TI1 MAX3232MDBREP 3-v to 5.5-v multichannel rs-232 line driver/receiver with â±15-kv esd protection Datasheet

MAX3232-EP
www.ti.com......................................................................................................................................................... SGLS337A – APRIL 2006 – REVISED MARCH 2009
3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
FEATURES
APPLICATIONS
•
•
1
RS-232 Bus-Pin ESD Protection Exceeds
±15 kV Using Human-Body Model (HBM)
Meets or Exceeds the Requirements of
TIA/EIA-232-F and ITU v.28 Standards
Operates With 3-V to 5.5-V VCC Supply
Operates Up To 250 kbit/s
Two Drivers and Two Receivers
Low Supply Current . . . 300 µA Typical
External Capacitors . . . 4 × 0.1 µF
Accepts 5-V Logic Input With 3.3-V Supply
Alternative High-Speed Pin-Compatible Device
(1 Mbit/s)
– SNx5C3232
•
•
•
•
•
•
•
•
Battery-Powered Systems, PDAs, Notebooks,
Laptops, Palmtop PCs, and Hand-Held
Equipment
DB OR PW PACKAGE
(TOP VIEW)
C1+
V+
C1−
C2+
C2−
V−
DOUT2
RIN2
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
GND
DOUT1
RIN1
ROUT1
DIN1
DIN2
ROUT2
SUPPORTS DEFENSE, AEROSPACE,
AND MEDICAL APPLICATIONS
•
•
•
•
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Military (–55°C/125°C)
Temperature Range (1)
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
•
•
•
(1)
Additional temperature ranges are available - contact factory
ORDERING INFORMATION (1)
PACKAGE (2)
TA
–55°C to 125°C
(1)
(2)
ORDERABLE PART NUMBER
SSOP (DB)
Reel of 2000
MAX3232MDBREP
TSSOP(PW)
Reel of 2000
MAX3232MPWREP
TOP-SIDE MARKING
MB3232M
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
DESCRIPTION
The MAX3232 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV
ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of
TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the
serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to
5.5-V supply. The devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver
output slew rate.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2006–2009, Texas Instruments Incorporated
MAX3232-EP
SGLS337A – APRIL 2006 – REVISED MARCH 2009......................................................................................................................................................... www.ti.com
FUNCTION TABLE
EACH DRIVER
EACH RECEIVER
INPUT DIN
OUTPUT DOUT
INPUT RIN
OUTPUT ROUT
L
H
L
H
H
L
H
L
Open
H
H = high level, L = low level, Open = input disconnected or connected driver off
LOGIC DIAGRAM (POSITIVE LOGIC)
11
14
DIN1
DOUT1
10
7
DIN2
DOUT2
13
12
ROUT1
RIN1
9
8
ROUT2
RIN2
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
VALUE
UNIT
VCC
Supply voltage range (1)
–0.3 to 6
V
V+
Positive output supply voltage range (1)
–0.3 to 7
V
0.3 to –7
V
13
V
–0.3 to 6
V
V–
Negative output supply voltage range
V+ – V–
Supply voltage difference (1)
VI
VO
θJA
(1)
Input voltage range
Drivers
Receivers
Output voltage range
Package thermal impedance
(2)
Operating virtual junction temperature
Tstg
Storage temperature range
V
DB package
82
°C/W
PW package
108
°C/W
150
°C
–65 to 150
°C
(1)
and Figure 4)
VCC = 3.3 V
Supply voltage
VCC = 5 V
VIH
Driver high-level input voltage
DIN
VIL
Driver low-level input voltage
DIN
2
V
–0.3 to VCC + 0.3
All voltages are with respect to network GND.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
RECOMMENDED OPERATING CONDITIONS (see
(1)
V
Receivers
TJ
(1)
(2)
–25 to 25
–13.2 to 13.2
Drivers
VCC = 3.3 V
VCC = 5 V
MIN
NOM
MAX
3
3.3
3.6
4.5
5
5.5
2
UNIT
V
V
2.4
0.8
V
Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ±0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ±0.5 V.
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
MAX3232-EP
www.ti.com......................................................................................................................................................... SGLS337A – APRIL 2006 – REVISED MARCH 2009
RECOMMENDED OPERATING CONDITIONS (see and Figure 4) (continued)
MIN
VI
TA
Driver input voltage
DIN
Receiver input voltage
Operating free-air temperature
MAX3232M
NOM
MAX
0
5.5
–25
25
-55
125
UNIT
V
°C
ELECTRICAL CHARACTERISTICS
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see
Figure 4)
PARAMETER
ICC
(1)
(2)
Supply current
TEST CONDITIONS
No load, VCC = 3.3 V or 5 V
MIN
(1)
and
TYP (2)
MAX
0.3
2
UNIT
mA
Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ±0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ±0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
3
MAX3232-EP
SGLS337A – APRIL 2006 – REVISED MARCH 2009......................................................................................................................................................... www.ti.com
DRIVER SECTION
ELECTRICAL CHARACTERISTICS
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see
Figure 4)
PARAMETER
TEST CONDITIONS
MIN
TYP (2)
VOH
High-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = GND
5
5.4
VOL
Low-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = VCC
–5
–5.4
IIH
High-level input current
VI = VCC
IIL
Low-level input current
VI at GND
IOS (3)
Short-circuit output current
ro
Output resistance
(1)
(2)
(3)
VCC = 3.6 V,
VO = 0 V
VCC = 5.5 V,
VO = 0 V
VCC, V+, and V– = 0 V,
VO = ±2 V
300
(1)
and
MAX
UNIT
V
V
±0.01
±1
µA
±0.01
±1
µA
±35
±60
mA
Ω
10M
Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ±0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ±0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
SWITCHING CHARACTERISTICS
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see
Figure 4)
PARAMETER
TEST CONDITIONS
Maximum data rate
CL = 1000 pF,
One DOUT switching,
RL = 3 kΩ,
See Figure 1
tsk(p)
Pulse skew (1)
CL = 150 pF to 2500 pF
RL = 3 kΩ to 7 kΩ,
See Figure 2
SR(tr)
Slew rate, transition region (see RL = 3 kΩ to 7 kΩ,
Figure 1)
VCC = 3.3 V
(1)
(2)
4
(1)
and
MIN
TYP (2)
150
250
kbit/s
300
ns
MAX
CL = 150 pF to 1000 pF
6
30
CL = 150 pF to 2500 pF
4
30
UNIT
V/µs
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
MAX3232-EP
www.ti.com......................................................................................................................................................... SGLS337A – APRIL 2006 – REVISED MARCH 2009
RECEIVER SECTION
ELECTRICAL CHARACTERISTICS
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted (see
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
IOH = -1 mA
VOL
Low-level output voltage
IOL = 1.6 mA
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input hysteresis (VIT+ – VIT–)
ri
Input resistance
(1)
(2)
MIN
VCC–0.6
TYP
and Figure 4)
(2)
MAX
UNIT
VCC–0.1
V
0.4
VCC = 3.3 V
1.5
2.4
VCC = 5 V
1.8
2.4
VCC = 3.3 V
0.6
1.2
VCC = 5 V
0.8
1.5
V
V
V
0.3
VI = ±3 V to ±25 V
3
V
5
8
kΩ
Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ±0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ±0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V and TA = 25°C.
SWITCHING CHARACTERISTICS
(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted (see
PARAMETER
TEST CONDITIONS
tPLH
Propagation delay time, low- to high-level output
tPHL
Propagation delay time, high- to low-level output
tsk(p)
Pulse skew (3)
(1)
(2)
(3)
MIN
and Figure 3)
TYP (2)
CL = 150 pF
MAX
UNIT
300
ns
300
ns
300
ns
Test conditions are C1–C4 = 0.1 µF at VCC = 3.3 V ±0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at VCC = 5 V ±0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
PARMETER MEASUREMENT INFORMATION
3V
Input
Generator
(see Note B)
1.5 V
RS-232
Output
50 Ω
RL
1.5 V
0V
tTHL
CL
(see Note A)
tTLH
3V
Output
3V
−3 V
−3 V
TEST CIRCUIT
SR(tr) +
t
THL
6V
or t
VOH
VOL
VOLTAGE WAVEFORMS
TLH
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
1.5 V
Input
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
Output
50%
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
5
MAX3232-EP
SGLS337A – APRIL 2006 – REVISED MARCH 2009......................................................................................................................................................... www.ti.com
PARMETER MEASUREMENT INFORMATION (continued)
3V
Input
1.5 V
1.5 V
−3 V
Output
Generator
(see Note B)
50 Ω
tPHL
CL
(see Note A)
tPLH
VOH
50%
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
A.
CL includes probe and jig capacitance.
B.
The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
6
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
MAX3232-EP
www.ti.com......................................................................................................................................................... SGLS337A – APRIL 2006 – REVISED MARCH 2009
APPLICATION INFORMATION
1
−
16
+ CBYPASS
− = 0.1µF
+
C1
VCC
C1+
2
C3
A+
V+
GND
15
−
3
4
14
DOUT1
C1−
13
C2+
+
C2
RIN1
5 kΩ
−
5 C2−
12
6
C4
−
V−
11
ROUT1
DIN1
+
DOUT2
RIN2
7
10
8
9
DIN2
ROUT2
5 kΩ
VCC vs CAPACITOR VALUES
VCC
C1
C2, C3, C4
3.3 V ± 0.3 V
5 V ± 0.5 V
3 V to 5.5 V
0.1 µF
0.047 µF
0.1 µF
0.1 µF
0.33 µF
0.47 µF
A.
C3 can be connected to VCC or GND.
B.
Resistor values shown are nominal.
C.
Nonpolarized ceramic capacitros are acceptable. If polarized tantalum or electrolytic capacitors are used, they should
be connected as shown.
Figure 4. Typical Operating Circuit and Capacitor Values
Submit Documentation Feedback
Copyright © 2006–2009, Texas Instruments Incorporated
Product Folder Link(s): MAX3232-EP
7
PACKAGE OPTION ADDENDUM
www.ti.com
16-Mar-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MAX3232MDBREP
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3232MPWREP
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/06623-01XE
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
V62/06623-01YE
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF MAX3232-EP :
• Catalog: MAX3232
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MAX3232MDBREP
SSOP
DB
16
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
MAX3232MPWREP
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MAX3232MDBREP
SSOP
DB
16
2000
367.0
367.0
38.0
MAX3232MPWREP
TSSOP
PW
16
2000
367.0
367.0
35.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages