GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 D D D D D D D Single Chip With Easy Interface Between UART and Serial-Port Connector of an External Modem or Other Computer Peripheral Five Drivers and Three Receivers Meet or Exceed the Requirements of ANSI Standard TIA/EIA-232-F and ITU Recommendation V.28 Standards Supports Data Rates up to 120 kbit/s Complement to the GD75232 Provides Pin-to-Pin Replacement for the Goldstar GD75323 Pin-Out Compatible With SN75196 Functional Replacement for the MC145405 DW OR N PACKAGE (TOP VIEW) VCC 1DA 2DA 3DA 1RY 2RY 4DA 3RY 5DA GND 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VDD 1DY 2DY 3DY 1RA 2RA 4DY 3RA 5DY VSS description The GD75323 combines five drivers and three receivers from the trade-standard SN75188 and SN75189 bipolar quadruple drivers and receivers, respectively. The flow-through design of the GD75323 decreases the part count, reduces the board space required, and allows easy interconnection of the UART and serial-port connector. The all-bipolar circuits and processing of the GD75323 provide a rugged, low-cost solution for this function. The GD75323 complies with the requirements of the ANSI TIA/EIA-232-F and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and a peripheral at signal rates up to 20 kbit/s. The switching speeds of the GD75323 are fast enough to support rates up to 120 kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be assured unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates up to 120 kbit/s, use of ANSI Standard TIA/EIA-423-B and TIA/EIA-422-B and ITU Recommendations V.10 and V.11 are recommended. The GD75323 is characterized for operation over a temperature range of 0°C to 70°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 logic symbol† 1DA 2DA 3DA 1RY 2RY 4DA 3RY 5DA 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 1DY 2DY 3DY 1RA 2RA 4DY 3RA 5DY † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. logic diagram (positive logic) 1DA 2DA 3DA 1RY 2RY 4DA 3RY 5DA 2 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 POST OFFICE BOX 655303 1DY 2DY 3DY 1RA 2RA 4DY 3RA 5DY • DALLAS, TEXAS 75265 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 schematic (each driver) To Other Drivers VDD 11.6 kΩ 9.4 kΩ Input DAx 75.8 Ω 320 Ω DYx Output 4.2 kΩ GND To Other Drivers 10.4 kΩ 3.3 kΩ 68.5 Ω VSS To Other Drivers Resistor values shown are nominal. schematic (each receiver) To Other Receivers VCC 9 kΩ 5 kΩ 1.66 kΩ RYx Output 2 kΩ 3.8 kΩ Input RAx 10 kΩ GND To Other Receivers Resistor values shown are nominal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V Supply voltage, VSS (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V Input voltage range, VI: Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –15 V to 7 V Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 30 V to 30 V Output voltage range, VO (Driver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V to 15 V Low-level output current, IOL (Receiver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Package thermal impedance, θJA (see Note 2): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltages are with respect to the network ground terminal. 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero. recommended operating conditions Supply voltage VDD VSS High-level input voltage, VIH VCC Driver Low-level input voltage, VIL Driver MIN NOM MAX 7.5 9 13.5 – 7.5 –9 – 13.5 4.5 5 5.5 1.9 –6 Receiver – 0.5 Driver High level output current, High-level current IOL 6 Receiver Operating free-air temperature,TA V V 0.8 Driver High level output current, High-level current IOH UNIT 16 0 70 V mA mA °C supply currents over operating free-air temperature range PARAMETER IDD ISS ICC 4 TEST CONDITIONS MAX All inputs at 1.9 1 9 V, V No load VDD = 9 V, VDD = 12 V, VSS = – 9 V VSS = – 12 V 25 All inputs at 0.8 0 8 V, V No load VDD = 9 V, VDD = 12 V, VSS = – 9 V VSS = – 12 V 7.5 1 9 V, V All inputs at 1.9 No load VDD = 9 V, VDD = 12 V, VSS = – 9 V VSS = – 12 V – 25 All inputs at 0.8 0 8 V, V No load VDD = 9 V, VDD = 12 V, VSS = – 9 V VSS = – 12 V – 5.3 VCC= 5 V, All inputs at 5 V, No load Supply current from VDD Supply current from VSS Supply current from VCC MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 32 9.5 – 32 – 5.3 20 UNIT mA mA mA mA mA GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 DRIVER SECTION electrical characteristics over operating free-air temperature range, VDD = 9 V, VSS = –9 V, VCC = 5 V (unless otherwise noted) PARAMETER VOH VOL High-level output voltage IIH IIL High-level input current IOS(H) IOS(L) ro TEST CONDITIONS MIN TYP 6 7.5 MAX UNIT VIL = 0.8 V, VIH = 1.9 V, RL = 3 kΩ, See Figure 1 RL = 3 kΩ, See Figure 1 –6 V See Figure 2 10 µA Low-level input current VI = 5 V, VI = 0, See Figure 2 – 1.6 mA High-level short-circuit output current (see Note 4) VIL = 0.8 V, VO = 0, See Figure 1 – 4.5 –9 – 19.5 mA VIH = 2 V, VO = 0, VCC = VDD = VSS = 0, See Figure 1 4.5 9 19 mA Low-level output voltage (see Note 3) Low-level short-circuit output current – 7.5 V VO = – 2 V to 2 V 300 Ω NOTES: 3. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if – 10 V is maximum, the typical value is a more negative voltage. 4. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings. 5. Test conditions are those specified by TIA/EIA-232-F and as listed above. Output resistance (see Note 5) switching characteristics, VDD = 12 V, VSS = –12 V, VCC = 5 V ± 10%, TA = 25°C PARAMETER tPLH tPHL tTLH tTHL TEST CONDITIONS Propagation delay time, low- to high-level output Propagation delay time, high- to low-level output time lowlow to high-level high level output Transition time, Transition time, highg to low-level output (see ( Note 5) TYP MAX UNIT 315 500 ns 75 175 ns CL = 15 pF, 60 100 ns RL = 3 kΩ to 7 kΩ, See Figure 3 and Note 6 CL = 2500 pF, 1.7 2.5 µs RL = 3 kΩ to 7 kΩ, See Figure 3 CL = 15 pF, 40 75 ns RL = 3 kΩ to 7 kΩ, See Figure 3 and Note 7 CL = 2500 pF, 1.5 2.5 µs RL = 3 kΩ to 7 kΩ,, See Figure 3 CL = 15 pF,, RL = 3 kΩ to 7 kΩ, See Figure 3 MIN NOTES: 6. Measured between – 3-V and 3-V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied either high or low. 7. Measured between 3-V and – 3-V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied either high or low. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 RECEIVER SECTION electrical characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS TA = 25°C TA = 0°C to 70 °C TYPĔ MAX 1.75 1.9 2.3 VIT IT+ Positive going input threshold voltage Positive-going VIT– Vhys Negative-going input threshold voltage VOH High level output voltage High-level IOH = – 0.5 0 5 mA VIH = 0.75 V Inputs open VOL Low-level output voltage IIH High level input current High-level IOL = 10 mA, VI = 25 V, VI = 3 V See Figure 5 3.6 See Figure 5 0.43 IIL Low level input current Low-level VI = 3 V, VI = – 25 V, See Figure 5 – 3.6 VI = – 3 V, See Figure 5 – 0.43 Input hysteresis voltage (VIT+ – VIT–) See Figure 5 MIN 1.55 0.75 See Figure 5 2.3 0.97 1.25 4 5 0.2 0.45 UNIT V 0.5 2.6 2.6 IOS Short-circuit output current See Figure 4 † All typical values are at TA = 25°C, VCC = 5 V, VDD = 9 V, and VSS = – 9 V. 8.3 – 8.3 V V mA mA – 3.4 –12 mA TYP MAX UNIT 107 500 ns switching characteristics, VCC = 5 V, VDD = 12 V, VSS = –12 V, TA = 25°C PARAMETER TEST CONDITIONS tPLH tPHL Propagation delay time, low- to high-level output tTLH tTHL Transition time, low- to high-level output Propagation delay time, high- to low-level output CL = 50 pF, See Figure 6 MIN RL = 5 kΩ, Transition time, high- to low-level output 42 150 ns 175 525 ns 16 60 ns PARAMETER MEASUREMENT INFORMATION IOS(L) VDD VCC VDD VDD or GND – IOS(H) IIH VSS or GND VI VCC VI – IIL VO RL = 3 kΩ VI VSS VSS Figure 1. Driver Test Circuit for VOH, VOL, IOS(H), and IOS(L 6 POST OFFICE BOX 655303 Figure 2. Driver Test Circuit for IIH and IIL • DALLAS, TEXAS 75265 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 PARAMETER MEASUREMENT INFORMATION 3V 1.5 V Input VDD Input V CC 1.5 V 0V t PHL Pulse Generator VO CL (see Note A) RL See Note B 90% Output VSS t PLH 50% 10% 50% 10% 90% VOL t THL TEST CIRCUIT VOH t TLH VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: tw = 25 µs, PRR = 20 kHz, ZO = 50 Ω, tr = tf < 50 ns. Figure 3. Driver Test Circuit and Voltage Waveforms VDD VCC VDD VCC – IOS – IOH VIT, VI VOH VI VOL IOL VSS VSS Figure 4. Receiver Test Circuit for IOS Figure 5. Receiver Test Circuit for VIT, VOH, and VOL 5V VDD Input 50% Input 50% –5 V VCC t PHL Pulse Generator VO CL (see Note A) RL See Note B 90% Output 50% 10% t PLH 50% 10% 90% VOL VSS t THL TEST CIRCUIT VOH t TLH VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: tw = 25 µs, PRR = 20 kHz, ZO = 50 Ω, tr = tf < 50 ns. Figure 6. Receiver Propagation and Transition Times POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 TYPICAL CHARACTERISTICS DRIVER SECTION OUTPUT CURRENT vs OUTPUT VOLTAGE VOLTAGE-TRANSFER CHARACTERISTICS VO VO – Output Voltage – V 9 6 3 ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ 20 VDD = 12 V, VSS = – 12 V 16 VDD = 9 V, VSS = – 9 V 12 IO I O – Output Current – mA 12 VDD = 6 V, VSS = – 6 V 0 –3 –6 –9 – 12 ÎÎÎÎ ÎÎÎÎ VDD = 9 V VSS = – 9 V TA = 25°C 4 0 –4 ÎÎÎ 3-kΩ Load Line –8 VOH(VI = 0.8 V) – 16 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VI – Input Voltage – V – 20 – 16 2 – 12 SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE VDD = 9 V VSS = – 9 V RL = 3 kΩ TA = 25°C IOS(L) (VI = 1.9 V) SR – Slew Rate – V/ µs 6 3 ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÁÁ ÎÎÎÎÎÎ ÁÁ 0 VDD = 9 V VSS = – 9 V VO = 0 –3 16 ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ 1000 9 12 SLEW RATE vs LOAD CAPACITANCE 12 IIOS OS – Short-Circuit Output Current – mA –8 –4 0 4 8 VO – Output Voltage – V Figure 8 Figure 7 100 10 –6 IOS(H) (VI = 0.8 V) –9 1 – 12 0 10 20 30 40 50 60 70 10 TA – Free-Air Temperature – °C 100 Figure 10 POST OFFICE BOX 655303 1000 CL – Load Capacitance – pF Figure 9 8 VOL(VI = 1.9 V) – 12 RL = 3 kΩ TA = 25°C 0 8 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ • DALLAS, TEXAS 75265 10000 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 TYPICAL CHARACTERISTICS RECEIVER SECTION INPUT THRESHOLD VOLTAGE vs SUPPLY VOLTAGE 2.4 2 2.2 1.8 V – Input Threshold Voltage – V IT V – Input Threshold Voltage – V IT INPUT THRESHOLD VOLTAGE vs FREE-AIR TEMPERATURE VIT + 2 1.8 1.6 1.4 1.2 VIT– 0.8 0.6 0.4 VIT+ 1.6 1.4 1.2 1 VIT– 0.8 0.6 0.4 0.2 0 10 20 30 40 50 60 0 2 70 TA – Free-Air Temperature – °C 3 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎÎ NOISE REJECTION ÁÁÁÁ ÁÁÁÁ ÎÎÎÎ ÁÁÁ ÎÎÎÎ ÁÁÁ CC = 500 pF CC = 12 pF 2 CC = 100 pF 1 0 10 40 100 400 1000 4000 tw – Pulse Duration – ns 10000 NOTE A: This figure shows the maximum amplitude of a positive-going pulse that, starting from 0 V, does not cause a change of the output level. 