 TIOA2_2 76 C4 60 44 INT15_1 J* N WKUP3 IGTRG_1 AN21 77 A4 61 45 USBVCC - P80 78 A3 62 46 UDM0 H H H H INT16_1 P81 79 A2 63 47 UDP0 INT17_1 80 A1 64 48 VSS - - A5, A7, A11, B2, B10, C3, C9, D11, F1, F2, F3, J3, J9, K2, K10, L6 - - VSS - *: 5 V tolerant I/O Document Number: 002-05649 Rev. *D Page 22 of 108 MB9B520M Series List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin function ADC Pin name ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_6 AN00 AN01 AN02 AN04 AN05 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 AN24 AN25 AN26 Function description A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Document Number: 002-05649 Rev. *D LQFP-80 66 7 13 74 12 42 43 44 46 47 48 49 53 54 55 56 57 58 59 67 68 69 72 74 75 76 2 3 4 9 10 Pin No LQFP-64 BGA-96 QFN-64 A8 D3 G3 C5 G2 J11 J10 J8 H9 G10 G9 F10 F9 E11 E10 E9 D10 D9 C11 C8 C7 B7 A6 C5 B4 C4 C1 C2 B3 E2 E3 9 58 8 34 35 36 38 39 40 44 45 46 47 48 54 55 56 57 58 59 60 2 3 4 5 6 LQFP-48 QFN-48 5 25 26 27 29 30 34 35 36 42 43 44 2 3 4 - Page 23 of 108 MB9B520M Series Pin function Base Timer 0 Base Timer 1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 Base Timer 7 Debugger Pin name TIOA0_1 TIOB0_0 TIOB0_1 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_1 TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOB4_0 TIOA5_0 TIOA5_1 TIOB5_0 TIOA6_1 TIOB6_1 TIOA7_1 TIOB7_1 SWCLK SWDIO SWO TCK TDI TDO TMS TRSTX Function description Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin Base timer ch.6 TIOB pin Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin Serial wire debug interface clock input pin Serial wire debug interface data input / output pin Serial wire viewer output pin JTAG test clock input pin JTAG test data input pin JTAG debug data output pin JTAG test mode state input/output pin JTAG test reset input pin Document Number: 002-05649 Rev. *D Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 14 30 9 15 5 31 10 6 16 76 32 11 75 17 70 33 12 71 21 18 34 22 19 35 69 68 57 58 62 H1 K6 E2 H2 D1 J6 E3 D2 H3 C4 L7 G1 B4 J1 B6 K7 G2 C6 L5 J2 J7 K5 J4 K8 B7 C7 D10 D9 B9 10 22 5 11 23 6 12 60 24 7 59 13 25 8 14 26 15 27 56 55 46 47 50 6 18 7 19 8 44 43 9 10 11 34 35 38 64 A9 52 40 65 62 63 65 64 61 B8 B9 B11 B8 A9 A10 53 50 51 53 52 49 41 38 39 41 40 37 LQFP-80 Page 24 of 108 MB9B520M Series Pin function External Interrupt Pin name INT00_0 INT00_2 INT01_0 INT02_0 INT02_1 INT03_0 INT03_1 INT03_2 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_0 INT06_1 INT06_2 INT07_0 INT07_2 INT08_2 INT10_0 INT11_0 INT12_0 INT13_0 INT14_0 INT14_1 INT15_0 INT15_1 INT16_1 INT17_1 INT18_0 INT18_1 INT18_2 INT19_0 INT19_1 INT19_2 Function description External interrupt request 00 input pin External interrupt request 01 input pin External interrupt request 02 input pin External interrupt request 03 input pin External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin External interrupt request 15 input pin External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin Document Number: 002-05649 Rev. *D Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 2 C1 2 2 67 C8 54 - 3 4 43 73 46 9 12 49 10 60 55 11 13 59 35 14 5 8 21 22 33 34 47 29 48 76 78 79 68 6 16 59 7 18 C2 B3 J10 B5 H9 E2 G2 F10 E3 P20 E10 G1 G3 C11 K8 H1 D1 E1 L5 K5 K7 J7 G10 J5 G9 C4 A3 A2 C7 D2 H3 C11 D3 J2 3 4 35 38 5 8 40 6 7 9 48 27 10 25 26 39 60 62 63 55 12 56 14 3 4 26 29 5 36 6 30 44 46 47 8 10 LQFP-80 Page 25 of 108 MB9B520M Series Pin function External Interrupt GPIO Pin name INT20_0 INT20_1 INT20_2 INT21_0 INT21_1 INT22_1 INT23_1 NMIX P00 P01 P02 P03 P04 P07 P0A P0B P0C P0D P0E P0F P10 P11 P12 P14 P15 P16 P17 P18 P19 P1A P1B P20 P21 P22 P23 Function description External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin Non-Maskable Interrupt input pin General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 Document Number: 002-05649 Rev. *D LQFP-80 70 30 56 71 31 32 66 72 61 62 63 64 65 66 67 68 69 70 71 72 42 43 44 46 47 48 49 53 54 55 56 60 59 58 57 Pin No LQFP-64 BGA-96 QFN-64 B6 K6 E9 C6 J6 L7 A8 A6 A10 B9 B11 A9 B8 A8 C8 C7 B7 B6 C6 A6 J11 J10 J8 H9 G10 G9 F10 F9 E11 E10 E9 C10 C11 D9 D10 22 23 24 57 49 50 51 52 53 54 55 56 57 34 35 36 38 39 40 44 45 48 47 46 LQFP-48 QFN-48 18 19 42 37 38 39 40 41 42 25 26 27 29 30 36 35 34 Page 26 of 108 MB9B520M Series Pin function GPIO Pin name P30 P31 P32 P33 P39 P3A P3B P3C P3D P3E P3F P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P60 P61 P62 P63 P80 P81 PE0 PE2 PE3 Function description General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 General-purpose I/O port 6 General-purpose I/O port 8 General-purpose I/O port E Document Number: 002-05649 Rev. *D LQFP-80 9 10 11 12 13 14 15 16 17 18 19 21 22 26 27 29 30 31 32 33 34 35 2 3 4 5 6 7 8 76 75 74 73 78 79 36 38 39 Pin No LQFP-64 BGA-96 QFN-64 E2 E3 G1 G2 G3 H1 H2 H3 J1 J2 J4 L5 K5 L3 K3 J5 K6 J6 L7 K7 J7 K8 C1 C2 B3 D1 D2 D3 E1 C4 B4 C5 B5 A3 A2 K9 L9 L10 5 6 7 8 9 10 11 12 13 14 15 19 20 22 23 24 25 26 27 2 3 4 60 59 58 62 63 28 30 31 LQFP-48 QFN-48 5 6 7 8 9 10 11 15 16 18 19 2 3 4 44 43 46 47 20 22 23 Page 27 of 108 MB9B520M Series Pin function Pin name Multifunction Serial 0 SIN0_0 SIN0_1 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Multifunction Serial 1 SIN1_1 Multifunction Serial 2 SIN2_2 SOT1_1 (SDA1_1) SOT2_2 (SDA2_2) SCK2_2 (SCL2_2) Multifunction Serial 3 SIN3_1 SIN3_2 SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 59 C11 48 36 46 H9 38 29 Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). 58 D9 47 35 47 G10 39 30 Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a CSIO (operation mode 2) and as SCL0 when it is used in an I2C (operation mode 4). 57 D10 46 34 48 G9 - - Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/LIN (operation modes 0,1,3) . Multi-function serial interface ch.2 input pin Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a CSIO (operation mode 2) and as SCL2 when it is used in an I2C (operation mode 4). 43 J10 35 26 44 J8 36 27 49 F10 40 - 53 F9 44 - 54 E11 45 - 2 C1 2 2 29 J5 - - Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). 3 C2 3 3 30 K6 - - Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a CSIO (operation mode 2) and as SCL3 when it is used in an I2C (operation mode 4). 4 B3 4 4 31 J6 - - Function description Multi-function serial interface ch.0 input pin Multi-function serial interface ch.3 input pin Document Number: 002-05649 Rev. *D LQFP-80 Page 28 of 108 MB9B520M Series Pin function Pin name Multifunction Serial 4 SIN4_0 SIN4_1 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SCK4_0 (SCL4_0) Multifunction Serial 5 RTS4_0 CTS4_0 SIN5_0 SOT5_0 (SDA5_0) SCK5_0 (SCL5_0) Multifunction Serial 6 SIN6_0 SIN6_1 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 67 C8 54 - 55 E10 - - 68 C7 55 - 56 E9 - - 69 B7 56 - 70 71 76 B6 C6 C4 60 44 75 B4 59 43 74 C5 58 - 5 D1 - - 12 G2 8 - Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). 6 D2 - - 11 G1 7 - Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a CSIO (operation mode 2) and as SCL6 when it is used in an I2C (operation mode 4). 7 D3 - - 10 E3 6 - Function description Multi-function serial interface ch.4 input pin Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a CSIO (operation mode 2) and as SCL4 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.4 RTS output pin Multi-function serial interface ch.4 CTS input pin Multi-function serial interface ch.5 input pin Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a CSIO (operation mode 2) and as SCL5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.6 input pin Document Number: 002-05649 Rev. *D LQFP-80 Page 29 of 108 MB9B520M Series Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 35 K8 27 - 34 J7 26 - 33 K7 25 - 13 G3 9 5 75 B4 59 43 43 55 J10 E10 35 - 26 - 44 J8 36 27 56 E9 - - IC02_2 46 H9 38 29 IC03_2 47 G10 39 30 Pin function Pin name Multifunction Serial 7 SIN7_1 SOT7_1 (SDA7_1) SCK7_1 (SCL7_1) Multifunction Timer 0 DTTI0X_0 DTTI0X_2 FRCK0_2 IC00_1 Function description Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a CSIO (operation mode 2) and as SCL7 when it is used in an I2C (operation mode 4). Input signal of waveform generator to control outputs RTO00 to RTO05 of Multi-function timer 0. 16-bit free-run timer ch.0 external clock input pin IC00_2 IC01_1 16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number. LQFP-80 RTO00_0 (PPG00_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. 14 H1 10 6 RTO01_0 (PPG00_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. 15 H2 11 7 RTO02_0 (PPG02_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. 16 H3 12 8 RTO03_0 (PPG02_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. 17 J1 13 9 RTO04_0 (PPG04_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. 18 J2 14 10 RTO05_0 (PPG04_0) Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. 19 J4 15 11 IGTRG_0 IGTRG_1 PPG IGBT mode external trigger input pin 32 76 L7 C4 24 60 44 Document Number: 002-05649 Rev. *D Page 30 of 108 MB9B520M Series Pin function Pin name Quadrature Position/ Revolution Counter 0 AIN0_0 AIN0_1 AIN0_2 BIN0_0 BIN0_1 BIN0_2 ZIN0_0 ZIN0_1 ZIN0_2 AIN1_1 AIN1_2 BIN1_1 BIN1_2 ZIN1_1 ZIN1_2 UDM0 UDP0 UHCONX TX1_2 RX1_2 RTCCO_0 RTCCO_2 SUBOUT_0 SUBOUT_2 WKUP0 WKUP1 WKUP2 WKUP3 DA0 DA1 Quadrature Position/ Revolution Counter 1 USB CAN Real-time clock Low-Power Consumption Mode DAC Reset INITX Document Number: 002-05649 Rev. *D Function description QPRC ch.0 AIN input pin QPRC ch.0 BIN input pin QPRC ch.0 ZIN input pin QPRC ch.1 AIN input pin QPRC ch.1 BIN input pin QPRC ch.1 ZIN input pin USB device/host D – pin USB device/host D + pin USB external pull-up control pin CAN interface TX output pin CAN interface RX input pin 0.5 seconds pulse output pin of Real-time clock Sub clock output pin Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 D/A converter ch.0 analog output pin D/A converter ch.1 analog output pin External Reset Input pin. A reset is valid when INITX="L". Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 9 30 2 10 31 3 11 32 4 60 33 59 34 58 35 78 79 75 44 43 72 14 72 14 72 43 59 76 30 31 E2 K6 C1 E3 J6 C2 G1 L7 B3 C10 K7 C11 J7 D9 K8 A3 A2 B4 J8 J10 A6 H1 A6 H1 A6 J10 C11 C4 K6 J6 5 22 2 6 23 3 7 24 4 25 26 27 62 63 59 36 35 57 10 57 10 57 35 48 60 22 23 2 3 4 46 47 43 27 26 42 6 42 6 42 26 36 44 18 19 28 K4 21 17 LQFP-80 Page 31 of 108 MB9B520M Series Pin function Pin name Mode MD0 MD1 Power GND Clock Analog Power VCC VCC VCC USBVCC VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS X0 X0A X1 X1A CROUT_0 CROUT_1 AVCC AVRH Analog GND C pin AVSS AVRL C Function description Mode 0 pin. During normal operation, MD0="L" must be input. During serial programming to Flash memory, MD0="H" must be input. Mode 1 pin. During serial programming to Flash memory, MD1="L" must be input. Power supply Pin Power supply Pin Power supply Pin 3.3V Power supply port for USB I/O GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin Main clock (oscillation) input pin Sub clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) I/O pin Built-in high-speed CR-osc clock output port A/D converter and D/A converter analog power supply pin A/D converter analog reference voltage input pin A/D converter and D/A converter GND pin A/D converter analog reference voltage input pin Power supply stabilization capacity pin Pin No LQFP-64 BGA-96 QFN-64 LQFP-48 QFN-48 37 L8 29 21 36 K9 28 20 1 25 41 77 20 24 40 80 38 26 39 27 60 72 B1 K1 K11 A4 F1 F2 F3 B2 L1 K2 J3 L6 L4 L11 K10 J9 B10 C9 D11 A11 A7 C3 A5 A1 L9 L3 L10 K3 C10 A6 1 18 33 61 16 32 64 30 19 31 20 57 1 14 45 12 24 48 22 15 23 16 42 50 H11 41 31 51 F11 42 32 45 H10 37 28 52 23 G11 L2 43 17 33 13 LQFP-80 Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 002-05649 Rev. *D Page 32 of 108 MB9B520M Series 5. I/O Circuit Type Type A Circuit Remarks It is possible to select the main oscillation / GPIO function Pull-up When the main oscillation is selected. resistor P-ch P-ch Digital output X1A • Oscillation feedback resistor : Approximately 1 MΩ • With Standby mode control When the GPIO is selected. N-ch Digital output R Pull-up resistor control • • • • • CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA Digital input Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control • CMOS level hysteresis input • Pull-up resistor : Approximately 50 kΩ B Pull-up resistor Digital input Document Number: 002-05649 Rev. *D Page 33 of 108 MB9B520M Series Type C Circuit Remarks Digital input • Open drain output • CMOS level hysteresis input Digital output N-ch D It is possible to select the sub oscillation / GPIO function Pull-up When the sub oscillation is selected. resistor P-ch P-ch Digital output X1A • Oscillation feedback resistor : Approximately 5 MΩ • With Standby mode control When the GPIO is selected. N-ch Digital output R Pull-up resistor control • • • • • CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA Digital input Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control Document Number: 002-05649 Rev. *D Page 34 of 108 MB9B520M Series Type E Circuit Remarks • • • • • P-ch P-ch N-ch Digital output Digital output CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off • +B input is available R Pull-up resistor control Digital input Standby mode control F P-ch P-ch N-ch R Digital output Digital output • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off • +B input is available Pull-up resistor control Digital input Standby mode control Analog input Input control Document Number: 002-05649 Rev. *D Page 35 of 108 MB9B520M Series Type G Circuit Remarks • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -12 mA, IOL= 12 mA • +B input is available P-ch P-ch Digital output N-ch Digital output R Pull-up resistor control Digital input Standby mode control H It is possible to select the USB I/O / GPIO function. GPIO Digital output GPIO Digital input/output direction When the USB I/O is selected. GPIO Digital input • Full-speed, Low-speed control GPIO Digital input circuit control When the GPIO is selected. UDP output UDP0/P81 USB Full-speed/Low-speed control UDP input Differential UDM0/P80 • CMOS level output • CMOS level hysteresis input • With standby mode control Differential input USB/GPIO select UDM input UDM output USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 002-05649 Rev. *D Page 36 of 108 MB9B520M Series Type I Circuit P-ch P-ch N-ch Remarks Digital output Digital output R • • • • • • CMOS level output CMOS level hysteresis input 5 V tolerant With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA • Available to control PZR registers. • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control J P-ch P-ch N-ch R Digital output Digital output • • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input 5 V tolerant With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH= -4 mA, IOL= 4 mA • Available to control PZR registers. • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control Analog input Input control CMOS level hysteresis input K Mode input Document Number: 002-05649 Rev. *D Page 37 of 108 MB9B520M Series Type L Circuit P-ch R P-ch Digital output N-ch Digital output Remarks • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog output With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA Pull-up resistor control Digital input Standby mode Control Analog output Document Number: 002-05649 Rev. *D Page 38 of 108 MB9B520M Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Document Number: 002-05649 Rev. *D Page 39 of 108 MB9B520M Series Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Document Number: 002-05649 Rev. *D Page 40 of 108 MB9B520M Series Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-05649 Rev. *D Page 41 of 108 MB9B520M Series 7. Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin, between AVRH pin and AVRL pin near this device. Stabilizing power supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub crystal oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. • Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: Approximately 6 pF to 7 pF • Lead type Load capacitance: Approximately 6 pF to 7 pF Using an external clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. • Example of Using an External Clock Device X0(X0A) Can be used as general-purpose I/O ports. Document Number: 002-05649 Rev. *D X1(PE3), X1A (P47) Set as External clock input Page 42 of 108 MB9B520M Series Handling when using Multi-function serial pin as I2C pin If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS. Turning on : VCC → USBVCC VCC → AVCC → AVRH Turning off : AVRH → AVCC → VCC USBVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in features among the products with different memory sizes and between Flash memory products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up function of 5 V tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Document Number: 002-05649 Rev. *D Page 43 of 108 MB9B520M Series 8. Block Diagram MB9BF521K/L/M, F522K/L/M, F524K/L/M TRSTX,TCK, TDI,TMS TDO SRAM0 8/16 Kbytes SWJ-DP ROM Table Multi-layer AHB (Max 72MHz) Cortex-M3 Core I @72MHz(Max) D NVIC Sys AHB-APB Bridge: APB0(Max 40MHz) Dual-Timer WatchDog Timer (Software) INITX Clock Reset Generator WatchDog Timer (Hardware) SRAM1 8/16 Kbytes On-Chip Flash 64+32 Kbytes/ 128+32 Kbytes/ 256+32 Kbytes Flash I/F Security USB2.0 PHY (Host/ Device) USBVCC UDP0/UDM0 UHCONX DMAC 8ch. CSV CLK Main Osc Sub Osc PLL CR 4MHz Source Clock AHB-AHB Bridge X0 X1 X0A X1A CR 100kHz CROUT ADTGx DAx TIOAx TIOBx AINx BINx ZINx Unit 0 CAN Prescaler Unit 1 USB Clock Ctrl 10-bit D/A Converter 2units LVD Ctrl LVD IRQ-Monitor Regulator Base Timer 16-bit 8ch./ 32-bit 4ch. QPRC 2ch. A/D Activation Compare 2ch. IC0x FRCKx 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI0X RTO0x IGTRG_x Waveform Generator 3ch. 16-bit PPG 3ch. Multi-function Timer AHB-APB Bridge : APB2 (Max 40MHz) ANxx TX1_2, RX1_2 12-bit A/D Converter AHB-APB Bridge : APB1 (Max 40MHz) AVCC, AVSS, AVRH, AVRL CAN PLL Power-On Reset C CRC Accelerator RTCCO_x, SUBOUT_x Real-Time Colck Watch Counter External Interrupt Controller 16-pin + NMI INTx NMIX MD0, MD1 MODE-Ctrl Deep Standby Ctrl WKUPx P0x, P1x, GPIO PIN-Function-Ctrl ・ ・ ・ PFx SCKx Multi-Function Serial I/F 8ch. (with FIFO ch.0/1/3/4) HW flow control(ch.4) SINx SOTx CTS4 RTS4 Document Number: 002-05649 Rev. *D Page 44 of 108 MB9B520M Series 9. Memory Size See “Memory size” in “Product Lineup” to confirm the memory size. 10. Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xE010_0000 0xE000_0000 Cortex-M3 Private Peripherals 0x4006_4000 0x4006_3000 0x4006_1000 0x4006_0000 Reserved 0x4005_0000 0x4004_0000 0x4003_C000 0x7000_0000 0x6000_0000 0x4003_B000 External DeviceArea 0x4003_A000 0x4003_9000 0x4003_8000 Reserved 0x4400_0000 0x4200_0000 0x4000_0000 0x2400_0000 0x2200_0000 0x2008_0000 0x2000_0000 0x1FF8_0000 0x0020_8000 0x0020_0000 0x0010_4000 See " • Memory Map (2)" for the memory size details. 0x0010_0000 0x4003_7000 0x4003_6000 32Mbytes Bit band alias Peripherals Reserved 32Mbytes Bit band alias Reserved SRAM1 SRAM0 Reserved Flash(Work area) Reserved Security/CR Trim 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 0x4002_9000 0x4002_8000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x0000_0000 DMAC Reserved USB ch.0 Reserved RTC Watch Counter CRC MFS CAN Prescaler USB Clock Ctrl LVD/DS mode Reserved GPIO Reserved Int-Req.Read EXTI Reserved CR Trim Reserved D/AC A/DC QPRC Base Timer PPG Reserved 0x4001_6000 0x4001_5000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 Document Number: 002-05649 Rev. *D Reserved 0x4002_1000 0x4002_0000 Flash(Main area) CAN ch.1 MFT unit0 Reserved Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved Flash I/F Page 45 of 108 MB9B520M Series Memory Map (2) MB9BF524K/L/M MB9BF522K/L/M 0x2008_0000 MB9BF521K/L/M 0x2008_0000 Reserved 0x2008_0000 Reserved Reserved 0x2000_4000 0x2000_2000 SRAM1 16Kbytes 0x2000_0000 0x2000_0000 SRAM0 16Kbytes 0x1FFF_E000 0x2000_2000 SRAM1 8Kbytes SRAM0 8Kbytes 0x2000_0000 0x1FFF_E000 SRAM1 8Kbytes SRAM0 8Kbytes 0x1FFF_C000 Reserved Reserved 0x0020_0000 Reserved 0x0010_0000 0x0020_8000 0x0020_0000 Reserved 0x0010_4000 0x0010_2000 SA7(8KB) SA6(8KB) SA5(8KB) SA4(8KB) Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 SA7(8KB) SA6(8KB) SA5(8KB) SA4(8KB) Flash(Work area) 32Kbytes 0x0020_8000 Flash(Work area) 32Kbytes 0x0020_0000 SA7(8KB) SA6(8KB) SA5(8KB) SA4(8KB) Flash(Work area) 32Kbytes 0x0020_8000 Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 CR trimming Security Reserved 0x0004_0000 Reserved SA11(64KB) 0x0002_0000 SA8(48KB) 0x0000_0000 SA3(8KB) SA2(8KB) SA8(48KB) 0x0000_0000 SA3(8KB) SA2(8KB) 0x0001_0000 SA8(48KB) 0x0000_0000 SA3(8KB) SA2(8KB) Flash(Main area) 64Kbytes SA9(64KB) Flash(Main area) 128Kbytes SA9(64KB) Flash(Main area) 256Kbytes SA10(64KB) Reserved Refer to the programming manual for the detail of Flash main area. MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual Document Number: 002-05649 Rev. *D Page 46 of 108 MB9B520M Series Peripheral Address Map Start address End address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function timer unit0 0x4002_1000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF 0x4002_7000 0x4002_7FFF 0x4002_8000 0x4002_8FFF D/A Converter 0x4002_9000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt 0x4003_1000 0x4003_1FFF Interrupt Source Check Resister 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_57FF Low-Voltage Detector 0x4003_5800 0x4003_5FFF 0x4003_6000 0x4003_6FFF 0x4003_7000 0x4003_7FFF CAN prescaler 0x4003_8000 0x4003_8FFF Multi-function serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_FFFF Reserved 0x4004_0000 0x4004_FFFF USB ch.0 0x4005_0000 0x4005_FFFF Reserved 0x4006_0000 0x4006_0FFF 0x4006_1000 0x4006_2FFF 0x4006_3000 0x4006_3FFF CAN ch.1 0x4006_4000 0x41FF_FFFF Reserved Document Number: 002-05649 Rev. *D AHB APB0 APB1 APB2 AHB Flash Memory I/F register Reserved Software Watchdog timer Reserved Quadrature Position/Revolution Counter (QPRC) A/D Converter Deep standby mode Controller USB clock generator DMAC register Reserved Page 47 of 108 MB9B520M Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the "L" level. INITX=1 This is the period when the INITX pin is the "H" level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "0". SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "1". Input enabled Indicates that the input function can be used. Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L". Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Document Number: 002-05649 Rev. *D Page 48 of 108 MB9B520M Series Pin status type List of Pin Status A Power-on reset or low-voltage detection state INITX input state Device internal reset state Run mode or SLEEP mode state Timer mode, RTC mode, or STOP mode state Deep standby RTC mode or Deep standby STOP mode state Return from Deep standby mode state Power supply stable Power supply stable Power supply stable Power supply stable INITX = 1 INITX = 1 INITX = 1 INITX = 1 Function group Power supply unstable Power supply stable - INITX = 0 - - INITX = 1 - - SPL = 0 SPL = 1 GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" Setting disabled Maintain previous state Maintain previous state Maintain previous state/Wh en oscillation stops*1, Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/Wh en oscillation stops*1, Hi-Z / Internal input fixed at "0" GPIO selected External main clock input selected Setting disabled Setting disabled Setting disabled Setting disabled B SPL = 0 GPIO selected Internal input fixed at "0" SPL = 1 - Hi-Z / Internal input fixed at "0" GPIO selected Input enabled Input enabled Input enabled GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected Maintain previous state/Wh en oscillation stops*1, Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/Wh en oscillation stops*1, Hi-Z / Internal input fixed at "0" Maintain previous state Maintain previous state Main crystal oscillator output pin Hi-Z / Internal input fixed at "0"/ or Input enable Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/Whe n oscillation stops*1, Hi-Z / Internal input fixed at "0" C INITX input pin Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Document Number: 002-05649 Rev. *D Maintain previous state/Whe n oscillation stops*1, Hi-Z / Internal input fixed at "0" Page 49 of 108 Pin status type MB9B520M Series Power-on reset or low-voltage detection state INITX input state Device internal reset state Timer mode, RTC mode, or STOP mode state Deep standby RTC mode or Deep standby STOP mode state Return from Deep standby mode state Power supply stable Power supply stable Power supply stable Power supply stable INITX = 1 INITX = 1 INITX = 1 INITX = 1 Function group Power supply unstable Power supply stable - INITX = 0 - - INITX = 1 - - SPL = 0 SPL = 1 SPL = 0 SPL = 1 - Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Input enabled GPIO selected Hi-Z / Input enabled GPIO selected Maintain previous state Hi-Z / Internal input fixed at "0" GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected Input enabled Input enabled Input enabled Input enabled Input enabled Hi-Z / Internal input fixed at "0" GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected E F Run mode or SLEEP mode state GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled GPIO selected External sub clock input selected Setting disabled Setting disabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state/Wh en oscillation stops*2, Hi-Z / Internal input fixed at "0" G Sub crystal oscillator output pin Hi-Z / Internal input fixed at "0"/ or Input enable Document Number: 002-05649 Rev. *D Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/Wh en oscillation stops*2, Hi-Z / Internal input fixed at "0" Maintain previous state Maintain previous state/Wh en oscillation stops*2, Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state/Wh en oscillation stops*2, Hi-Z/ Internal input fixed at "0" Maintain previous state Maintain previous state/Whe n oscillation stops*2, Hi-Z/ Internal input fixed at "0" Page 50 of 108 Pin status type MB9B520M Series Power-on reset or low-voltage detection state INITX input state Device internal reset state Run mode or SLEEP mode state Timer mode, RTC mode, or STOP mode state Deep standby RTC mode or Deep standby STOP mode state Return from Deep standby mode state Power supply stable Power supply stable Power supply stable Power supply stable INITX = 1 INITX = 1 INITX = 1 INITX = 1 Function group Power supply unstable External interrupt enabled selected GPIO selected Power supply stable - INITX = 0 - - INITX = 1 - Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled - Maintain previous state Hi-Z / Input enabled Maintain previous state H Setting disabled Setting disabled Setting disabled Analog input selected Hi-Z Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled NMIX selected Setting disabled Setting disabled Setting disabled USB I/O pin SPL = 0 Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Pull-up / Input enabled Pull-up / Input enabled GPIO selected JTAG selected J GPIO selected Setting disabled Document Number: 002-05649 Rev. *D Setting disabled Setting disabled Maintain previous state Hi-Z / Internal input fixed at "0" SPL = 0 Maintain previous state - GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input disabled Hi-Z / Internal input fixed at "0" / Analog input disabled Hi-Z / Internal input fixed at "0" / Analog input disabled WKUP input enabled Hi-Z / WKUP input enabled Maintain previous state Maintain previous state SPL = 1 Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception I Resource other than above selected SPL = 1 Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" GPIO selected Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected Page 51 of 108 Pin status type MB9B520M Series Power-on reset or low-voltage detection state INITX input state Device internal reset state Run mode or SLEEP mode state Timer mode, RTC mode, or STOP mode state Deep standby RTC mode or Deep standby STOP mode state Return from Deep standby mode state Power supply stable Power supply stable Power supply stable Power supply stable INITX = 1 INITX = 1 INITX = 1 INITX = 1 Function group Power supply unstable - INITX = 0 - - Resource selected K Power supply stable INITX = 1 - Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled GPIO selected Maintain previous state Analog output selected External interrupt enabled selected L Resource other than above selected Maintain previous state GPIO selected Maintain previous state Hi-Z / Internal input fixed at "0" *3 *4 Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" M Resource other than above selected SPL = 1 Hi-Z GPIO selected Analog input selected SPL = 0 Document Number: 002-05649 Rev. *D SPL = 0 GPIO selected Internal input fixed at "0" GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" / Analog input enabled GPIO selected Internal input fixed at "0" SPL = 1 - Hi-Z / Internal input fixed at "0" GPIO selected Hi-Z / Internal input fixed at "0" GPIO selected Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" GPIO selected Page 52 of 108 Pin status type MB9B520M Series Power-on reset or low-voltage detection state INITX input state Device internal reset state Run mode or SLEEP mode state Timer mode, RTC mode, or STOP mode state Deep standby RTC mode or Deep standby STOP mode state Return from Deep standby mode state Power supply stable Power supply stable Power supply stable Power supply stable INITX = 1 INITX = 1 INITX = 1 INITX = 1 Function group Power supply unstable Analog input selected Power supply stable - INITX = 0 - - Hi-Z Hi-Z / Internal input fixed at "0" / Analog input enabled INITX = 1 Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled SPL = 0 Hi-Z / Internal input fixed at "0" / Analog input enabled N Hi-Z / Internal input fixed at "0" / Analog input enabled Maintain previous state External interrupt enabled selected Resource other than above selected SPL = 1 Setting disabled Setting disabled Setting disabled Maintain previous state GPIO selected Maintain previous state Hi-Z / Internal input fixed at "0" SPL = 0 SPL = 1 - Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled GPIO selected Internal input fixed at "0" Hi-Z / Internal input fixed at "0" GPIO selected *1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. *2: Oscillation is stopped at Stop mode and Deep Standby Stop mode. *3: Maintain previous state at Timer mode. GPIO selected Internal input fixed at "0" at RTC mode, Stop mode. *4: Maintain previous state at Timer mode. Hi-Z/Internal input fixed at "0" at RTC mode, Stop mode. Document Number: 002-05649 Rev. *D Page 53 of 108 MB9B520M Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Symbol Power supply voltage*1, *2 Power supply voltage (for USB)*1, * 3 Analog power supply voltage*1, *4 Analog reference voltage*1, *4 VCC USBVCC AVCC AVRH Rating Min VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 Input voltage* 1 VI VSS - 0.5 VSS - 0.5 Analog pin input voltage* 1 VIA VSS - 0.5 Output voltage*1 VO VSS - 0.5 Clamp maximum current Clamp total maximum current ICLAMP Σ[ICLAMP] L level maximum output current* 5 IOL -2 - L level average output current*6 IOLAV - L level total maximum output current L level total average output current*7 ∑IOL ∑IOLAV - H level maximum output current*5 IOH - H level average output current*6 IOHAV H level total maximum output current ∑IOH ∑IOHAV PD TSTG H level total average output current*7 Power consumption Storage temperature - 55 Max VSS + 6.5 VSS + 6.5 VSS + 6.5 VSS + 6.5 VCC + 0.5 (≤ 6.5V) USBVCC + 0.5 (≤ 6.5 V) VSS + 6.5 AVCC + 0.5 (≤ 6.5 V) VCC + 0.5 (≤ 6.5 V) +2 +20 10 20 39 4 12 16.5 100 50 - 10 - 20 - 39 -4 - 12 - 18 - 100 - 50 300 + 150 Unit Remarks V V V V V Except for USB pin V USB pin V 5 V tolerant V V mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mW °C *8 *8 4 mA type 12 mA type The pin doubled as USB I/O 4 mA type 12 mA type The pin doubled as USB I/O 4 mA type 12 mA type The pin doubled as USB I/O 4 mA type 12 mA type The pin doubled as USB I/O *1: These parameters are based on the condition that VSS = AVSS = 0 V. *2: VCC must not drop below VSS - 0.5 V. *3: USBVCC must not drop below VSS - 0.5 V. *4: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on. *5: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. *6: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period. *7: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms. Document Number: 002-05649 Rev. *D Page 54 of 108 MB9B520M Series *8: • • • • • See “List of Pin Functions” and “I/O Circuit Type” about +B input available pin. Use within recommended operating conditions. Use at DC voltage (current) the +B input. The +B signal should always be applied a limiting resistance placed between the +B signal and the device. The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods. • Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices. • Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. • The following is a recommended circuit example (I/O equivalent circuit). Protection Diode VCC VCC P-ch Limiting +B input (0V to 16V) resistor N-ch R Digital output Digital input AVCC Analog input WARNING: − Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. Document Number: 002-05649 Rev. *D Page 55 of 108 MB9B520M Series 12.2 Recommended Operating Conditions (VSS = AVSS = AVRL = 0.0V) Parameter Power supply voltage Symbol VCC Conditions - Max 2.7*4 5.5 Unit 2.7 - 2.7 AVCC V - AVSS AVSS V - 1 10 μF - 40 + 105 °C 3.0 USBVCC Analog power supply voltage AVCC - AVRH AVRL Smoothing capacitor CS Operating temperature TA - 2.7 - Remarks V 3.6 (≤ VCC) 5.5 (≤ VCC) 5.5 Power supply voltage (3V power supply) for USB Analog reference voltage Value Min *1 V *2 V AVCC = VCC For Regulator*3 *1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0). *2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80). *3: See “C Pin” in “Handling Devices" for the connection of the smoothing capacitor. *4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. WARNING: − The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 002-05649 Rev. *D Page 56 of 108 MB9B520M Series 12.3 DC Characteristics 12.3.1 Current Rating (VCC = AVCC = USBVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Symbol Pin name Conditions ICC VCC Sleep mode current ICCS Value Max Unit Remarks 32.5 41 mA *1, *5 CPU:72 MHz, Peripheral clock stops NOP operation 18 23 mA *1, *5 High-speed CR Run mode CPU/ Peripheral: 4 MHz*2 2.5 3.4 mA *1 Sub Run mode CPU/ Peripheral: 32 kHz 110 980 µA *1, *6 Low-speed CR Run mode CPU/ Peripheral: 100 kHz 130 1030 µA *1 Peripheral: 36 MHz 22 28 mA *1, *5 Peripheral: 4 MHz*2 1.6 2.6 mA *1 Peripheral: 32 kHz 96 955 µA *1, *6 Peripheral: 100 kHz 115 975 µA *1 PLL Run mode Run mode current CPU: 72 MHz, Peripheral: 36 MHz Typ PLL Sleep mode High-speed CR Sleep mode Sub Sleep mode Low-speed CR Sleep mode *1: When all ports are fixed. *2: When setting it to 4 MHz by trimming. *3: TA=+25°C, VCC=5.5 V *4: TA=+105°C, VCC=5.5 V *5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) Document Number: 002-05649 Rev. *D Page 57 of 108 MB9B520M Series (VCC = AVCC = USBVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Symbol Pin name Main Timer mode ICCT Timer mode current Sub Timer mode ICCT RTC mode current ICCR Stop mode current ICCH Conditions RTC mode Stop mode VCC ICCRD Deep Standby RTC mode Deep Standby mode current ICCHD Deep Standby Stop mode TA = + 25°C, When LVD is off TA = + 105°C, When LVD is off TA = + 25°C, When LVD is off TA = + 105°C, When LVD is off TA = + 25°C, When LVD is off TA = + 105°C, When LVD is off TA = + 25°C, When LVD is off TA = + 105°C, When LVD is off TA = + 25°C, When LVD is off, When RAM is off TA = + 25°C, When LVD is off, When RAM is on TA = + 105°C, When LVD is off, When RAM is off TA = + 105°C, When LVD is off, When RAM is on TA = + 25°C, When LVD is off, When RAM is off TA = + 25°C, When LVD is off, When RAM is on TA = + 105°C, When LVD is off, When RAM is off TA = + 105°C, When LVD is off, When RAM is on Value Typ*2 Max*2 Unit Remarks 4.1 4.8 mA *1, *4 - 5.4 mA *1, *4 17 66 μA *1, *5 - 835 μA *1, *5 15 61 μA *1, *5 - 680 μA *1, *5 14 53 μA *1 - 600 μA *1 2.2 11 μA *1, *3, *5 6.2 23 μA *1, *3, *5 155 μA *1, *3, *5 215 μA *1, *3, *5 1.6 9.6 μA *1, *3 5.6 22 μA *1, *3 150 μA *1, *3 210 μA *1, *3 - - *1: When all ports are fixed. *2: VCC=5.5 V *3: RAM on/off setting is on-chip SRAM only. *4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) Document Number: 002-05649 Rev. *D Page 58 of 108 MB9B520M Series Low-Voltage Detection Current Parameter Low-voltage detection circuit (LVD) power supply current Symbol ICCLVD Pin name (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Value Unit Remarks Typ Max Conditions At operation for reset Vcc = 5.5 V 0.13 0.3 μA At not detect At operation for interrupt Vcc = 5.5 V 0.13 0.3 μA At not detect VCC Flash Memory Current (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Flash memory write/erase current Symbol ICCFLASH Pin name VCC Value Conditions At Write/Erase Typ Max 9.5 11.2 Unit mA Remarks * *: The current at which to write or erase Flash memory, "I CCFLASH" is added to "ICC". A/D Converter Current (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Power supply current Reference power supply current Symbol ICCAD ICCAVRH Pin name Value Conditions Unit Typ Max At 1unit operation 0.69 0.90 mA At stop 0.25 25.84 μA At 1unit operation AVRH=5.5 V 1.1 1.97 mA At stop 0.2 3.4 μA Remarks AVCC AVRH D/A Converter Current (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V, TA = - 40°C to + 105°C) Parameter Power supply current*1 Symbol Pin name IDDA*2 AVCC IDSA Conditions At 1unit operation AVCC=3.3 V At 1unit operation AVCC=5.0 V At stop Min Value Typ Max 250 315 380 μA 380 475 580 μA - - 16 μA Unit Remarks *1: No-load *2: Generates the max current by the CODE about 0x200 Document Number: 002-05649 Rev. *D Page 59 of 108 MB9B520M Series 12.3.2 Pin Characteristics (VCC = USBVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Symbol H level input voltage (hysteresis input) VIHS L level input voltage (hysteresis input) VILS Pin name CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin 4 mA type H level output voltage VOH 12 mA type The pin doubled as USB I/O 4 mA type L level output voltage VOL 12 mA type The pin doubled as USB I/O Input leak current IIL - Pull-up resistance value RPU Pull-up pin Input capacitance CIN Other than VCC, USBVCC, VSS, AVCC, AVSS, AVRH, AVRL Document Number: 002-05649 Rev. *D Conditions Min Value Typ Max Unit - VCC × 0.8 - VCC + 0.3 V - VCC × 0.8 - VSS + 5.5 V - VSS - 0.3 - VCC × 0.2 V - VSS - 0.3 - VCC × 0.2 V VCC - 0.5 - VCC V VCC - 0.5 - VCC V USBVCC - 0.4 - USBVCC V VSS - 0.4 V VSS - 0.4 V VSS - 0.4 V -5 - +5 μA VCC ≥ 4.5 V 33 50 90 VCC < 4.5 V - - 180 - - 5 15 VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5 V, IOH = - 2 mA VCC ≥ 4.5 V, IOH = - 12 mA VCC < 4.5 V, IOH = - 8 mA USBVCC ≥ 4.5 V, IOH = - 18.0 mA USBVCC < 4.5 V, IOH = - 12.0 mA VCC ≥ 4.5 V, IOL = 4 mA VCC < 4.5 V, IOL = 2 mA VCC ≥ 4.5 V, IOL = 12 mA VCC < 4.5 V, IOL = 8 mA USBVCC ≥ 4.5 V, IOL = 16.5 mA USBVCC < 4.5 V, IOL = 10.5 mA - Remarks kΩ pF Page 60 of 108 MB9B520M Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Input frequency Value Unit Remarks Max 4 4 4 4 20.83 50 48 20 48 20 250 250 45 55 % - - 5 ns - - - 72 MHz Master clock fCC fCP0 fCP1 fCP2 - - - - - 72 40 40 40 MHz MHz MHz MHz Base clock (HCLK/FCLK) - tCYCC tCYCP0 tCYCP1 tCYCP2 - - - - - - - ns ns ns ns Base clock (HCLK/FCLK) - 13.8 25 25 25 fCH tCYLH Input clock pulse width - Input clock rising time and falling time tCF, tCR fCM Internal operating clock cycle time*1 Conditions Min Input clock cycle Internal operating clock frequency*1 Pin name Symbol X0, X1 VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V PWH/tCYLH, PWL/tCYLH MHz When crystal oscillator is connected MHz When using external Clock ns When using external Clock When using external Clock When using external Clock APB0 bus clock*2 APB1 bus clock*2 APB2 bus clock*2 APB0 bus clock*2 APB1 bus clock*2 APB2 bus clock*2 *1: For more information about each internal operating clock, see “Chapter: Clock” in “FM3 Family Peripheral Manual”. *2: For about each APB bus which each peripheral is connected to, see “Block Diagram” in this datasheet. X0 Document Number: 002-05649 Rev. *D Page 61 of 108 MB9B520M Series 12.4.2 Sub Clock Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Input frequency 1/ tCYLL Input clock cycle tCYLL Input clock pulse width - Pin name X0A, X1A Value Conditions Min Typ Max Unit Remarks - - 32.768 - kHz - 32 - 100 kHz When crystal oscillator is connected When using external clock - 10 - 31.25 μs When using external clock PWH/tCYLL, PWL/tCYLL 45 - 55 % When using external clock *: See “Sub crystal oscillator” in “Handling Devices” for the crystal oscillator used. X0A Document Number: 002-05649 Rev. *D Page 62 of 108 MB9B520M Series 12.4.3 Built-in CR Oscillation Characteristics Built-in High-speed CR (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Clock frequency Symbol fCRH Value Conditions Min Typ Max TA = + 25°C 3.92 4 4.08 TA = 0°C to + 85°C 3.9 4 4.1 TA = -40°C to + 105°C 3.88 4 4.12 TA = + 25°C VCC ≤ 3.6 V TA = - 20°C ~ + 85°C VCC ≤ 3.6 V TA = - 20°C ~ + 105°C VCC ≤ 3.6 V 3.94 4 4.06 3.92 4 4.08 3.9 4 4.1 2.8 4 5.2 - - 30 TA = - 40°C to + 105°C Frequency stabilization time tCRWT - Unit Remarks When trimming*1 MHz When not trimming μs *2 *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming. *2: This is the time to stabilize the frequency of high-speed CR clock after setting trimming value. This period is able to use high-speed CR clock as source clock. Built-in Low-speed CR (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Clock frequency Symbol fCRL Document Number: 002-05649 Rev. *D Conditions - Value Min Typ Max 50 100 150 Unit Remarks kHz Page 63 of 108 MB9B520M Series 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Main PLL clock frequency*2 USB clock frequency*3 Symbol Value Unit Remarks Min Typ Max tLOCK 100 - - μs fPLLI 4 5 75 - - 16 37 150 72 48 MHz multiplier MHz MHz MHz - fPLLO fCLKPLL fCLKSPLL After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see “Chapter 2-1: Clock” in “FM3 Family Peripheral Manual”. *3: For more information about USB clock, see “Chapter 2-2: USB Clock Generation” in “FM3 Family Peripheral Manual Communication Macro Part”. 12.4.5 Operating Conditions of Main PLL (In the case of using built-in high-speed CR for input clock of Main PLL) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) Symbol tLOCK Value Typ Max 100 - - μs 4.2 35 150 72 MHz multiplier MHz MHz 3.8 4 19 fPLLO 72 Main PLL clock frequency*2 fCLKPLL *1: Time from when the PLL starts operating until the oscillation stabilizes. PLL input clock frequency PLL multiplication rate PLL macro oscillation clock frequency Unit Min fPLLI - Remarks *2: For more information about Main PLL clock (CLKPLL), see “Chapter 2-1: Clock” in “FM3 Family Peripheral Manual”. Note: − Make sure to input to the Main PLL source clock, the high-speed CR clock (CLKHC) that the frequency/temperature has been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in high-speed CR clock into account and prevent the master clock from exceeding the maximum frequency. Main PLL connection K divider PLL input clock PLL macro oscillation clock Main PLL M divider Main PLL clock (CLKPLL) N divider Document Number: 002-05649 Rev. *D Page 64 of 108 MB9B520M Series USB PLL connection Main clock (CLKMO) K divider PLL input clock PLL macro oscillation clock M divider USB PLL USB clock N divider 12.4.6 Reset Input Characteristics (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Reset input time Symbol Pin name tINITX INITX Conditions - Value Min Max 500 - Unit Remarks ns 12.4.7 Power-on Reset Timing (VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Power supply shut down time tOFF Power ramp rate dV/dt Pin name VCC Conditions Value Unit Remarks Min Typ Max - 1 - - ms *1 VCC: 0.2 V to 2.70 V 0.3 - 1000 mV/µs *2 Time until releasing Power-on reset tPRT 1.34 18.6 ms *1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met. *2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1 ms). Note: − If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12.4.6. 2.7V VCC VDH 0.2V dV/dt 0.2V tPRT Internal RST RST Active CPU Operation 0.2V tOFF release start Glossary • VDH: detection voltage (when SVHR=00000) of Low-Voltage detection reset. See "12.8. Low-Voltage Detection Characteristics". Document Number: 002-05649 Rev. *D Page 65 of 108 MB9B520M Series 12.4.8 Base Timer Input Timing Timer input timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Input pulse width Symbol Pin name Conditions TIOAn/TIOBn (when using as ECK, TIN) tTIWH, tTIWL - tTIWH Value Min Max 2tCYCP - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger input timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Input pulse width Symbol tTRGH, tTRGL Pin name TIOAn/TIOBn (when using as TGIN) Conditions - tTRGH TGIN VIHS Value Min Max 2tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see “Block Diagram” in this data sheet. Document Number: 002-05649 Rev. *D Page 66 of 108 MB9B520M Series 12.4.9 CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Baud rate Serial clock cycle time - SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR tSCYC Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx VCC < 4.5 V Min Max 8 4tCYCP - Conditions - VCC ≥ 4.5 V Min Max 8 4tCYCP - Unit Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Master mode Slave mode Notes: − The above characteristics apply to CLK synchronous mode. − − − − − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see “Block Diagram” in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. Document Number: 002-05649 Rev. *D Page 67 of 108 MB9B520M Series tSCYC VOH SCK VOL VOL tSLOVI VOH SOT VOL tIVSHI SIN tSHIXI VIH VIH VIL VIL Master mode tSLSH SCK tSHSL VIH VIH tF VIL VIL VIH tR tSLOVE SOT VOH VOL tIVSHE SIN VIH VIL tSHIXE VIH VIL Slave mode Document Number: 002-05649 Rev. *D Page 68 of 108 MB9B520M Series CSIO (SPI = 0, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Baud rate Serial clock cycle time - SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR tSCYC Pin name SCKx VCC < 4.5 V Min Max 8 4tCYCP - Conditions - SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx VCC ≥ 4.5 V Min Max 8 4tCYCP - Unit Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Master mode Slave mode Notes: − The above characteristics apply to CLK synchronous mode. − − − − − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see “Block Diagram” in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. Document Number: 002-05649 Rev. *D Page 69 of 108 MB9B520M Series tSCYC VOH SCK VOH VOL tSHOVI VOH SOT VOL tIVSLI SIN tSLIXI VIH VIH VIL VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR tF VIL VIL tSHOVE SOT VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode Document Number: 002-05649 Rev. *D Page 70 of 108 MB9B520M Series CSIO (SPI = 1, SCINV = 0) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Baud rate Serial clock cycle time - SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR tSCYC Pin name SCKx VCC < 4.5 V Min Max 8 4tCYCP - Conditions - SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx VCC ≥ 4.5 V Min Max 8 4tCYCP - Unit Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Master mode Slave mode Notes: − The above characteristics apply to CLK synchronous mode. − − − tCYCP indicates the APB bus clock cycle time. − − For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. About the APB bus number which Multi-function serial is connected to, see “Block Diagram” in this data sheet. These characteristics only guarantee the same relocate port number. When the external load capacitance CL = 30 pF. Document Number: 002-05649 Rev. *D Page 71 of 108 MB9B520M Series tSCYC VOH SCK VOL VOH VOL SOT VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH VIH SCK tR VOH VOL tIVSLE SIN VIL tF * SOT VIL tSHSL VIH VIH tSHOVE VOH VOL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register Document Number: 002-05649 Rev. *D Page 72 of 108 MB9B520M Series CSIO (SPI = 1, SCINV = 1) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Baud rate Serial clock cycle time - SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI SOT → SCK ↑ delay time tSOVHI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR tSCYC Pin name SCKx VCC < 4.5 V Min Max 8 4tCYCP - Conditions - SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx VCC ≥ 4.5 V Min Max 8 4tCYCP - Unit Mbps ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Master mode Slave mode Notes: − The above characteristics apply to CLK synchronous mode. − − − − − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see “Block Diagram” in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance CL = 30 pF. Document Number: 002-05649 Rev. *D Page 73 of 108 MB9B520M Series tSCYC VOH SCK tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode tR tF tSHSL SCK tSLSH VIH VIH VIL VIL VIL tSLOVE VOH VOL SOT VOH VOL tIVSHE tSHIXE VIH VIL SIN VIH VIL Slave mode UART external clock input (EXT = 1) (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Serial clock L pulse width Serial clock H pulse width SCK falling time SCK rising time Symbol tSLSH tSHSL tF tR Conditions CL = 30 pF Min Max Unit tCYCP + 10 tCYCP + 10 5 5 ns ns ns ns - tR tF tSHSL SCK Document Number: 002-05649 Rev. *D VIL Remarks VIH tSLSH VIH VIL VIL Page 74 of 108 MB9B520M Series 12.4.10 External Input Timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Pin name Conditions Value Min Max Unit ADTG Input pulse width tINH, tINL FRCKx ICxx DTTIxX INTxx, NMIX WKUPx Remarks A/D converter trigger input - *2 *3 *4 2tCYCP*1 - ns 2tCYCP*1 2tCYCP + 100*1 - ns ns ns ns 500 500 Free-run timer input clock Input capture Waveform generator External interrupt NMI Deep standby wake up *1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see “Block Diagram” in this data sheet. *2: When in Run mode, in Sleep mode. *3: When in Stop mode, in RTL mode, in Timer mode. *4: When in Deep Standby RTC mode, in Deep Standby Stop mode. Document Number: 002-05649 Rev. *D Page 75 of 108 MB9B520M Series 12.4.11 Quadrature Position/Revolution Counter timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol AIN pin H width AIN pin L width BIN pin H width BIN pin L width BIN rising time from AIN pin H level AIN falling time from BIN pin H level BIN falling time from AIN pin L level AIN rising time from BIN pin L level AIN rising time from BIN pin H level BIN falling time from AIN pin H level AIN falling time from BIN pin L level BIN rising time from AIN pin L level ZIN pin H width ZIN pin L width AIN/BIN rising and falling time from determined ZIN level Determined ZIN level from AIN/BIN rising and falling time Value Conditions tAHL tALL tBHL tBLL - tAUBU PC_Mode2 or PC_Mode3 tBUAD PC_Mode2 or PC_Mode3 tADBD PC_Mode2 or PC_Mode3 tBDAU PC_Mode2 or PC_Mode3 tBUAU PC_Mode2 or PC_Mode3 tAUBD PC_Mode2 or PC_Mode3 tBDAD PC_Mode2 or PC_Mode3 tADBU PC_Mode2 or PC_Mode3 tZHL tZLL QCR:CGSC=0 QCR:CGSC=0 tZABE QCR:CGSC=1 tABEZ QCR:CGSC=1 Min Max 2tCYCP* - Unit ns *: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see “Block Diagram” in this data sheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL Document Number: 002-05649 Rev. *D tBLL Page 76 of 108 MB9B520M Series tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN Document Number: 002-05649 Rev. *D Page 77 of 108 MB9B520M Series 12.4.12 I2C Timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) SCL clock frequency fSCL Standardmode Min Max 0 100 (Repeated) START condition hold time SDA ↓ → SCL ↓ tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45*2 0 0.9*3 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs 2tCYCP*4 - 2tCYCP*4 - ns Parameter SCL clock L width SCL clock H width (Repeated) START condition setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between STOP condition and START condition Noise filter Symbol Conditions tSUSTA tHDDAT tSP CL = 30 pF, R = (VP/IOL)*1 - Fastmode Min Max 0 400 Unit Remarks kHz *1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. VP indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal. *3: A Fast mode I2C bus device can be used on a Standard mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns". *4: tCYCP is the APB bus clock cycle time. About the APB bus number that I2C is connected to, see “Block Diagram” in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL Document Number: 002-05649 Rev. *D Page 78 of 108 MB9B520M Series 12.4.13 JTAG Timing (VCC = 2.7V to 5.5V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Pin name TMS, TDI setup time tJTAGS TCK, TMS, TDI TMS, TDI hold time tJTAGH TCK, TMS, TDI TDO delay time tJTAGD TCK, TDO Conditions VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V VCC ≥ 4.5 V VCC < 4.5 V Value Unit Min Max 15 - ns 15 - ns - 25 - 45 Remarks ns Note: − When the external load capacitance CL = 30 pF. TCK TMS/TDI TDO Document Number: 002-05649 Rev. *D Page 79 of 108 MB9B520M Series 12.5 12-bit A/D Converter Electrical characteristics for the A/D converter (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Pin name Symbol Min 0.8*1 1.0*1 0.24 0.3 40 Value Typ ± 1.5 ± 1.7 ± 10 AVRH ± 5 - 50 - Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage - VZT VFST ANxx ANxx Conversion time - - Sampling time*2 tS - Compare clock cycle*3 tCCK - State transition time to operation permission tSTT - - Analog input capacity CAIN - Analog input resistor RAIN - Max 12 ± 4.5 ± 2.5 ± 15 AVRH ± 15 - - bit LSB LSB mV mV μs 10 μs 1000 ns - 1.0 μs - - 9.7 pF - - 1.7 2.4 4 5 AVRH AVCC AVSS kΩ Analog input voltage ANxx AVRL AVRH 2.7 Reference voltage AVRL AVSS *1: The conversion time is the value of sampling time (t S) + compare time (tC). Interchannel disparity Analog port input leak current Unit ANxx Remarks AVRH = 2.7 V to 5.5 V AVCC ≥ 4.5 V AVCC < 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V AVCC ≥ 4.5 V AVCC < 4.5 V LSB μA V V V The condition of the minimum conversion time is the following. AVCC ≥ 4.5 V, HCLK=50 MHz AVCC < 4.5 V, HCLK=40 MHz sampling time: 240 ns, compare time: 560 ns sampling time: 300 ns, compare time: 700 ns Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK). For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in “FM3 Family Peripheral Manual Analog Macro Part”. The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing. For the number of the APB bus to which the A/D Converter is connected, see "Block Diagram". The base clock (HCLK) is used to generate the sampling time and the compare clock cycle. *2: A necessary sampling time changes by external impedance. Ensure that it sets the sampling time to satisfy (Equation 1). *3: The compare time (tC) is the value of (Equation 2). Document Number: 002-05649 Rev. *D Page 80 of 108 MB9B520M Series Analog signal source REXT ANxx Analog input pin Comparator RAIN CAIN (Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9 tS: Sampling time RAIN: Input resistor of A/D = 1.5 kΩ at 4.5 V < AVCC < 5.5 V ch.0 to ch.7 Input resistor of A/D = 1.6 kΩ at 4.5 V < AVCC < 5.5 V ch.8 to ch.15 Input resistor of A/D = 1.7 kΩ at 4.5 V < AVCC < 5.5 V ch.16 to ch.26 Input resistor of A/D = 2.2 kΩ at 2.7 V < AVCC < 4.5 V ch.0 to ch.7 Input resistor of A/D = 2.3 kΩ at 2.7 V < AVCC < 4.5 V ch.8 to ch.15 Input resistor of A/D = 2.4 kΩ at 2.7 V < AVCC < 4.5 V ch.16 to ch.26 CAIN: Input capacity of A/D = 9.7 pF at 2.7 V < AVCC < 5.5 V REXT: Output impedance of external circuit (Equation 2) tC = tCCK × 14 tC: Compare time tCCK: Compare clock cycle Document Number: 002-05649 Rev. *D Page 81 of 108 MB9B520M Series 12.5.1 Definition of 12-bit A/D Converter Terms Resolution: Analog variation that is recognized by an A/D converter. Integral Nonlinearity: Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actually-measured value) 0x003 0x002 (Actuallymeasured value) Digital output Digital output 0xFFD Ideal characteristics 0xN V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVRL Actual conversion characteristics AVRH AVRL AVRH Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 N: A/D converter digital output value. VZT: Voltage at which the digital output changes from 0x000 to 0x001. VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF. VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 002-05649 Rev. *D Page 82 of 108 MB9B520M Series 12.6 10-bit D/A Converter Electrical Characteristics for the D/A Converter (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, TA = - 40°C to + 105°C) Parameter Resolution Conversion time Symbol Pin name tC20 tC100 Integral Nonlinearity*1 INL Differential Nonlinearity*1,*2 DNL Output Voltage offset VOFF Analog output impedance RO Output undefined period tR DAx Min 0.47 2.37 - 4.0 - 0.9 - 20.0 3.10 2.0 - Value Typ 0.58 2.90 3.80 - Max 10 0.69 3.43 + 4.0 + 0.9 10.0 + 5.4 4.50 70 Unit bit μs μs LSB LSB mV mV kΩ MΩ ns Remarks Load 20 pF Load 100 pF Code is 0x000 Code is 0x3FF D/A operation D/A stop *1: No-load *2: Generates the max current by the CODE about 0x200 Document Number: 002-05649 Rev. *D Page 83 of 108 MB9B520M Series 12.7 USB Characteristics (VCC = 2.7V to 5.5V, USBVCC = 3.0V to 3.6V, VSS = 0V, TA = - 40°C to + 105°C) Parameter Symbol Pin name Conditions Value Min Max Unit Remarks VIH - 2.0 USBVCC + 0.3 V *1 VIL - VSS - 0.3 0.8 V *1 VDI - 0.2 - V *2 Different common mode range VCM - 0.8 2.5 V *2 Output H level voltage VOH 2.8 3.6 V *3 Output L level voltage VOL 0.0 0.3 V *3 1.3 4 4 90 28 75 75 80 2.0 20 20 111.11 44 300 300 125 V ns ns % Ω ns ns % *4 *5 *5 *5 *6 *7 *7 *7 Input H level voltage Input Input L level voltage characterisDifferential input sensitivity tics Output Crossover voltage characteris- Rising time tics Falling time Rising/falling time matching Output impedance Rising time Falling time Rising/falling time matching VCRS tFR tFF tFRFM ZDRV tLR tLF tLRFM UDP0, UDM0 External pull-down resistor = 15 kΩ External pull-up resistor = 1.5 kΩ Full-Speed Full-Speed Full-Speed Full-Speed Low-Speed Low-Speed Low-Speed *1: The switching threshold voltage of the Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8V, VIH (Min) = 2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. Minimum differential input sensitivity [V] *2: Use the differential-Receiver to receive the USB differential data signal. The Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. The voltage range above is said to be the common mode input voltage range. Common mode input voltage [V] Document Number: 002-05649 Rev. *D Page 84 of 108 MB9B520M Series *3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to ground and 15 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V. VCRS specified range *5: They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission. Rising time Document Number: 002-05649 Rev. *D Falling time Page 85 of 108 MB9B520M Series *6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistor. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω (recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence". *7: They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. Rising time Falling time See "Low-Speed Load (Compliance Load)" for conditions of the external load. Document Number: 002-05649 Rev. *D Page 86 of 108 MB9B520M Series Low-Speed Load (Upstream Port Load) - Reference 1 CL = 50pF to 150pF CL = 50pF to 150pF Low-Speed Load (Downstream Port Load) - Reference 2 CL = 200pF to 600pF CL = 200pF to 600pF Low-Speed Load (Compliance Load) CL = 200pF to 450pF CL = 200pF to 450pF Document Number: 002-05649 Rev. *D Page 87 of 108 MB9B520M Series 12.8 Low-Voltage Detection Characteristics 12.8.1 Low-Voltage Detection Reset (TA = - 40°C to + 105°C) Parameter Symbol Conditions Value Min Typ Max 2.25 2.45 2.65 2.30 2.50 2.70 2.39 2.60 2.81 Same as SVHR = 00000 value 2.48 2.70 2.92 Same as SVHR = 00000 value 2.58 2.80 3.02 Same as SVHR = 00000 value 2.76 3.00 3.24 Same as SVHR = 00000 value 2.94 3.20 3.46 Same as SVHR = 00000 value 3.31 3.60 3.89 Same as SVHR = 00000 value 3.40 3.70 4.00 Same as SVHR = 00000 value 3.68 4.00 4.32 Same as SVHR = 00000 value 3.77 4.10 4.43 Same as SVHR = 00000 value 3.86 4.20 4.54 Same as SVHR = 00000 value Unit V V V V V V V V V V V V V V V V V V V V V V Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH SVHR*1= LVD stabilization wait time tLVDW - - - 8160 × tCYCP*2 μs LVD detection delay time tLVDDL - - - 200 μs 00000 SVHR*1= 00001 SVHR*1= 00010 SVHR*1= 00011 SVHR*1= 00100 SVHR*1= 00101 SVHR*1= 00110 SVHR*1= 00111 SVHR*1= 01000 SVHR*1= 01001 SVHR*1= 01010 Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to "00000" by Low-Voltage Detection Reset. *2: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-05649 Rev. *D Page 88 of 108 MB9B520M Series 12.8.2 Interrupt of Low-Voltage Detection (TA = - 40°C to + 105°C) Parameter Symbol Conditions Min 2.58 2.67 2.76 2.85 2.94 3.04 3.31 3.40 3.40 3.50 3.68 3.77 3.77 3.86 3.86 3.96 Value Typ 2.80 2.90 3.00 3.10 3.20 3.30 3.60 3.70 3.70 3.80 4.00 4.10 4.10 4.20 4.20 4.30 Max 3.02 3.13 3.24 3.35 3.46 3.56 3.89 4.00 4.00 4.10 4.32 4.43 4.43 4.54 4.54 4.64 Unit V V V V V V V V V V V V V V V V Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time tLVDW - - - 8160 × tCYCP* μs LVD detection delay time tLVDDL - - - 200 μs SVHI = 00011 SVHI = 00100 SVHI = 00101 SVHI = 00110 SVHI = 00111 SVHI = 01000 SVHI = 01001 SVHI = 01010 Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-05649 Rev. *D Page 89 of 108 MB9B520M Series 12.9 Flash Memory Write/Erase Characteristics 12.9.1 Write / Erase time (VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C) Parameter Value Typ Max Large Sector 1.1 2.7 Small Sector 0.3 0.9 Half word (16-bit) write time 16 Chip erase time 6.8 Unit Remarks s Includes write time prior to internal erase 310 μs Not including system-level overhead time 18 s Includes write time prior to internal erase Sector erase time *: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write. 12.9.2 Write cycles and data hold time Erase/write cycles (cycle) Data hold time (year) 1,000 20* 10,000 10* Remarks *: At average + 85°C Document Number: 002-05649 Rev. *D Page 90 of 108 MB9B520M Series 12.10 Return Time from Low-Power Consumption Mode 12.10.1 Return Factor: Interrupt/WKUP The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C) Parameter Symbol Value Typ Max* High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode tICNT Sub Timer mode RTC mode, Stop mode Deep Standby RTC mode Deep Standby Stop mode Remarks μs tCYCC Sleep mode Unit 40 80 μs 340 680 μs 680 860 μs 268 503 μs 308 583 μs When RAM is off 268 503 μs When RAM is on *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by external interrupt*) External interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 002-05649 Rev. *D Page 91 of 108 MB9B520M Series Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal resource interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. − − See “Chapter 6: Low Power Consumption Mode” and “Operations of Standby Modes” in FM3 Family Peripheral Manual. When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See “Chapter 6: Low Power Consumption Mode” in “FM3 Family Peripheral Manual”. Document Number: 002-05649 Rev. *D Page 92 of 108 MB9B520M Series 12.10.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, TA = - 40°C to + 105°C) Parameter Symbol Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode Value Max* 263 148 263 μs 248 463 μs 312 496 μs 268 503 μs 308 268 583 503 μs μs tRCNT Sub Timer mode RTC mode, Stop mode Deep Standby RTC mode Deep Standby Stop mode Unit Typ 148 Remarks μs When RAM is off When RAM is on *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal reset Reset active Release tRCNT CPU Operation Document Number: 002-05649 Rev. *D Start Page 93 of 108 MB9B520M Series Operation example of return from low power consumption mode (by internal resource reset*) Internal resource reset Internal reset Reset active Release tRCNT CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. − − See “Chapter 6: Low Power Consumption Mode” and “Operations of Standby Modes” in FM3 Family Peripheral Manual. − The time during the power-on reset/low-voltage detection reset is excluded. See “12.4.7. Power-on Reset Timing in 12.4. AC Characteristics in 12.Electrical Characteristics” for the detail on the time during the power-on reset/low -voltage detection reset. − When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See “Chapter 6: Low Power Consumption Mode” in “FM3 Family Peripheral Manual”. Document Number: 002-05649 Rev. *D Page 94 of 108 MB9B520M Series 13. Ordering Information Part number On-chip Flash memory On-chip SRAM MB9BF521KQN-G-AVE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522KQN-G-AVE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524KQN-G-AVE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521KPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522KPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524KPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521LQN-G-AVE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522LQN-G-AVE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524LQN-G-AVE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521LPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522LPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524LPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521LPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522LPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524LPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521MPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522MPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524MPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521MPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522MPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524MPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9BF521MBGL-GE1 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF522MBGL-GE1 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9BF524MBGL-GE1 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte Document Number: 002-05649 Rev. *D Package Packing Plastic・QFN (0.5 mm pitch), 48-pin (VNA048) Plastic・LQFP (0.5 mm pitch), 48-pin (LQA048) Plastic・QFN (0.5 mm pitch), 64-pin (VNC064) Plastic・LQFP (0.5 mm pitch), 64-pin (LQD064) Tray Plastic・LQFP (0.65 mm pitch), 64-pin (LQG064) Plastic・LQFP (0.5 mm pitch), 80-pin (LQH080) Plastic・LQFP (0.65 mm pitch), 80-pin (LQJ080) Plastic・PFBGA (0.5 mm pitch), 96-pin (FDG096) Page 95 of 108 MB9B520M Series 14. Package Dimensions Package Type LQFP 80 Package Code LQH080 D D1 60 4 5 7 41 41 40 61 60 40 61 21 80 5 7 E1 E 4 3 6 80 21 1 20 D e 20 2 5 7 0.10 C A-B D 3 b 0.08 C A-B 1 BOTTOM VIEW D 0.20 C A-B D 8 TOP VIEW 2 A A A' 0.08 C SIDE VIEW SYMBOL SEATING PLANE 9 L1 L 0.25 A1 10 c b SECTION A-A' DIMENSIONS MIN. NOM. MAX. A A1 1. 70 0.05 0.15 b 0.15 0.27 c 0.09 0.20 D 14.00 BSC. D1 12.00 BSC. e 0.50 BSC E 14.00 BSC. E1 12.00 BSC. L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 80 LEAD LQFP 12.0X12.0X1.7 MM LQH080 Rev ** Document Number: 002-05649 Rev. *D 002-11501 ** Page 96 of 108 MB9B520M Series Package Type LQFP 80 Package Code LQJ080 D D1 60 4 5 7 41 41 61 40 E1 60 40 61 21 80 E 5 7 4 3 6 80 21 1 20 20 2 5 7 1 0.10 C A-B D 3 e 0.20 C A-B D b ddd C A-B D 8 2 A 9 A A' 0.10 C SEATING PLANE c L1 0.2 5 A1 10 b SECTION A-A' L SYMBOL DIMENSIONS MIN. NOM. MAX. 1.70 A A1 0.00 b 0.16 c 0.09 0.20 0.32 0.38 0.20 D 16.00 BSC D1 14.00 BSC e 0.65 BSC E 16.00 BSC E1 14.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 8 002-14043 ** PACKAGE OUTLINE, 80 LEAD LQFP 14.0X14.0X1.7 MM LQJ080 REV** Document Number: 002-05649 Rev. *D Page 97 of 108 MB9B520M Series Package Type LQFP 64 Package Code LQD064 4 D D1 48 5 7 33 33 32 49 48 32 49 17 64 5 7 E1 E 4 3 6 17 64 1 16 e 1 16 2 5 7 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.08 C A-B D 8 TOP VIEW A 2 9 A A' 0.08 C SEATING PLANE L1 0.25 L A1 c b SECTION A-A' 10 SIDE VIEW SYMBOL DIMENSIONS MIN. NOM. MAX. A A1 1. 70 0.00 0.20 b 0.15 0.2 c 0.09 0.20 D 12.00 BSC. D1 10.00 BSC. e 0.50 BSC E 12.00 BSC. E1 10.00 BSC. L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev** Document Number: 002-05649 Rev. *D 002-11499 ** Page 98 of 108 MB9B520M Series Package Type LQFP 64 Package Code LQG064 D D1 48 4 5 7 33 33 32 49 48 32 49 17 64 E1 E 5 7 4 3 17 64 1 16 e 1 16 2 5 7 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.13 C A-B D 8 TOP VIEW 2 A A A' 0.10 C SEATI NG PLA NE 0.2 5 L1 L 9 A1 10 c b SEC TION A -A' SIDE VIEW SYMBOL DIMENSION MIN. NOM. MAX. 1.70 A A1 0.00 0.20 b 0.27 c 0.09 0.32 0.37 0.20 D 14.00 BSC D1 12.00 BSC e 0.65 BSC E 14.00 BSC E1 12.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 002-13881 ** PACKAGE OUTLINE, 64 LEAD LQFP 12.0X12.0X1.7 MM LQG064 REV** Document Number: 002-05649 Rev. *D Page 99 of 108 MB9B520M Series Package Type QFN 64 Package Code VNC064 0.10 D A 48 0.10 C 2X 33 33 32 49 C A B D2 48 32 49 0.10 C A B 5 (ND-1) E e 17 64 1 INDEXMARK 8 E2 16 9 B e L 0.10 C TOP VIEW 64 17 16 BOTTOM VIEW 2X b 1 4 0.10 0.05 C A B C 0.10 C A 0.05 C SEATINGPLANE C A1 SIDE VIEW DIMENSIONS NOTES: SYMBOL MIN. NOM. MAX. A A1 0.90 0.00 0.05 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4 D 9.00 BSC E 9.00 BSC b 0.20 0.25 0.30 D2 6.00 BSC E2 6.00 BSC 6. 7. e 0.50 BSC 8 R 0.20 REF L 0.35 0.40 0.45 N 64 ND 16 5 9 DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA. ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE. MAX. PACKAGE WARPAGE IS 0.05mm. MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS. PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 002-13234 ** PACKAGE OUTLINE, 64 LEAD QFN 9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev*.* Document Number: 002-05649 Rev. *D Page 100 of 108 MB9B520M Series Package Type LQFP 48 Package Code LQA048 4 D D1 5 7 36 25 37 24 E1 24 37 13 48 E 5 7 3 36 25 4 6 48 13 1 12 e 1 12 2 5 7 0.10 C A-B D 3 0.20 C A-B D b 0.80 C A-B D 8 2 A 9 A A' 0.80 C SYMBOL L1 0.25 L A1 c b 10 SECTION A-A' DIMENSIONS MIN. NOM. MAX. 0.00 0.20 1.70 A A1 SEATING PLANE b 0.15 0.27 c 0.09 0.20 D 9.00 BSC D1 7.00 BSC e 0.50 BSC E 9.00 BSC E1 7.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 8 002-13731 ** PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV** Document Number: 002-05649 Rev. *D Page 101 of 108 MB9B520M Series Package Type QFN 48 Package Code VNA048 0.10 D C A B D2 A 25 36 0.10 C 24 2X (ND-1) E 0.10 37 e C A B E2 5 13 9 INDEX MARK 8 48 12 R 1 L B TOP VIEW e b 4 0.10 C 0.10 0.05 C A B C BOTTOM VIEW 2X 0.10 C A 0.05 C SEATING PLANE A1 9 C SIDE VIEW DIMENSIONS SYMBOL MIN. NOM. A A1 0.90 0.00 0.05 D 7.00 BSC E 7.00 BSC b 0.20 0.25 D2 5.50 BSC E2 5.50 BSC e 0.50 BSC R 0.20 REF L MAX. 0.35 0.40 NOTE 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCINC CONFORMS TO ASME Y14.5-1994. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA. 5. ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE. 0.30 6. MAX. PACKAGE WARPAGE IS 0.05mm. 7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS. 8. PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE. 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT SINK SLUG AS WELL AS THE TERMINALS. 0.45 10. JEDEC SPEC IFICATIONNO . REF : N/A 002-15528 ** PACKAGE OUTLINE, 48 LEAD QFN 7.0X7.0X0.9 MMVNA048 5.5X5.5 MMEPAD(SAWN) REV** Document Number: 002-05649 Rev. *D Page 102 of 108 MB9B520M Series Package Type FBGA 96 Package Code FDG096 A 0.20 C 11 2X 10 9 6 8 7 6 5 4 3 2 1 L PIN A1 CORNER INDEX MARK K J H G F E D 7 0.20 C TOP VIEW C B A 6 B 2X BOTTOM VIEW DETAIL A 0.20 C 0.08 C C 96xφb DETAIL A 5 0.05 SIDE VIEW C A B NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS SYMBOL MIN. NOM. MAX. 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020. A - - 1.30 3. "e" REPRESENTSTHE SOLDER BALL GRID PITCH. A1 0.15 0.25 0.35 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. D 6.00 BSC SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. E 6.00 BSC N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX D1 5.00 BSC E1 5.00 BSC MD 11 ME 11 N 96 b 0.20 0.30 eD 0.50 BSC eE 0.50 BSC SD 0.00 SE 0.00 SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. 0.40 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. 002-13224 ** PACKAGE OUTLINE, 96 BALL FBGA 6.0X6.0X1.3 MM FDG096 REV** Document Number: 002-05649 Rev. *D Page 103 of 108 MB9B520M Series 15. Major Changes Spansion Publication Number: DS706-00048 Page Section Change Results Revision 1.0 Features 2 Can Interface A/D Converter (Max 26channels) 3 Uniqueid 6 Product Lineup 7 Function List Of Pin Functions 16 to 18 List Of Pin Numbers List Of Pin Functions 33 I/O Circuit Type 39 Block Diagram 46 55 57 58, 59 62 63 Electrical Characteristics 1. Absolute Maximum Ratings 2. Recommended Operating Conditions 3. Dc Characteristics (1) Current Rating 4. Ac Characteristics (3) Built-In Cr Oscillation Characteristics (4-2) Operating Conditions Of Main PLL (In The Case Of Using Built-In High-Speed CR For Input Clock Of Main PLL) 5. 12-Bit A/D Converter Electrical Characteristics For The A/D Converter 79 82 87 6. 10-Bit D/A Converter 8. Low-Voltage Detection Characteristics 9. Mainflash Memory Write/Erase Characteristics 88 Revision 1.1 Revision 2.0 Features On-Chip Memories [Flash Memory] 2 USB Interface [USB Function] 3 2 Multi-Function Serial Interface [I C] General-Purpose I/O Port 4 Multi-Function Timer Document Number: 002-05649 Rev. *D Preliminary → Data Sheet Corrected the following description. CAN Interface (Max 2channels) → CAN Interface Revised the conversion time: 1.0μs → 0.8μs Added the "Unique ID". Added the "Unique ID". Corrected the I/O circuit type. Corrected the Pin state type. Corrected the Pin function. Added the "Type: L". Corrected the figure. - TIOA: input → input/output - TIOB: output → input Revised the value of "TBD". Revised the Condition of "Operating temperature". Revised the value of "TBD". Added "Flash memory write/erase current". Revised the Condition. Revised the footnote. Revised the value of "TBD". Deleted "(Preliminary value)". Revised the conversion time. Min: 1.0μs → 0.8μs Revised the value of "Compare clock cycle (AVCC ≥ 4.5V )". Min: 50ns → 40ns Revised the footnote. Deleted "(Preliminary value)". Revised the value of "TBD". Revised the value of "TBD". Revised the value of "Sector erase time". - Large Sector Typ: 1.065s → 1.1s - Small Sector Typ: 0.606s → 0.3s Revised the value of "Chip erase time". Typ: 9.11s → 6.8s Deleted "(targeted value)". Company name and layout design change Revised the features of Dual operation Flash memory Added the size of each endpoint. Corrected the mode. High speed mode → Fast mode Revised the features of 5V tolerant I/O. Corrected the number of A/D activating compare channels. 3ch. → 2ch. Page 104 of 108 MB9B520M Series Page Section Change Results Product Lineup Function Corrected the number of A/D activating compare channels. 3ch. → 2ch. Revised Built-in CR . High-speed: 4MHz(± 2%) → 4MHz Low-speed: 100kHz(Typ) → 100kHz Revised the footnote. 21 List Of Pin Functions List Of Pin Numbers Corrected the pin number of ZIN1_1. 24 29 31 List Of Pin Functions 37 I/O Circuit Type 44 Handling Devices Sub Crystal Oscillator Added the descriptions. 47 Block Diagram Corrected the figure. -A/D Activation Compare: 3ch → 2ch 49 Memory Map Memory Map (2) Added the explanatory note. 7 8 54 55 Pin Status In Each Cpu State List Of Pin Status 58 Electrical Characteristics 2. Recommended Operating Conditions 59 3. Dc Characteristics (1) Current Rating 63 64 66 4. Ac Characteristics (2) Sub Clock Input Characteristics (3) Built-In CR Oscillation Characteristics Built-In High-Speed CR (6) Power-On Reset Timing 68 (8) Csio Timing 70,72,74 79 81 (11) I2c Timing 5. 12-Bit A/D Converter Electrical Characteristics For The A/D Converter 82 83 Difinition Of 12-Bit A/D Converter Terms 84 6. 10-Bit D/A Converter Electrical Characteristics For The D/A Converter Document Number: 002-05649 Rev. *D Corrected the pin number of ADTG_2. Corrected pin numbers of SIN0_1 and SOT0_1. Corrected the pin number of DTTI0X_2. Corrested the I/O circuit figure. TYPE H : GPIO Digital input → GPIO Digital output Added the pin function of selected Analog output about type L. Corrected the footnote. Sub CR timer→ Low-speed CR tim Added the note and footnote. Corrected the value of Analog reference voltage “AVRH”. Min.: AVss → 2.7 Added notes and footnotes. Added the remarks of Icc. Added the frequency of main clock crystal oscillator in remarks. Added the footnote. Added "Frequency stabilization time" Added notes and footnotes. Added "Timing until releaseing Power-on reset" Added the timing chart Corrected the title. UART Timing → CSIO Timing Corrected the notefoot. UART → Multi-function serial Corrected the notefoot. UART → Multi-function serial Revised the Condition. Revised the footnote. Changed the name of parameter. •Non Linearity error → Integral Nonlinearity •Differential linearity error → Differential Nonlinearity Changed the Symbol. Of Zero transition voltage. VoT → VZT Changed the pin name. AN00 to AN26 → ANxx Corrected the value of V0T, VFST, Ts, Tstt, and reference voltage. Revides footnotes. Change the figure. AN00 to AN26 → ANxx •Linearity error → Integral Nonlinearity •Differential linearity error → Differential Nonlinearity V0T → VZT •Revised the remark of IDDA. D/A operation → D/A 1unit operation Changed the name of parameter. •Linearity error → Integral Nonlinearity •Differential linearity error → Differential Nonlinearity Page 105 of 108 MB9B520M Series Page Section 89 8. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset 90 (2) Interrupt Of Low-Voltage Detection 91 9. Flash Memory Write/Erase Characteristics 92 10. Return Time Low-Power Consumption Mode Revision 3.0 Features 2 Usb Interface 36, 37 I/O Circuit Type Memory Map 49 · Memory Map(2) PIN STATUS IN EACH CPU STAE 54 · List Of Pin Status Electrical Characteristics 56, 57 1. Absolute Maximum Ratings 59-61 66 69-76 77 Electrical Characteristics 3. DC Characteristics (1) Current Rating Electrical Characteristics 4. AC Characteristics (4-1) Operating Conditions Of Main And USB PLL (4-2) Operating Conditions Of Main PLL Electrical Characteristics 4. Ac Characteristics (7) Csio/Uart Timing Electrical Characteristics 4. Ac Characteristics (9) External Input Timing 82 Electrical Characteristics 5. 12bit A/D Converter 97, 98 Ordering Information Change Results Corrected the condition and the value. Added the note and the footnote. Added “LVD detection delay time”. Corrected the condition and the value. Added “LVD detection delay time”. Changed the title of Chapter. Main Flash Memory Write/Erase Characteristics → Flash Memory Write/Erase Characteristics Added the Chapter “Return Time from Low-Power Consumption Mode”. Added The Description Of Pll For Usb Added About +B Input Added The Summary Of Flash Memory Sector And The Note Changed The Pin Status Of I-Type · Added The Clamp Maximum Current · Added About +B Input · Changed The Table Format · Added Main TIMER Mode Current · Moved A/D Converter Current · Moved D/A Converter Current · Added The Figure Of Main PLL Connection And USB PLL Connection · Modified From Uart Timing To Csio/Uart Timing · Changed From Internal Shift Clock Operation To Master Mode · Changed From External Shift Clock Operation To Slave Mode Added Input Pulse Width Of Wkupx Pin · Added The Typical Value Of Integral Nonlinearity, Differential Nonlinearity, Zero Transition Voltage And Full-Scale Transition Voltage · Added Conversion Time At Avcc < 4.5V Change To Full Part Number Note: Please see “Document History” about later revised information. Document Number: 002-05649 Rev. *D Page 106 of 108 MB9B520M Series Document History Document Title: MB9B520M Series 32-bit Arm® Cortex®-M3, FM3 Microcontroller Document Number: 002-05649 Orig. of Submission Change Date – TOYO 09/13/2012 5164786 TOYO 03/07/2016 Revision ECN ** *A Description of Change Migrated to Cypress and assigned document number 002-05649. No change to document contents or format. Updated to Cypress format. ・ Modified RTC description in “Features, Real-Time Clock(RTC)”. Changed starting count value from 01 to 00. Deleted “second , or day of the week” in the Interrupt function. (Page 3) ・ Updated Package code and dimensions as follows (Page 8-14, 95-103) *B 5653470 HTER 03/09/2017 - FPT-48P-M49 -> LQA048 - LCC-48P-M73 -> VNA048 - FPT-64P-M38 -> LQD064 - FPT-64P-M39 -> LQG064 - LCC-64P-M24 -> VNC064 - FPT-80P-M37 -> LQH080 - FPT-80P-M40 -> LQJ080 - BGA-96P-M07 -> FDG096 ・ Added Notes for JTAG. (Page 32) ・ Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply rise time(Tr) [ms]” to “Power ramp rate(dV/dt) [mV/us]” and add some comments. (Page 65) ・ Added the Baud rate spec in “12.4.9 CSIO/UART Timing”.(Page 67-73) ・ Corrected the erroneous descriptions as follows. - “USB Function” -> “USB Device” (Page 1, 7, 31, 44) - “J-TAG” -> “JTAG” (Page 24) - “Analog port input current” -> “Analog port input leak current” (Page 80) *C 5764936 AESATMP9 06/15/2017 Updated logo and copyright. *D 6064687 HUAL 02/09/2018 Updated the Sales information and legal Document Number: 002-05649 Rev. *D Page 107 of 108 MB9B520M Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Arm® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface PSoC cypress.com/psoc Power Management ICs cypress.com/pmic Wireless Connectivity Community | Projects | Videos | Blogs | Training | Components Technical Support cypress.com/support cypress.com/memory cypress.com/mcu USB Controllers Cypress Developer Community cypress.com/iot Microcontrollers Touch Sensing PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU cypress.com/touch cypress.com/usb cypress.com/wireless Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. © Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-05649 Rev. *D February 9, 2018 Page 108 of 108