IRF IR2106 High and low side driver Datasheet

Data Sheet No. PD60162 Rev. W
IR2106(4)(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Packages
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V (IR2106(4))
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Outputs in phase with inputs (IR2106)
Also available LEAD-FREE
8-Lead SOIC
8-Lead PDIP
14-Lead SOIC
14-Lead PDIP
2106/2301//2108//2109/2302/2304Feature Comparison
Description
CrossThe IR2106(4)(S) are high voltage,
Input
conduction
Dead-Time
Ground Pins
Ton/Toff
Part
high speed power MOSFET and
prevention
logic
IGBT drivers with independent high
logic
2106/2301
COM
and low side referenced output chanHIN/LIN
no
none
220/200
21064
VSS/COM
nels. Proprietary HVIC and latch
2108
Internal 540ns
COM
HIN/LIN
yes
220/200
immune CMOS technologies enable
Programmable 0.54~5µs
21084
VSS/COM
2109/2302
Internal 540ns
COM
ruggedized monolithic construction.
IN/SD
yes
750/200
Programmable 0.54~5µs
21094
VSS/COM
The logic input is compatible with
yes
160/140
Internal 100ns
HIN/LIN
COM
2304
standard CMOS or LSTTL output,
down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver
cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high
side configuration which operates up to 600 volts.
Typical Connection
up to 600V
VCC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
IR2106
up to 600V
HO
(Refer to Lead Assignments for correct pin configuration). This/These
diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
VCC
V CC
VB
HIN
HIN
VS
LIN
LIN
V SS
V SS
IR21064
TO
LOAD
COM
LO
1
IR2106(4)(S) & (PBF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating absolute voltage
VS
Max.
-0.3
625
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage
VSS - 0.3
VCC + 0.3
Logic ground (IR21064 only)
VCC - 25
VCC + 0.3
VSS
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
—
1.0
(8 lead SOIC)
—
0.625
(14 lead PDIP)
—
1.6
(8 lead PDIP)
(14 lead SOIC)
—
1.0
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
(14 lead PDIP)
—
75
(14 lead SOIC)
2
Min.
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
www.irf.com
IR2106(4)(S & (PbF))
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol
Definition
VB
High side floating supply absolute voltage IR2106(4)
VS
High side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage IR2106(4)
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage
VSS
VCC
VSS
Logic ground (IR21064 only)
-5
5
Ambient temperature
-40
125
TA
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C.
Symbol
Definition
Min.
Typ.
—
220
300
VS = 0V
Turn-off propagation delay
—
200
280
VS = 0V or 600V
Delay matching, HS & LS turn-on/off
—
0
30
tr
Turn-on rise time
—
150
220
VS = 0V
tf
Turn-off fall time
—
50
80
VS = 0V
ton
Turn-on propagation delay
toff
MT
www.irf.com
Max. Units Test Conditions
nsec
3
IR2106(4)(S) & (PBF)
Static Electrical Characteristics
VBIAS (V CC , VBS ) = 15V, V SS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are
referenced to VSS/COM and are applicable to the respective input leads. The VO, I O and Ron parameters are referenced to
COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
VIH
Logic “1” input voltage (IR2106(4))
VIL
Min. Typ. Max. Units Test Conditions
2.9
—
—
VCC = 10V to 20V
VCC = 10V to 20V
Logic “0” input voltage (IR2106(4))
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.8
1.4
VOL
Low level output voltage, VO
—
0.3
0.6
IO = 20 mA
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
20
75
130
VIN = 0V or 5V
IQCC
Quiescent VBS supply current
Quiescent VCC supply current
60
120
180
IIN+
Logic “1” input bias current
VIN = 5V (IR2106(4))
IIN-
IO = 20 mA
VIN = 0V or 5V
µA
—
5
20
Logic “0” input bias current
VIN = 0V (IR2106(4))
—
—
2
8.0
8.9
9.8
VBSUV+
VCC and VBS supply undervoltage positive going
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
7.4
8.2
9.0
VCCUV+
V
VBSUV-
threshold
VCCUVH
Hysteresis
0.3
0.7
—
Output high short circuit pulsed current
120
200
—
V
VBSUVH
IO+
mA
IO-
4
Output low short circuit pulsed current
250
350
—
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
www.irf.com
IR2106(4)(S & (PbF))
Functional Block Diagrams
VB
UV
DETECT
IR2106
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
LO
DELAY
COM
VB
UV
DETECT
IR21064
HO
R
HIN
VSS/COM
LEVEL
SHIFT
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
LIN
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
www.irf.com
5
IR2106(4)(S) & (PBF)
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic Ground (IR21064 only)
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
VB
8
1
HIN
HO
7
2
3
LIN
VS
6
4
COM
LO
5
1
VCC
2
1
4
8
HIN
HO
7
LIN
VS
6
COM
LO
5
8 Lead PDIP
8 Lead SOIC
IR2106
IR2106S
VCC
14
1
14
VCC
2
HIN
VB
13
2
HIN
VB
13
3
LIN
HO
12
3
LIN
HO
12
VS
11
4
VS
11
4
6
3
VB
VCC
5
VSS
10
5
VSS
10
6
COM
9
6
COM
9
7
LO
8
7
LO
8
14 Lead PDIP
14 Lead SOIC
IR21064
IR21064S
www.irf.com
IR2106(4)(S & (PbF))
HIN
LIN
HO
LO
Figure 1. Input/Output Timing Diagram
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
tf
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN
LIN
50%
50%
LO
HO
10%
MT
MT
90%
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
7
IR2106(4)(S) & (PBF)
500
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
500
400
300
M ax
200
Typ.
100
400
M ax.
300
Typ.
200
100
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature ( oC)
Figure 4A. Turn-on Propagation Delay
vs. Temperature
18
20
500
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
16
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
500
400
300
M ax.
200
Typ.
100
0
400
M ax.
300
Typ.
200
100
0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
8
14
V BIAS Supply Voltage (V)
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
www.irf.com
IR2106(4)(S & (PbF))
500
400
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
500
300
200
M ax.
Typ.
100
400
300
M ax.
Typ.
200
100
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature ( oC)
16
18
20
V BIAS Supply Voltage (V)
Figure 6A. Turn-on Rise Time
vs. Temperature
Figure 6B. Turn-on Rise Time
vs. Supply Voltage
200
Turn-off Fall Time (ns)
200
Turn-off Fall Time (ns)
14
150
100
M ax.
50
Typ.
0
150
100
M ax.
Typ.
50
0
-50
-25
0
25
50
75
100
Temperature ( oC)
Figure 7A. Turn-off Fall Time
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 7B. Turn-off Fall Time
vs. Supply Voltage
9
8
8
7
7
6
6
Input Voltage (V)
Input Voltage (V)
IR2106(4)(S) & (PBF)
5
4
M ax.
3
2
1
5
4
M ax.
3
2
1
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (oC)
14
16
18
20
V CC Supply Voltage (V)
Figure 8A. Logic “1” Input Voltage
vs. Temperature
Figure 8B. Logic “1” Input Voltage
vs. Supply Voltage
4.0
4.0
3.2
Input Voltage (V)
Input Voltage (V)
3.2
2.4
1.6
M in.
0.8
1.6
M in.
0.8
0.0
0.0
-50
-25
0
25
50
75
100
Temperature ( oC)
Figure 9A. Logic “0” Input Voltage
vs. Temperature
10
2.4
125
10
12
14
16
18
20
V CC Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage
vs. Supply Voltage
www.irf.com
IR2106(4)(S & (PbF))
4
High Level Output Voltage (V)
High Level Output Voltage (V)
4
3
2
M ax.
1
Typ.
0
3
M ax.
2
Typ.
1
0
-50
-25
0
25
50
75
100
125
10
12
Temperature ( oC)
Figure 10A. High Level Output Voltage
vs. Temperature
16
18
20
Figure 10B. High Level Output Voltage
vs. Supply Voltage
1.5
1.5
Low Level Output Voltage (V)
Low Level Output Voltage (V)
14
V BIAS Supply Voltage (V)
1.2
0.9
0.6
M ax.
0.3
Typ.
0
1.2
0.9
M ax.
0.6
Typ.
0.3
0
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Fi
11A L
L
lO t
t
Figure 11A. Low Level Output Voltage
vs. Temperature
www.irf.com
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 11B. Low Level Output Voltage
vs. Supply Voltage
11
500
Offset Supply Leakage Current ( A)
Offset Supply Leakage Current ( A)
IR2106(4)(S) & (PBF)
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
500
400
300
200
100
M ax.
0
125
0
100
o
Temperature ( C)
400
500
600
Figure 12B. Offset Supply Leakage Current
vs. Supply Voltage
400
V BS Supply Current ( A)
400
V BS Supply Current ( A)
300
V B Boost Voltage (V)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
300
200
M ax.
100
Typ.
300
200
M ax.
100
Typ.
M in.
M in.
0
0
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 13A. VBS Supply Current
vs. Temperature
12
200
125
10
12
14
16
18
20
V BS Supply Voltage (V)
Figure 13B. VBS Supply Current
vs. Supply Voltage
www.irf.com
IR2106(4)(S & (PbF))
400
V CC Supply Current ( A)
V c c S u p p ly C u rre n t ( A )
400
300
200
M ax.
Typ.
100
M in.
300
M ax.
200
Typ.
M in.
100
0
0
-50
-25
0
25
50
75
100
125
10
12
T e m p e ra tu re (oC )
18
20
Figure 14B. Quiescent VCC Supply Current
vs. VCC Supply Voltage
60
60
Logic "1" Input Current ( A)
Logic "1" Input Current ( A)
16
V CC Supply Voltage (V)
Figure 14A. Quiescent VCC Supply Current
vs. Temperature
50
40
30
20
10
14
M ax.
50
40
30
M ax.
20
10
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 15A. Logic “1” Input Current
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V CC Supply Voltage (V)
Figure 15B. Logic “1” Bias Current
vs. Supply Voltage
13
IR2106(4)(S) & (PBF)
5
Logic "0" Input Current ( A)
Logic "0" Input Current ( A)
5
4
3
M ax.
2
1
4
3
M ax.
2
1
0
0
-50
-25
0
25
50
75
100
125
10
12
Fi
16B L
Figure 16A. Logic “0” Input Current
vs. Temperature
12
18
20
i "0" I
C
Figure 16B. Logic “0” Input Currentt
vs. Supply Voltage
11
V CC UVLO Threshold (-) (V)
V CC UVLO Threshold (+) (V)
16
V CC Supply Voltage (V)
Temperature (oC)
11
10
M ax.
Typ.
9
M in.
8
7
10
M ax.
9
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
100
Temperature ( oC)
Figure 17. VCC Undervoltage Threshold (+)
vs. Temperature
14
14
125
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 18. VCC Undervoltage Threshold (-)
vs. Temperature
www.irf.com
IR2106(4)(S & (PbF))
11
V BS UVLO Threshold (-) (V)
V BS UVLO Threshold (+) (V)
12
11
M ax.
10
Typ.
9
M in.
8
10
M ax.
9
Typ.
8
M in.
7
6
7
-50
-25
0
25
50
75
100
-50
125
-25
0
50
75
100
125
Temperature ( C)
Temperature ( C)
Figure 19. VBS Undervoltage Threshold (+)
vs. Temperature
Figure 20. VBS Undervoltage Threshold (-)
vs. Temperature
500
Output Source Current ( A)
500
Output Source Current ( A)
25
o
o
400
300
Typ.
200
M in.
100
400
300
200
Typ.
100
M in.
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 21A. Output Source Current
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 21B. Output Source Current
vs. Supply Voltage
15
IR2106(4)(S) & (PBF)
600
500
Output Sink Current ( A)
Output Sink Current ( A)
600
Typ.
400
M in.
300
200
100
0
500
400
300
Typ.
200
M in.
100
0
-50
-25
0
25
50
75
100
125
10
o
Temperature ( C)
16
18
20
Figure 22B. Output Sink Currentt
vs. Supply Voltage
140
0
120
-2
Temprature (oC)
V S Offset Supply Voltage (V)
14
V BIAS Supply Voltage (V)
Figure 22A. Output Sink Current
vs. Temperature
Typ.
-4
-6
100
80
140V
70V
60
0V
40
-8
20
-10
10
12
14
16
18
V BS Floating Supply Voltage (V)
Figure 23. Maximum VS Negative Offset
vs. Supply Voltage
16
12
20
1
10
100
1000
Frequency (KHz)
Figure 24. IR2106 vs. Frequency (IRFBC20),
Ω, VCC=15V
Rgate=33Ω
www.irf.com
140
140
120
120
100
140V
80
70V
60
0V
Temperature (oC)
Temperature (oC)
IR2106(4)(S & (PbF))
100
70V
0V
60
40
40
20
20
1
10
100
1
1000
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 25. IR2106 vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
Figure 26. IR2106 vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
140V 70V
140
140
0V
120
Temperature (oC)
120
Temperature (oC)
140V
80
100
80
60
100
80
60
140V
70V
40
40
20
20
0V
1
10
100
1000
Frequency (KHz)
Figure 27. IR2106 vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Figure 28. IR21064 vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
17
140
140
120
120
100
80
140V
60
70V
40
Temperature (oC)
Temperature (oC)
IR2106(4)(S) & (PBF)
100
140V
80
70V
60
0V
40
0V
20
20
1
10
100
1
1000
Figure 29. IR21064 vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
0V
80
60
100
80
140V
70V
60
0V
40
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 31. IR21064 vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
18
120
Temperature (o C)
Temperature (oC)
140
70V
100
1000
Figure 30. IR21064 vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
140V
120
100
Frequency (KHz)
Frequency (KHz)
140
10
1
10
100
1000
Frequency (KHz)
Figure 32. IR2106S vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
www.irf.com
IR2106(4)(S & (PbF))
140
120
120
140V
100
70V
0V
80
60
Temperature (oC)
Temperature (oC)
140V 70V
140
0V
100
80
60
40
40
20
20
1
10
100
1
1000
1000
Figure 34. IR2106S vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
Figure 33. IR2106S vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
140V 70V 0V
140
120
Temperature (oC)
120
Tempreture (oC)
100
Frequency (KHz)
Frequency (KHz)
140
10
100
80
60
40
100
80
60
140V
70V
0V
40
20
1
10
100
Frequency (KHz)
Figure 35. IR2106S vs. Frequency
(IRFPE50), Rgate=10Ω , V CC=15V
www.irf.com
1000
20
1
10
100
1000
Frequency (KHz)
Figure 36. IR21064S vs. Frequency (IRFBC20),
Rgate=33Ω , V CC=15V
19
140
140
120
120
Temperature (oC)
Temperature (oC)
IR2106(4)(S) & (PBF)
100
80
140V
70V
60
0V
100
80
0V
40
20
20
10
100
1000
70V
60
40
1
140V
1
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 37. IR21064S vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
Figure 38. IR21064S vs. Frequency (IRFBC40),
Rgate=15Ω , V CC=15V
140V 70V
140
0V
Temperature (oC)
120
100
80
60
40
20
1
10
100
1000
Frequency (KHz)
Figure 39. IR21064S vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
20
www.irf.com
IR2106(4)(S & (PbF))
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
2
3
0.25 [.010]
4
A
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
e
3X 1.27 [.050]
e1
0.25 [.010]
A1
.025 BASIC
0.635 BASIC
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
2. CONTROLLING DIMENSION: MILLIMETER
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
www.irf.com
1.27 BASIC
K x 45°
A
C
8X b
8X 1.78 [.070]
MAX
H
e1
6X
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
21
IR2106(4)(S) & (PBF)
14 Lead PDIP
14 Lead SOIC (narrow body)
22
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
www.irf.com
IR2106(4)(S & (PbF))
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2106 order IR2106
8-Lead SOIC IR2106S order IR2106S
14-Lead PDIP IR21064 order IR21064
14-Lead SOIC IR21064S order IR21064S
Leadfree Part
8-Lead PDIP IR2106 order IR2106PbF
8-Lead SOIC IR2106S order IR2106SPbF
14-Lead PDIP IR21064 order IR21064PbF
14-Lead SOIC IR21064S order IR21064SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/12/2004
www.irf.com
23
Similar pages