20 30 40 50 60 TA – Free-Air Temperature – °C 70 14 VDD – Maximum Supply Voltage – V Amplitude – V 3 10 16 CC = 300 pF 4 9 MAXIMUM SUPPLY VOLTAGE vs FREE-AIR TEMPERATURE VCC = 5 V TA = 25°C See Note A 5 5 6 7 8 VCC – Supply Voltage – V Figure 12 Figure 11 6 4 12 10 8 6 4 2 RL ≥ 3 kΩ (from each output to GND) 0 0 10 Figure 13 Figure 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 GD75323 MULTIPLE RS-232 DRIVERS AND RECEIVERS SLLS213A – JANUARY 1996 – REVISED JUNE 1999 APPLICATION INFORMATION Diodes placed in series with the VDD and VSS leads protect the GD75323 in the fault condition in which the device outputs are shorted to VDD or VSS, and the power supplies are at low and provide low-impedance paths to ground (see Figure 15). VDD ± 15 V VDD Output GD75323 GD75323 VSS VSS Figure 15. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA / EIA-232-F TIA/EIA-232-F DB9S Connector – 12 V TL16C450 ACE 10 RI 43 9 DTR 37 8 CTS 40 7 SO 13 6 RTS 36 5 SI 11 4 DSR 41 3 DCD 42 2 1 GND VSS 5DA 5DY 3RY 3RA 4DA 4DY 2RY 2RA GD75323 1RY 1RA 3DA 3DY 2DA 2DY 1DA 1DY VCC VDD 11 12 5 9 RI 13 DTR 14 CTS 15 TX 16 RTS 17 RX 18 DSR 19 20 C5† C4† DCD C3† 6 C2† C1† 1 12 V 5V † See Figure 10 to select the correct values for the loading capacitors (C1, C2, C3, C4, and C5), which may be required to meet the RS-232 maximum slew-rate requirement of 30 V/µs. The value of the loading capacitors required depends upon the line length and desired slew rate, but is typically 330 pF. NOTE C: To use the receivers only, VDD and VSS both must be powered or tied to ground. Figure 16. Typical Connection 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) GD75323DW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 GD75323 GD75323DWG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 GD75323 GD75323DWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 GD75323 GD75323N OBSOLETE PDIP N 20 TBD Call TI Call TI 0 to 70 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 26-Jan-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device GD75323DWR Package Package Pins Type Drawing SOIC DW 20 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2000 330.0 24.4 Pack Materials-Page 1 10.8 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 13.0 2.7 12.0 24.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 26-Jan-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) GD75323DWR SOIC DW 20 2000 367.0 367.0 45.0 Pack Materials-Page 2 PACKAGE OUTLINE DW0020A SOIC - 2.65 mm max height SCALE 1.200 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 20 1 13.0 12.6 NOTE 3 18X 1.27 2X 11.43 10 11 B 7.6 7.4 NOTE 4 20X 0.51 0.31 0.25 C A B 2.65 MAX 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0 -8 0.3 0.1 1.27 0.40 DETAIL A TYPICAL 4220724/A 05/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. 5. Reference JEDEC registration MS-013. www.ti.com EXAMPLE BOARD LAYOUT DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM (R0.05) TYP 10 11 (9.3) LAND PATTERN EXAMPLE SCALE:6X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MAX ALL AROUND 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4220724/A 05/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM 11 10 (9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:6X 4220724/A 05/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated