STMicroelectronics BYT200PIV-400 Ultrafast power rectifier diode Datasheet

BYT200PIV-400

ULTRAFAST POWER RECTIFIER DIODE
MAIN PRODUCT CHARACTERISTICS
IF(AV)
2 x100 A
VRRM
400 V
VF (max)
1.4 V
FEATURES AND BENEFITS
n
n
n
n
A1
K1
A2
K2
1=
2=
3=
4=
2
4
LOW CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSES
HIGH AVALANCHE CAPABILITY
ISOLATED PACKAGE :
2500 VDC
CAPACITANCE 42pF
A1
K1
A2
K2
1
3
DESCRIPTION
ISOTOPTM
High current power rectifier diode suited for
Switched Mode Power Supply and high frequency
DC to DC converters.
Packaged in ISOTOP, this device is intended
for use in a medi um v oltage high c urrent applic ations such as welding equ ipment and
Telecom su pplies.
ABSOLUTE MAXIMUM RATING
Symbol
Parameter
Value
Unit
VRRM
Repetitive peak reverse voltage
400
V
IF(RMS)
RMS forward current
150
A
IF(AV)
Average forward current
Tc = 80°C
δ = 0.5
100
A
IFSM
Surge non repetitive forward current
tp = 10 ms
Sinusoidal
600
A
IFRM
Repetitive peak forward current
tp  10 µs
800
A
Tstg
Storage temperature range
- 40 to + 150
°C
150
°C
Tj
Maximum junction temperature
ISOTOP is a trademark of STMicroelectronics
May 2000 - Ed: 3C
1/5
BYT200PIV-400
THERMAL RESISTANCES
Symbol
Rth (j-c)
Parameter
Junction to case
Rth (c)
Value
Unit
Per leg
0.55
°C/W
Total
0.33
Coupling
0.1
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol
Parameter
IR *
Reverse leakage current
Tests Conditions
Tj = 25°C
Min.
VR = VRRM
Tj = 100°C
VF **
Pulse test :
Forward voltage drop
Typ.
4
Tj = 25°C
IF = 100 A
Tj = 125°C
IF = 100 A
Max.
Unit
120
µA
12
mA
1.6
V
0.95
1.4
Typ.
Max.
* tp = 5 ms, duty cycle < 2 %
** tp = 380 µs, duty cycle < 2%
RECOVERY CHARACTERISTICS
Symbol
trr
IRM
Parameter
Reverse recovery time
Test Conditions
IF=0.5A IR=1A Irr=0.25A
IF=1A dI/dt= -50A/µs
Vr=30V
Reverse recovery current
dIF/dt=-200A/µs
VR=400V
Tj=125°C
IF=100A
Softness factor
dIF/dt=-200A/µs
VR=400V
Tj=125°C
IF=100A
tfr
Forward recovery time
VFP
Peak forward voltage
IF=100A
dIF/dt=500A/µs
Measured at 1.1 x VF max.
Tj=25°C
S factor
To evaluate the conduction losses use the following equation :
P = 0.8 x IF(AV) + 0.00228 x IF2(RMS)
2/5
Min.
55
Unit
ns
100
40
A
500
ns
12
V
0.25
BYT200PIV-400
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
Fig. 2: Peak current versus form factor (per diode).
IM(A)
PF(av)(W)
500
140
δ = 0.5
δ = 0.2
120
400
δ = 0.1
100
δ= 1
δ = 0.05
80
P=100W
300
60
P=75W
P=125W
200
P=150W
40
100
20
0
IF(av) (A)
0
10 20 30 40 50 60 70 80 90 100 110 120 130
Fig. 3: Average forward current versus ambient
temperature (δ = 0.5, per diode).
0
0.0
δ
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0
Fig. 4: Non repetitive surge peak forward current
versus overload duration (per diode).
IF(av)(A)
IM(A)
120
700
Rth(j-a)=Rth(j-c)
600
100
500
80
400
60
Tc=50°C
Tc=75°C
300
40
Rth(j-a)=2°C/W
200
20
0
25
50
75
Tc=100°C
100
Tamb(°C)
0
0.9
100
125
150
Fig. 5: Relative variation of thermal impedance
junction to case versus pulse duration (per diode).
t(s)
0
1E-3
1E-2
1E-1
1E+0
Fig. 6: Forward voltage drop versus forward current
(maximum values, per diode).
IFM(A)
K=[Zth(j-c)/Rth(j-c)]
1.0
500
δ = 0.5
100
0.5
Tj=125°C
δ = 0.2
Tj=25°C
δ = 0.1
10
0.2
Single pulse
0.1
1E-3
tp(s)
1E-2
VFM(V)
1E-1
1E+0
1
0.50
0.75 1.00
1.25
1.50 1.75
2.00
2.25 2.50
3/5
BYT200PIV-400
Fig. 7: Junction capacitance versus reverse voltage
applied (typical values, per diode).
Fig. 8: Recovery charges versus dIF/dt (per diode).
Qrr(µC)
C(pF)
3.0
500
F=1MHz
Tj=25°C
450
IF=IF(av)
90% confidence
Tj=125°C
2.5
400
2.0
350
1.5
300
250
1.0
200
150
100
0.5
VR(V)
1
dIF/dt(A/µs)
10
100
200
Fig. 9: Recovery current versus dIF/dt (per diode).
0.0
100
200
300
400
500
Fig. 10: Transient peak forward voltage versus
dIF/dt (per diode).
IRM(A)
50
45
40
35
30
25
20
15
10
5
0
0
VFP(V)
14
IF=IF(av)
90% confidence
Tj=125°C
IF=IF(av)
90% confidence
Tj=125°C
12
10
8
6
4
2
dIF/dt(A/µs)
0
100
200
300
400
500
Fig. 11: Dynamic parameters versus junction
temperature.
Qrr;IRM[Tj] / Qrr;IRM[Tj=125°C]
1.25
1.00
0.75
IRM
0.50
Qrr
0.25
Tj(°C)
0.00
4/5
0
25
50
75
100
125
150
0
dIF/dt(A/µs)
0
100
200
300
400
500
600
700
800
BYT200PIV-400
PACKAGE MECHANICAL DATA
ISOTOP
DIMENSIONS
REF.
Millimeters
Min.
A
A1
B
C
C2
D
D1
E
E1
E2
G
G1
G2
F
F1
P
P1
S
n
Max.
11.80
12.20
8.90
9.10
7.8
8.20
0.75
0.85
1.95
2.05
37.80
38.20
31.50
31.70
25.15
25.50
23.85
24.15
24.80 typ.
14.90
15.10
12.60
12.80
3.50
4.30
4.10
4.30
4.60
5.00
4.00
4.30
4.00
4.40
30.10
30.30
Inches
Min.
0.465
0.350
0.307
0.030
0.077
1.488
1.240
0.990
0.939
0.976
0.587
0.496
0.138
0.161
0.181
0.157
0.157
1.185
Max.
0.480
0.358
0.323
0.033
0.081
1.504
1.248
1.004
0.951
typ.
0.594
0.504
0.169
0.169
0.197
0.69
0.173
1.193
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
5/5
Similar pages