STMicroelectronics LSM9DS0TR Inemo inertial module 3d accelerometer, 3d gyroscope, 3d magnetometer Datasheet

LSM9DS0
iNEMO inertial module:
3D accelerometer, 3D gyroscope, 3D magnetometer
Datasheet - production data
Applications
 Indoor navigation
 Smart user interfaces
 Advanced gesture recognition
 Gaming and virtual reality input devices
LGA-24 (4x4x1.0 mm)
 Display/map orientation and browsing
Features
Description
 3 acceleration channels, 3 angular rate
channels, 3 magnetic field channels
The LSM9DS0 is a system-in-package featuring a
3D digital linear acceleration sensor, a 3D digital
angular rate sensor, and a 3D digital magnetic
sensor.
 ±2/±4/±6/±8/±16 g linear acceleration full scale
 ±2/±4/±8/±12 gauss magnetic full scale
 ±245/±500/±2000 dps angular rate full scale
 16-bit data output
 SPI / I2C serial interfaces
The LSM9DS0 has a linear acceleration full scale
of ±2g/±4g/±6g/±8g/±16g, a magnetic field full
scale of ±2/±4/±8/±12 gauss and an angular rate
of ±245/±500/±2000 dps.
The LSM9DS0 includes an I2C serial bus
interface supporting standard and fast mode
(100 kHz and 400 kHz) and an SPI serial
standard interface.
 Analog supply voltage 2.4 V to 3.6 V
 Power-down mode / low-power mode
 Programmable interrupt generators
 Embedded self-test
The system can be configured to generate
interrupt signals on dedicated pins and is capable
of motion and magnetic field detection.
Thresholds and timing of interrupt generators are
programmable by the end user.
 Embedded temperature sensor
 Embedded FIFO
 Position and motion detection functions
 Click/double-click recognition
 Intelligent power saving for handheld devices
 ECOPACK®, RoHS and “Green” compliant
Magnetic, accelerometer and gyroscope sensing
can be enabled or set in power-down mode
separately for smart power management.
The LSM9DS0 is available in a plastic land grid
array package (LGA) and it is guaranteed to
operate over an extended temperature range
from -40 °C to +85 °C.
Table 1. Device summary
Part number
Temperature range [°C]
Package
Packing
LSM9DS0
-40 to +85
LGA-24
Tray
LSM9DS0TR
-40 to +85
LGA-24
Tape and reel
August 2013
This is information on a product in full production.
DocID024763 Rev 2
1/74
www.st.com
Contents
LSM9DS0
Contents
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1
Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5
3
4
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2
Sensor I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1
Set / reset pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1
Linear acceleration sensor sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2
Magnetic sensor sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3
Angular rate sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5
Zero-gauss level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.6
Zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1
4.2
2/74
2.4.1
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1
Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.2
Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Linear acceleration main digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.4
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.5
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID024763 Rev 2
LSM9DS0
Contents
4.2.6
4.3
5
6
Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Gyroscope digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.4
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.5
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.6
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.7
Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3
High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.1
6.2
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1
WHO_AM_I_G (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2
CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3
CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4
CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.5
CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.6
CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.7
REFERENCE/DATACAPTURE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.8
STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID024763 Rev 2
3/74
74
Contents
4/74
LSM9DS0
8.9
OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.10
OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.11
OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.12
FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.13
FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.14
INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.15
INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.16
INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.17
INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.18
INT1_THS_YH_G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.19
INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.20
INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.21
INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.22
INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.23
OUT_TEMP_L_XM (05h), OUT_TEMP_H_XM (06h) . . . . . . . . . . . . . . . 52
8.24
STATUS_REG_M (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.25
OUT_X_L_M (08h), OUT_X_H_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.26
OUT_Y_L_M (0Ah), OUT_Y_H_M (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.27
OUT_Z_L_M (0Ch), OUT_Z_H_M (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.28
WHO_AM_I_XM (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.29
INT_CTRL_REG_M (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.30
INT_SRC_REG_M (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.31
INT_THS_L_M (14h), INT_THS_H_M (15h) . . . . . . . . . . . . . . . . . . . . . . 54
8.32
OFFSET_X_L_M (16h), OFFSET_X_H_M (17h) . . . . . . . . . . . . . . . . . . . 54
8.33
OFFSET_Y_L_M (18h), OFFSET_Y_H_M (19h) . . . . . . . . . . . . . . . . . . . 54
8.34
OFFSET_Z_L_M (1Ah), OFFSET_Z_H_M (1Bh) . . . . . . . . . . . . . . . . . . 54
8.35
REFERENCE_X (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.36
REFERENCE_Y (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.37
REFERENCE_Z (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.38
CTRL_REG0_XM (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.39
CTRL_REG1_XM (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.40
CTRL_REG2_XM (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.41
CTRL_REG3_XM (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID024763 Rev 2
LSM9DS0
Contents
8.42
CTRL_REG4_XM (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.43
CTRL_REG5_XM (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.44
CTRL_REG6_XM (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.45
CTRL_REG7_XM (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.46
STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.47
OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.48
OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.49
OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.50
FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.51
FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.52
INT_GEN_1_REG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.53
INT_GEN_1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.54
INT_GEN_1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.55
INT_GEN_1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.56
INT_GEN_2_REG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.57
INT_GEN_2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.58
INT_GEN_2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.59
INT_GEN_2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.60
CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.61
CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.62
CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.63
TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.64
TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.65
TIME WINDOW (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.66
Act_THS (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.67
Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DocID024763 Rev 2
5/74
74
List of tables
LSM9DS0
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/74
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Sensor characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Temperature sensor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 32
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 32
Linear acceleration and magnetic sensor SAD+read/write patterns. . . . . . . . . . . . . . . . . . 33
Angular rate SAD+read/write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
WHO_AM_I_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
High-pass filter cutoff frequency configuration (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
REFERENCE/DATACAPTURE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
REFERENCE/DATACAPTURE_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STATUS_REG_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FIFO_CTRL_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
FIFO_SRC_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
FIFO_SRC_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID024763 Rev 2
LSM9DS0
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_YH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STATUS_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STATUS_REG_M description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
WHO_AM_I_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_CTRL_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_CTRL_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INT_SRC_REG_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_SRC_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CTRL_REG0_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
CTRL_REG0_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
CTRL_REG1_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
CTRL_REG1_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Acceleration data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
CTRL_REG2_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
CTRL_REG2_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Acceleration anti-alias filter bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Acceleration full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
CTRL_REG3_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
CTRL_REG3_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
CTRL_REG4_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
CTRL_REG4_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
CTRL_REG5_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CTRL_REG5_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Magnetic data rate configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CTRL_REG6_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CTRL_REG6_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Magnetic full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
CTRL_REG7_XM register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
CTRL_REG7_XM description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
High-pass filter mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Magnetic sensor mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STATUS_REG_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STATUS_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_CTRL_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
FIFO_CTRL_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
FIFO_SRC_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
FIFO_SRC_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
INT_GEN_1_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
INT_GEN_1_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
DocID024763 Rev 2
7/74
74
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
8/74
LSM9DS0
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
INT_GEN_1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
INT_GEN_1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INT_GEN_2_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INT_GEN_2_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
INT_GEN_2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
INT_GEN_2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
INT_GEN_2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_GEN_2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_GEN_2_DURATION register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_GEN_2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_WINDOW register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_WINDOW register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Act_DUR description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
LGA 4x4x1 mm 24-lead mechanical data (see note 1 and 2). . . . . . . . . . . . . . . . . . . . . . . 71
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DocID024763 Rev 2
LSM9DS0
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Gyroscope block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Stream-to-FIFO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
LSM9DS0 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Wait bit disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Wait bit enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LGA 4x4x1 mm 24-lead outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
DocID024763 Rev 2
9/74
74
Block diagram and pin description
LSM9DS0
1
Block diagram and pin description
1.1
Block diagram
Figure 1. Block diagram
Sensing Block
A/D
converter
Sensing Interface
Control
Logic
X+
Y+
CHARGE
AMPLIFIER
Z+
I (a)
+
MUX
ZYX-
CS_XM
X+
CS_G
Y+
CHARGE
AMPLIFIER
SDA
Z+
I (M)
+
SDO_XM/SA0_XM
-
SDO_G/SA0_G
I2C/SPI
MUX
ZY-
SCL/SPC
X-
INT1_XM
INT2_XM
X+
CHARGE
AMPLIFIER
Y+
INT_G
DEMODULATOR
Z+
I (Ω)
DRDY_G
+
MUX
LOW-PASS
FILTER
-
A/D
Control
converter
Logic
ZY-
ANALOG
CONDITIONING
X-
Feedback+
Feedback-
AUTOMATIC
GAIN
CONTROL
DriveVOLTAGE
GAIN
AMPLIFIER
Drive+
INTERRUPT GEN.
FIFO
REFERENCE
TRIMMING
CIRCUITS
BUILT-IN
SET/RESET
CIRCUITS
10/74
DocID024763 Rev 2
CLOCK
TEMPERATURE
SENSOR
CONTROL LOGIC
PHASE
GENERATOR
LSM9DS0
Pin description
Figure 2. Pin connections
Z
Y
CS_G
CS_XM
SCL/SPC
SDO_G/SA0_G
X
TOP VIEW
Z
19
Vdd_IO
X
+Ω
Y
+Ω
1
Vdd
DIRECTION OF
DETECTABLE
ANGULAR RATES
Vdd
12
X
Res
6
13
Res
Res
Res
BOTTOM
VIEW
Vdd
INT2_XM
INT1_XM
TOP VIEW
24
18
GND
GND
7
INT_G
DEN_G
SETP_XM
1
Pin 1 indicator
SETC_XM
C1_XM
+Ω
SDO_XM/SA0_XM
SDA
DIRECTION OF
DETECTABLE
ACCELERATIONS
DRDY_G
1.2
Block diagram and pin description
Y
X
DIRECTION OF
DETECTABLE
MAGNETIC FIELDS
Z
TOP VIEW
DocID024763 Rev 2
11/74
74
Block diagram and pin description
LSM9DS0
Table 2. Pin description
Pin#
Name
1
Reserved
Leave unconnected
2
Reserved
Connect to GND
3
Reserved
Connect to GND
4
Reserved
Connect to GND
5
GND
0 V supply
6
GND
0 V supply
7
C1_XM
8
SETC_XM
S/R capacitor connection (C2)
9
SETP_XM
S/R capacitor connection (C2)
10
DEN_G
Gyroscope data enable
11
INT_G
Gyroscope programmable interrupt
12
DRDY_G
Gyroscope data ready
13
INT1_XM
Accelerometer and magnetic sensor interrupt 1
14
INT2_XM
Accelerometer and magnetic sensor interrupt 2
15
Vdd
Power supply
16
Vdd
Power supply
17
Vdd
Power supply
18
Vdd_IO
19
12/74
CS_G
Function
Capacitor connection (C1)
Power supply for I/O pins
Gyroscope I2C/SPI mode selection
1: SPI idle mode / I2C communication enabled
0: SPI communication mode / I2C disabled
Accelerometer and magnetic sensor SPI enabled
I2C/SPI mode selection
1: SPI idle mode / I2C communication enabled
0: SPI communication mode / I2C disabled
20
CS_XM
21
SCL
SPC
22
SDO_G
SA0_G
Gyroscope serial data output (SDO)
Angular rate sensor I2C less significant bit of the device address
(SA0)
23
SDO_XM
SA0_XM
Accelerometer and magnetic sensor SPI serial data output (SDO)
Accelerometer and magnetic sensor I2C less significant bit of the
device address (SA0)
24
SDA
I2C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial data (SDA)
DocID024763 Rev 2
LSM9DS0
Module specifications
2
Module specifications
2.1
Sensor characteristics
@ Vdd = 3.0 V, T = 25 °C unless otherwise noted(a)
Table 3. Sensor characteristics
Symbol
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±2
±4
LA_FS
Linear acceleration
measurement range(2)
±6
g
±8
±16
±2
M_FS
±4
Magnetic
measurement range
gauss
±8
±12
±245
G_FS
Angular rate
measurement range
±500
dps
±2000
LA_So
M_GN
G_So
Linear acceleration FS = ±2 g
0.061
Linear acceleration FS = ±4 g
0.122
Linear acceleration sensitivity Linear acceleration FS = ±6 g
0.183
Linear acceleration FS = ±8 g
0.244
Linear acceleration FS = ±16 g
0.732
Magnetic FS = ±2 gauss
0.08
Magnetic FS = ±4 gauss
0.16
Magnetic FS = ±8 gauss
0.32
Magnetic FS = ±12 gauss
0.48
Angular rate FS = ±245 dps
8.75
Angular rate FS = ±500 dps
17.50
Angular rate FS = ±2000 dps
70
Magnetic sensitivity
Angular rate sensitivity
LA_TCSo
Linear acceleration sensitivity
From -40 °C to +85 °C
change vs. temperature
M_TCSo
Magnetic sensitivity change
vs. temperature
From -40 °C to +85 °C
mg/LSB
mgauss/
LSB
mdps/
digit
±1.5
%
±3
%
a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.4 V to 3.6 V.
DocID024763 Rev 2
13/74
74
Module specifications
LSM9DS0
Table 3. Sensor characteristics (continued)
Symbol
G_SoDr
Parameter
Angular rate sensitivity
change vs. temperature
Test conditions
Min.
From -40 °C to +85 °C
Linear acceleration typical
LA_TyOff zero-g level offset
accuracy(3)(4)
G_TyOff
Angular rate
typical zero-rate level
Typ.(1)
Max.
Unit
±2
%
±60
mg
FS = 245 dps
±10
FS = 500 dps
±15
FS = 2000 dps
±25
dps
LA_TCOff
Linear acceleration zero-g
Max delta from 25 °C
level change vs. temperature
±0.5
mg/°C
G_TCOff
Zero-rate level change vs.
temperature
±0.05
dps/°C
M_EF
Maximum exposed field
No perming effect on zero
reading
M_DF
Magnetic disturbing field
Sensitivity starts to degrade.
Automatic S/R pulse restores
the sensitivity(5)
LA_ST
Linear acceleration self-test
positive difference (6)(7)
±2 g range, X, Y, Z-axis
AST1:0 = 01 see Table 74
G_ST
Angular rate self-test output
change (8)(9)
Top
10000
gauss
20
gauss
60
1700
mg
FS = 245 dps
20
250
FS = 500 dps
70
400
FS = 2000 dps
150
1000
-40
+85
Operating temperature range
dps
°C
1. Typical specifications are not guaranteed
2. Verified by wafer level test and measurement of initial offset and sensitivity
3. Typical zero-g level offset value after MSL3 preconditioning
4. Offset can be eliminated by enabling the built-in high-pass filter
5. Set / Reset Pulse is automatically applied at each conversion cycle
6. “Self-test output change” is defined as: OUTPUT[mg](CTRL_REG2_XM (21h) AST1:0 enabled) - OUTPUT[mg](CTRL_REG2_XM
(21h) AST1:0 disabled)
7. For polarity refer to Table 77: Self-test mode configuration
8. “Self-test output change” is defined as: OUTPUT[mg](CTRL_REG4_G (23h) ST1:0 enabled) - OUTPUT[mg](CTRL_REG4_G (23h)
ST1:0 disabled)
9. For polarity refer to Table 31: Self-test mode configuration
14/74
DocID024763 Rev 2
LSM9DS0
2.2
Module specifications
Temperature sensor characteristics
The electrical characteristics concerning the temperature sensor are given in the table
below.
@ Vdd = 3.0 V, T=25 °C unless otherwise noted.
Table 4. Temperature sensor electrical characteristics
Symbol
Parameter
TSDr
Temperature sensor output
change vs. temperature
TODR
Temperature refresh rate
Top
Test conditions
Min.
-
Operating temperature range
-40
Typ.(1)
Max.
Unit
8
LSB/°C
M_ODR
[2:0](2)
Hz
+85
°C
1. Typical specifications are not guaranteed.
2. Refer to Table 84: Magnetic data rate configuration.
DocID024763 Rev 2
15/74
74
Module specifications
2.3
LSM9DS0
Electrical characteristics
@ Vdd = 3.0V, T = 25 °C unless otherwise noted(b)
Table 5. Electrical characteristics
Symbol
Vdd
Vdd_IO
Idd_XM
Idd_G
Idd_G_LP
Idd_Pdn
Test
conditions
Parameter
Min.
Typ.(1)
Max.
Unit
3.6
V
Supply voltage
2.4
Module power supply for I/O
1.71
1.8
HR setting
CTRL_REG5
_XM (M_RES
[1,0]) = 11b,
see
CTRL_REG5
_XM (24h)
350
μA
6.1
mA
Gyroscope supply current
in sleep mode(4)
2
mA
Current consumption in power-down
mode(5)
6
μA
Current consumption of the
accelerometer and magnetic sensor
in normal mode (2)
Gyroscope current consumption in
normal mode(3)
VIH
Digital high-level input voltage
VIL
Digital low-level input voltage
VOH
High-level output voltage
VOL
Low-level output voltage
Top
Operating temperature range
Vdd+0.1
0.8*Vdd_IO
V
0.2*Vdd_IO
0.9*Vdd_IO
-40
V
0.1*Vdd_IO
V
+85
°C
1. Typical specifications are not guaranteed
2. Magnetic sensor setting ODR =6.25 Hz, Accelerometer sensor ODR =50 Hz, gyroscope in power-down mode
3. Accelerometer and magnetic sensor in power-down mode
4. Sleep mode introduces a faster turn-on time compared to power-down mode. Accelerometer and magnetic sensor in
power-down mode.
5. Linear accelerometer, magnetic sensor and gyroscope in power-down mode
b. LSM9DS0 is factory calibrated at 3.0 V
16/74
DocID024763 Rev 2
V
LSM9DS0
Module specifications
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
Value(1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
100
ns
10
MHz
ns
50
5
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
Figure 3. SPI slave timing diagram
CS
()
()
tc(SPC)
tsu(CS)
SPC
()
()
tsu(SI)
SDI
()
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
Note:
th(CS)
()
tdis(SO)
th(SO)
MSB OUT
()
()
LSB OUT
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
DocID024763 Rev 2
17/74
74
Module specifications
LSM9DS0
Sensor I2C - inter-IC control interface
2.4.2
Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values
Symbol
f(SCL)
I2C standard mode (1)
Parameter
SCL clock frequency
I2C fast mode (1)
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
3.45
ns
0.9
Figure 4. I2C slave timing diagram
REPEATED
START
START
tsu(SR)
START
tw(SP:SR)
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
Note:
18/74
tw(SCLL)
tw(SCLH)
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
DocID024763 Rev 2
μs
μs
1. Data based on standard I2C protocol requirement, not tested in production.
tsu(SDA)
kHz
μs
0
SDA
Unit
LSM9DS0
2.5
Module specifications
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Note:
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
3,000 for 0.5 ms
g
10,000 for 0.1 ms
g
3,000 for 0.5 ms
g
10,000 for 0.1 ms
g
Input voltage on any control pin (SCL/SPC, SDA,
SDO_XM/SA0_XM, SDO_G/SA0_G, CS_G, CS_XM,
DEN_G)
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
ESD
Electrostatic discharge protection
2 (HBM)
kV
Supply voltage on any pin should never exceed 4.8 V
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This is an electrostatic-sensitive device (ESD), improper handling can cause
permanent damage to the part.
DocID024763 Rev 2
19/74
74
Terminology
3
Terminology
3.1
Set / reset pulse
LSM9DS0
The set / reset pulse is an automatic operation performed before each magnetic acquisition
cycle to degauss the sensor and to ensure alignment of the magnetic dipoles and thus the
linearity of the sensor itself.
3.2
Sensitivity
The methods to determine sensitivity and offset are given below in the following paragraphs.
3.2.1
Linear acceleration sensor sensitivity
Sensitivity describes the gain of the sensor and can be determined by applying 1 g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and time. The sensitivity tolerance describes the
range of sensitivities of a large population of sensors.
3.2.2
Magnetic sensor sensitivity
Sensitivity describes the gain of the sensor and can be determined by applying a magnetic
field of 1 gauss to it.
3.2.3
Angular rate sensitivity
An angular rate gyroscope is a device that produces a positive-going digital output for
counter-clockwise rotation around the sensitive axis considered. Sensitivity describes the
gain of the sensor and can be determined by applying a defined angular velocity to it. This
value changes very little over temperature and time.
3.2.4
Zero-g level
The zero-g level offset (TyOff) describes the deviation of an actual output signal from the
ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal
surface will measure 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis will
measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as two’s complement number). A deviation from the
ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to
the MEMS sensor and therefore the offset can slightly change after mounting the sensor
onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes
little over temperature, see “Zero-g level change vs. temperature” (LA_TCOff in Table 3).
The Zero-g level tolerance (TyOff) describes the standard deviation of the range of Zero-g
levels of a population of sensors.
20/74
DocID024763 Rev 2
LSM9DS0
3.2.5
Terminology
Zero-gauss level
The zero-gauss level offset describes the deviation of an actual output signal from the ideal
output if no magnetic field is present. Thanks to the Set/Reset Pulse and to the magnetic
sensor readout chain, the offset is dynamically cancelled. The Zero-gauss level does not
show any dependency on temperature or power supply.
3.2.6
Zero-rate level
The zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of highly accurate MEMS sensors is, to some extent, a result of stress to the
sensor and therefore the zero-rate level can slightly change after mounting the sensor onto
a printed circuit board or after exposing it to extensive mechanical stress. This value
changes very little over temperature and time.
DocID024763 Rev 2
21/74
74
Functionality
4
LSM9DS0
Functionality
The LSM9DS0 is a system-in-package featuring a 3D digital accelerometer, a 3D digital
magnetometer, and a 3D digital gyroscope.
The device includes specific sensing elements and two IC interfaces capable of measuring
both the acceleration/magnetometer and angular rate applied to the module and to provide
a signal to external applications through an SPI/I2C serial interface.
The various sensing elements are manufactured using specialized micromachining
processes, while the IC interfaces are developed using a CMOS technology that allows the
design of a dedicated circuit which is trimmed to better match the sensing element
characteristics.
The LSM9DS0 may also be configured to generate an inertial wake-up and free-fall interrupt
signal according to a programmed acceleration event along the enabled axes.
4.1
Self-test
4.1.1
Accelerometer
The self-test allows the linear acceleration sensor functionality to be tested without moving
it. The self-test function is off when the self-test bit (ST) is programmed to ‘0’. When the selftest bit is programmed to ‘1’ an actuation force is applied to the sensor, simulating a definite
input acceleration. In this case the sensor outputs exhibit a change in their DC levels which
are related to the selected full scale through the device sensitivity. When the self-test is
activated, the device output level is given by the algebraic sum of the signals produced by
the acceleration acting on the sensor and by the electrostatic test-force. If the output signals
change within the amplitude specified inside Section 2.1: Sensor characteristics, then the
sensor is working properly and the parameters of the interface chip are within the defined
specifications.
4.1.2
Gyroscope
The self-test allows to test the mechanical and electric part of the sensor, allowing the
seismic mass to be moved by means of an electrostatic test-force. When the ST is activated
by the IC, an actuation force is applied to the sensor, emulating a definite Coriolis force. In
this case the sensor output will exhibit an output change.
When the ST is active, the device output is given by the algebraic sum of the signals
produced by the velocity acting on the sensor and by the electrostatic test-force.
For polarity please refer to Table 31: Self-test mode configuration.
4.2
Linear acceleration main digital blocks
4.2.1
FIFO
The LSM9DS0 embeds 32 slots of data FIFO for each of the three output channels: X, Y
and Z. This allows consistent power saving for the system, since the host processor does
not need to continuously poll data from the sensor, but it can wake up only when needed
22/74
DocID024763 Rev 2
LSM9DS0
Functionality
and burst the significant data out from the FIFO. This buffer can work accordingly in four
different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each
mode is selected by the FIFO_MODE bits in FIFO_SRC_REG (2Fh). Programmable
watermark level, FIFO_Empty or FIFO_Full events can be enabled to generate dedicated
interrupts on the INT1_XM/INT2_XM pin (configured through FIFO_SRC_REG (2Fh)).
4.2.2
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. For each
channel only the first address is used. The remaining FIFO slots are empty.
4.2.3
FIFO mode
In FIFO mode, data from the X, Y and Z channels are stored in the FIFO. A watermark
interrupt can be enabled (FIFO_WTMK_EN bit in FIFO_CTRL_REG (2Eh)) in order to be
raised when the FIFO is filled to the level specified in the FIFO_WTMK_LEVEL bits of
FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of data for X, Y
and Z). When full, the FIFO stops collecting data from the input channels.
4.2.4
Stream mode
In Stream mode, data from the X, Y and Z measurements are stored in the FIFO. A
watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling
until it is full (32 slots of data for X, Y and Z). When full, the FIFO discards the older data as
the new data arrives.
4.2.5
Stream-to-FIFO mode
In Stream-to-FIFO mode, data from the X, Y and Z measurements is stored in the FIFO. A
watermark interrupt can be enabled (FIFO_WTMK_EN bit in FIFO_CTRL_REG (2Eh)) in
order to be raised when the FIFO is filled to the level specified in the FIFO_WTMK_LEVEL
bits of FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of 8-bit data
for X, Y and Z). When full, the FIFO discards the older data as the data new arrives. Once a
trigger event occurs, the FIFO starts operating in FIFO mode.
4.2.6
Retrieving data from FIFO
A read operation to the OUT_X_L_A (28h), OUT_X_H_A (29h), OUT_Y_L_A (2Ah),
OUT_Y_H_A (2Bh) or OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) registers provides the data
stored in the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are
placed in the OUT_X_L_A (28h), OUT_X_H_A (29h), OUT_Y_L_A (2Ah), OUT_Y_H_A
(2Bh) and OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) registers and both single read and
read_burst operations can be used.
DocID024763 Rev 2
23/74
74
Functionality
4.3
LSM9DS0
Gyroscope digital main blocks
Figure 5. Gyroscope block diagram
Out_Sel
00
01
0
LPF2
ADC
LPF1
HPF
10
11
DataReg
FIFO
32x16x3
1
HPen
I2C
SPI
INT1_Sel
10
11
01
Interrupt
generator
00
SCR REG
CONF REG
INT
GAMS250320131444FSR
4.3.1
FIFO
The LSM9DS0 embeds 32 slots of 16-bit data FIFO for each of the three output channels:
yaw, pitch and roll. This allows consistent power saving for the system, since the host
processor does not need to continuously poll data from the sensor, but can wake up only
when needed and burst the significant data out from the FIFO. This buffer can work
accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-toStream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in
FIFO_CTRL_REG_G (2Eh). A programmable watermark level, FIFO_Empty or FIFO_Full
events can be enabled to generate dedicated interrupts on the DRDY_G pin (configured
through CTRL_REG3_G (22h) and event detection information is available in
FIFO_SRC_REG_G (2Fh). The watermark level can be configured to WTM4:0 in
FIFO_CTRL_REG_G (2Eh).
4.3.2
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in Figure 6, for each channel only the first address is used. The remaining FIFO
slots are empty. When new data is available, the old data is overwritten.
24/74
DocID024763 Rev 2
LSM9DS0
Functionality
Figure 6. Bypass mode
xi,yi,zi
empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
AM07231v1
4.3.3
FIFO mode
In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark
interrupt can be enabled (I2_WMK bit in CTRL_REG3_G (22h)) in order to be raised when
the FIFO is filled to the level specified in the WTM 4:0 bits of FIFO_CTRL_REG_G (2Eh).
The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When
full, the FIFO stops collecting data from the input channels. To restart data collection,
FIFO_CTRL_REG_G (2Eh) must be written back to Bypass mode.
FIFO mode is represented in Figure 7.
Figure 7. FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
AM07232v1
DocID024763 Rev 2
25/74
74
Functionality
4.3.4
LSM9DS0
Stream mode
In Stream mode, data from the yaw, pitch and roll measurements is stored in the FIFO. A
watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling
until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the
older data as the new data arrives. Programmable watermark level events can be enabled
to generate dedicated interrupts on the DRDY_G pin (configured through CTRL_REG3_G
(22h).
Stream mode is represented in Figure 8.
Figure 8. Stream mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
AM07234v1
26/74
DocID024763 Rev 2
LSM9DS0
4.3.5
Functionality
Bypass-to-stream mode
In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger
event occurs (related to INT1_CFG_G (30h) events) the FIFO starts operating in Stream
mode. Refer to Figure 9 below.
Figure 9. Bypass-to-stream mode
xi,yi,zi
Empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
z31
Bypass mode
Stream mode
Trigger event
4.3.6
AM07235v1
Stream-to-FIFO mode
In Stream-to-FIFO mode, data from the yaw, pitch and roll measurement is stored in the
FIFO. A watermark interrupt can be enabled on pin DRDY_G by setting the I2_WTM bit in
CTRL_REG3_G (22h) to be raised when the FIFO is filled to the level specified in the
WTM4:0 bits of FIFO_CTRL_REG_G (2Eh). The FIFO continues filling until it is full (32 slots
of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new
data arrives. Once a trigger event occurs (related to INT1_CFG_G (30h) events), the FIFO
starts operating in FIFO mode. Refer to Figure 10.
Figure 10. Stream-to-FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
xi,yi,zi
Stream Mode
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
FIFO Mode
Trigger event
AM07236v1
DocID024763 Rev 2
27/74
74
Functionality
4.3.7
LSM9DS0
Retrieving data from FIFO
A read operation from the OUT_X_L_G (28h), OUT_X_H_G (29h), OUT_Y_L_G (2Ah),
OUT_Y_H_G (2Bh) or OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) registers provides the data
stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll and yaw data
are placed in the OUT_X_L_G (28h), OUT_X_H_G (29h), OUT_Y_L_G (2Ah),
OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) registers and both single
read and read_burst (X,Y & Z with auto-incremental address) operations can be used.
When data included in OUT_Z_H_G is read, the system again starts to read information
from addr OUT_X_L_G.
4.4
Temperature sensor
The LSM9DS0 features an embedded temperature sensor.
Temperature data can be enabled by setting the TEMP_EN bit in the CTRL_REG5_XM
(24h) register to 1.
Both OUT_TEMP_H_XM and OUT_TEMP_L_XM registers must be read.
Temperature data is stored inside OUT_TEMP_L_XM (05h), OUT_TEMP_H_XM (06h) as
two’s complement data in 12-bit format, right justified.
The output data rate of the temperature sensor is set by M_ODR in CTRL_REG5_XM (24h)
and is equal to the magnetic sensor output data rate.
4.5
Factory calibration
The IC interface is factory calibrated. The trimming values are stored inside the non-volatile
memory of the device. Any time the device is turned on, the trimming parameters are
downloaded into the registers to be used during normal operation. This allows the using the
device without further calibration.
28/74
DocID024763 Rev 2
LSM9DS0
5
Application hints
Application hints
CS_XM
CS_G
SCL/SPC
SDO_XM/SA0_XM
SDO_G/SA0_G
SDA
Figure 11. LSM9DS0 electrical connections
Pin 1 indicator
19
24
Res
1
18
Vdd_IO
TOP
VIEW
Vdd
INT2_XM
6
13
12
7
C4= 100nF
C3= 10µF
GND
DEN_G
INT_G
DRDY_G
C2=0.22µF
GND
INT1_XM
C1= 4.7µF
GND
5.1
External capacitors
The C1 and C2 external capacitors should be low SR value, ceramic type construction (typ
recommended value 200 mOhm). Reservoir capacitor C1 is nominally 4.7 μF in
capacitance, with the set/reset capacitor C2 nominally 0.22 μF in capacitance.
The device core is supplied through the Vdd line. Power supply decoupling capacitors
(C4 = 100 nF ceramic, C3 = 10 μF Al) should be placed as near as possible to the supply
pin of the device (common design practice). All the voltage and ground supplies must be
present at the same time to have proper behavior of the IC (refer to Figure 11).
The functions of the device and the measured acceleration/magnetic field data are
selectable and accessible through the I2C / SPI interfaces.
The functions, the threshold and the timing of the three interrupt pins (INT_G, INT1_XM and
INT2_XM) can be completely programmed by the user through the I2C / SPI interfaces.
DocID024763 Rev 2
29/74
74
Application hints
5.2
LSM9DS0
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendation are available at www.st.com/mems.
5.3
High current wiring effects
High current in wiring and printed circuit traces can be culprits in causing errors in magnetic
field measurements for compassing.
Conductor-generated magnetic fields will add to the Earth’s magnetic field leading to errors
in compass-heading computation.
Keep currents higher than 10 mA a few millimeters further away from the sensor IC.
30/74
DocID024763 Rev 2
LSM9DS0
6
Digital interfaces
Digital interfaces
The registers embedded in the LSM9DS0 may be accessed through both the I2C and SPI
serial interfaces. The latter may be SW-configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped to the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
Table 9. Serial interface pin description
Pin name
CS
SCL/SPC
SDA/SDI/SDO
SDO
6.1
Pin description
I2C/SPI mode selection
1: SPI idle mode / I2C communication enabled
0: SPI communication mode / I2C disabled
I2C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SPI serial data output (SDO)
I2C less significant bit of the device address
I2C serial interface
The LSM9DS0 I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 10. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both lines must be connected to Vdd_IO through external pull-up
resistors. When the bus is free, both lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with
normal mode.
DocID024763 Rev 2
31/74
74
Digital interfaces
LSM9DS0
I2C operation
6.1.1
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its own address. If they match, the device considers itself
addressed by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM9DS0 behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) will be
transmitted: the 7 LSb represents the actual register address while the MSB enables the
address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) will be
automatically increased to allow multiple data read/writes.
Table 11. Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
DATA
SAK
SP
SAK
SAK
Table 12. Transfer when master is writing multiple bytes to slave
Master
ST
SAD + W
SUB
Slave
SAK
DATA
DATA
SAK
SP
SAK
SAK
Table 13. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
ST SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DAT
A
NMAK
SP
DAT
A
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
32/74
DocID024763 Rev 2
LSM9DS0
Digital interfaces
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is Master Acknowledge and NMAK is No
Master Acknowledge.
Default address:
The SDO/SA0 pins (SDO_XM/SA0_XM or SDO_G/SA0_G) can be used to modify the least
significant bit of the device address. If the SA0 pin is connected to the voltage supply, LSb is
‘1’ (ex. address 0011101b) else if SA0 pad is connected to ground, the LSb value is ‘0’ (ex.
address 0011110b).
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’
(Write) the master will transmit to the slave with the direction unchanged. Table 15 and
Table 16 explain how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Linear acceleration and magnetic sensor address:
Table 15. Linear acceleration and magnetic sensor SAD+read/write patterns
Command
SDO_XM/SA0_XM pin
SAD[6:2]
SAD[1:0]
R/W
SAD+R/W
Read
0
00111
10
1
00111101 (3D)
Write
0
00111
10
0
00111100 (3C)
Read
1
00111
01
1
00111011 (3B)
Write
1
00111
01
0
00111010 (3A)
Angular rate sensor address:
Table 16. Angular rate SAD+read/write patterns
Command
SAD[6:1]
SAD[0] = SDO_G/SA0_G pin
R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
DocID024763 Rev 2
SAD+R/W
33/74
74
Digital interfaces
6.2
LSM9DS0
SPI bus interface
The SPI is a bus slave. The SPI allows writing and reading the registers of the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and
SDO.
Figure 12. Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
CS is the Serial Port Enable and is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the Serial Port Clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the Serial Port Data Input and Output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the Read Register and Write Register commands are completed in 16 clock pulses or
in multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling
edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address will be auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the
MS bit is 0, the address used to read/write data remains the same for every block. When the
MS bit is 1, the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
34/74
DocID024763 Rev 2
LSM9DS0
6.2.1
Digital interfaces
SPI read
Figure 13. SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10130V1
The SPI read command is performed with 16 clock pulses. The multiple byte read command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 14. Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
AM10131V1
DocID024763 Rev 2
35/74
74
Digital interfaces
6.2.2
LSM9DS0
SPI write
Figure 15. SPI write protocol
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
AM10132V1
The SPI Write command is performed with 16 clock pulses. The multiple byte write
command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 16. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
AM10133V1
6.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the bit SIM (SPI serial interface mode selection) to ‘1’ in
CTRL_REG2_XM (21h) for the accelerometer and magnetic sensor and in CTRL_REG4_G
(23h) for the gyroscope.
36/74
DocID024763 Rev 2
LSM9DS0
Digital interfaces
Figure 17. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD 4 AD 3 AD2 AD1 AD 0
AM10134V1
The SPI Read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment address; when 1, increments address in multiple
reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
The multiple read command is also available in 3-wire mode.
DocID024763 Rev 2
37/74
74
Register mapping
7
LSM9DS0
Register mapping
The table given below provides a listing of the 8-bit registers embedded in the device and
their respective addresses.
Table 17. Register address map
38/74
Register address
Slave
Address
Type
Reserved
Table 16
WHO_AM_I_G
Name
Default
Hex
Binary
--
00-0E
--
--
Table 16
r
0F
000 1111
11010100
Reserved
Table 16
--
10-1F
--
--
CTRL_REG1_G
Table 16
rw
20
010 0000
00000111
CTRL_REG2_G
Table 16
rw
21
010 0001
00000000
CTRL_REG3_G
Table 16
rw
22
010 0010
00000000
CTRL_REG4_G
Table 16
rw
23
010 0011
00000000
CTRL_REG5_G
Table 16
rw
24
010 0100
00000000
REFERENCE_G
Table 16
rw
25
010 0101
00000000
Reserved
Table 16
--
26
--
--
STATUS_REG_G
Table 16
r
27
010 0111
output
OUT_X_L_G
Table 16
r
28
010 1000
output
OUT_X_H_G
Table 16
r
29
010 1001
output
OUT_Y_L_G
Table 16
r
2A
010 1010
output
OUT_Y_H_G
Table 16
r
2B
010 1011
output
OUT_Z_L_G
Table 16
r
2C
010 1100
output
OUT_Z_H_G
Table 16
r
2D
010 1101
output
FIFO_CTRL_REG_G
Table 16
rw
2E
010 1110
00000000
FIFO_SRC_REG_G
Table 16
r
2F
010 1111
output
INT1_CFG_G
Table 16
rw
30
011 0000
00000000
INT1_SRC_G
Table 16
r
31
011 0001
output
INT1_TSH_XH_G
Table 16
rw
32
011 0010
00000000
INT1_TSH_XL_G
Table 16
rw
33
011 0011
00000000
INT1_TSH_YH_G
Table 16
rw
34
011 0100
00000000
INT1_TSH_YL_G
Table 16
rw
35
011 0101
00000000
INT1_TSH_ZH_G
Table 16
rw
36
011 0110
00000000
INT1_TSH_ZL_G
Table 16
rw
37
011 0111
00000000
INT1_DURATION_G
Table 16
rw
38
011 1000
00000000
Reserved
Table 15
--
00-04
--
--
DocID024763 Rev 2
LSM9DS0
Register mapping
Table 17. Register address map (continued)
Register address
Slave
Address
Type
OUT_TEMP_L_XM
Table 15
OUT_TEMP_H_XM
Name
Default
Hex
Binary
r
05
000 0101
output
Table 15
r
06
000 0110
output
STATUS_REG_M
Table 15
r
07
000 0111
output
OUT_X_L_M
Table 15
r
08
000 1000
output
OUT_X_H_M
Table 15
r
09
000 1001
output
OUT_Y_L_M
Table 15
r
0A
000 1010
output
OUT_Y_H_M
Table 15
r
0B
000 1011
output
OUT_Z_L_M
Table 15
r
0C
000 1100
output
OUT_Z_H_M
Table 15
r
0D
000 1101
output
Reserved
Table 15
--
0E
000 1110
--
WHO_AM_I_XM
Table 15
r
0F
000 1111
01001001
Reserved
Table 15
--
10-11
--
--
INT_CTRL_REG_M
Table 15
rw
12
001 0010
11101000
INT_SRC_REG_M
Table 15
r
13
001 0011
output
INT_THS_L_M
Table 15
rw
14
001 0100
00000000
INT_THS_H_M
Table 15
rw
15
001 0101
00000000
OFFSET_X_L_M
Table 15
rw
16
001 0110
00000000
OFFSET_X_H_M
Table 15
rw
17
001 0111
00000000
OFFSET_Y_L_M
Table 15
rw
18
001 01000
00000000
OFFSET_Y_H_M
Table 15
rw
19
001 01001
00000000
OFFSET_Z_L_M
Table 15
rw
1A
001 01010
00000000
OFFSET_Z_H_M
Table 15
rw
1B
001 01011
00000000
REFERENCE_X
Table 15
rw
1C
001 01100
00000000
REFERENCE_Y
Table 15
rw
1D
001 01101
00000000
REFERENCE_Z
Table 15
rw
1E
001 01110
00000000
CTRL_REG0_XM
Table 15
rw
1F
001 1111
00000000
CTRL_REG1_XM
Table 15
rw
20
010 0000
00000111
CTRL_REG2_XM
Table 15
rw
21
010 0001
00000000
CTRL_REG3_XM
Table 15
rw
22
010 0010
00000000
CTRL_REG4_XM
Table 15
rw
23
010 0011
00000000
CTRL_REG5_XM
Table 15
rw
24
010 0100
00011000
CTRL_REG6_XM
Table 15
rw
25
010 0101
00100000
CTRL_REG7_XM
Table 15
rw
26
010 0110
00000001
DocID024763 Rev 2
39/74
74
Register mapping
LSM9DS0
Table 17. Register address map (continued)
Register address
Slave
Address
Type
STATUS_REG_A
Table 15
OUT_X_L_A
Name
Default
Hex
Binary
r
27
010 0111
output
Table 15
r
28
010 1000
output
OUT_X_H_A
Table 15
r
29
010 1001
output
OUT_Y_L_A
Table 15
r
2A
010 1010
output
OUT_Y_H_A
Table 15
r
2B
010 1011
output
OUT_Z_L_A
Table 15
r
2C
010 1100
output
OUT_Z_H_A
Table 15
r
2D
010 1101
output
FIFO_CTRL_REG
Table 15
rw
2E
010 1110
00000000
FIFO_SRC_REG
Table 15
r
2F
010 1111
output
INT_GEN_1_REG
Table 15
rw
30
011 0000
00000000
INT_GEN_1_SRC
Table 15
r
31
011 0001
output
INT_GEN_1_THS
Table 15
rw
32
011 0010
00000000
INT_GEN_1_DURATION
Table 15
rw
33
011 0011
00000000
INT_GEN_2_REG
Table 15
rw
34
011 0100
00000000
INT_GEN_2_SRC
Table 15
r
35
011 0101
output
INT_GEN_2_THS
Table 15
rw
36
011 0110
00000000
INT_GEN_2_DURATION
Table 15
rw
37
011 0111
00000000
CLICK_CFG
Table 15
rw
38
011 1000
00000000
CLICK_SRC
Table 15
r
39
011 1001
output
CLICK_THS
Table 15
rw
3A
011 1010
00000000
TIME_LIMIT
Table 15
rw
3B
011 1011
00000000
TIME _LATENCY
Table 15
rw
3C
011 1100
00000000
TIME_WINDOW
Table 15
rw
3D
011 1101
00000000
Act_THS
Table 15
rw
3E
011 1110
00000000
Act_DUR
Table 15
rw
3F
011 1111
00000000
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory-calibrated values. Their content is automatically restored when the device is
powered up.
40/74
DocID024763 Rev 2
LSM9DS0
8
Register description
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
angular rate data. The register address, consisting of 7 bits, is used to identify them and to
write the data through the serial interface.
8.1
WHO_AM_I_G (0Fh)
Table 18. WHO_AM_I_G register
1
1
0
1
0
1
0
0
Xen
Yen
Device identification register.
8.2
CTRL_REG1_G (20h)
Table 19. CTRL_REG1_G register
DR1
DR0
BW1
BW0
PD
Zen
Table 20. CTRL_REG1_G description
DR1-DR0
Output data rate selection. Refer to Table 21
BW1-BW0
Bandwidth selection. Refer to Table 21
PD
Power-down mode enable. Default value: 0
(0: power-down mode, 1: normal mode or sleep mode)
Zen
Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen
Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen
X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
DR[1:0] is used for ODR selection. BW [1:0] is used for Bandwidth selection.
In Table 21 all frequencies resulting in combinations of DR / BW bits are given.
Table 21. DR and BW configuration setting
DR [1:0]
BW [1:0]
ODR (Hz)
Cutoff
00
00
95
12.5
00
01
95
25
00
10
95
25
DocID024763 Rev 2
41/74
74
Register description
LSM9DS0
Table 21. DR and BW configuration setting (continued)
DR [1:0]
BW [1:0]
ODR (Hz)
Cutoff
00
11
95
25
01
00
190
12.5
01
01
190
25
01
10
190
50
01
11
190
70
10
00
380
20
10
01
380
25
10
10
380
50
10
11
380
100
11
00
760
30
11
01
760
35
11
10
760
50
11
11
760
100
A combination of PD, Zen, Yen, Xen is used to set device to different modes (power-down /
normal / sleep mode) in accordance with Table 22 below.
Table 22. Power mode selection configuration
Mode
8.3
PD
Zen
Yen
Xen
Power-down
0
-
-
-
Sleep
1
0
0
0
Normal
1
-
-
-
CTRL_REG2_G (21h)
Table 23. CTRL_REG2_G register
0
(1)
0
(1)
HPM1
HPM1
HPCF3
HPCF2
1. These bits must be set to ‘0’ to ensure proper operation of the device
Table 24. CTRL_REG2_G description
42/74
HPM1HPM0
High-pass filter mode selection. Default value: 00
Refer to Table 25
HPCF3HPCF0
High-pass filter cutoff frequency selection
Refer to Table 26
DocID024763 Rev 2
HPCF1
HPCF0
LSM9DS0
Register description
Table 25. High-pass filter mode configuration
HPM1
HPM0
High-pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
Table 26. High-pass filter cutoff frequency configuration (Hz)
HPCF[3:0]
8.4
ODR = 95 Hz
ODR = 190 Hz
ODR = 380 Hz
ODR = 760 Hz
0000
7.2
13.5
27
51.4
0001
3.5
7.2
13.5
27
0010
1.8
3.5
7.2
13.5
0011
0.9
1.8
3.5
7.2
0100
0.45
0.9
1.8
3.5
0101
0.18
0.45
0.9
1.8
0110
0.09
0.18
0.45
0.9
0111
0.045
0.09
0.18
0.45
1000
0.018
0.045
0.09
0.18
1001
0.009
0.018
0.045
0.09
CTRL_REG3_G (22h)
Table 27. CTRL_REG3_G register
I1_Int1
I1_Boot
H_Lactive
PP_OD
I2_DRDY
I2_WTM
I2_ORun
I2_Empty
Table 28. CTRL_REG3_G description
I1_Int1
Interrupt enable on INT_G pin. Default value 0. (0: disable; 1: enable)
I1_Boot
Boot status available on INT_G. Default value 0. (0: disable; 1: enable)
H_Lactive
Interrupt active configuration on INT_G. Default value 0. (0: high; 1:low)
PP_OD
Push-pull / Open drain. Default value: 0. (0: push- pull; 1: open drain)
I2_DRDY
Date-ready on DRDY_G. Default value 0. (0: disable; 1: enable)
I2_WTM
FIFO watermark interrupt on DRDY_G. Default value: 0. (0: disable; 1: enable)
I2_ORun
FIFO overrun interrupt on DRDY_G. Default value: 0. (0: disable; 1: enable)
I2_Empty
FIFO empty interrupt on DRDY_G. Default value: 0. (0: disable; 1: enable)
DocID024763 Rev 2
43/74
74
Register description
8.5
LSM9DS0
CTRL_REG4_G (23h)
Table 29. CTRL_REG4_G register
BDU
BLE
FS1
FS0
-
ST1
ST0
SIM
Table 30. CTRL_REG4_G description
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSb and LSb
read)
BLE
Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0
Full-scale selection. Default value: 00
(00: 245 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
ST1-ST0
Self-test enable. Default value: 00
(00: Self-test disabled; Other: See Table 31)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 31. Self-test mode configuration
ST1
ST0
Self-test mode
0
0
Normal mode
0
1
Self-test 0 (1)(X positive sign, Y and Z negative sign)
1
0
--
1
1
Self-test 1 (1) (X negative sign, Y and Z positive sign)
1. DST sign (absolute value in Table 3)
8.6
CTRL_REG5_G (24h)
Table 32. CTRL_REG5_G register
BOOT
FIFO_EN
--
HPen
INT1_Sel1 INT1_Sel0
Out_Sel1
Table 33. CTRL_REG5_G description
44/74
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
HPen
High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled) (See Figure 18)
INT1_Sel1-INT1_Sel0
INT1 selection configuration. Default value: 00
(See Figure 18)
Out_Sel1-Out_Sel0
Out selection configuration. Default value: 00
(See Figure 18)
DocID024763 Rev 2
Out_Sel0
LSM9DS0
Register description
Figure 18. INT1_Sel and Out_Sel configuration block diagram
Out_Sel [1:0]
00
01
DataReg
0
LPF2
LPF1
ADC
FIFO
32x16x3
10
11
1
HPF
INT1_Sel [1:0]
HPen
10
11
01
Interrupt
generator
00
AM07949V2
8.7
REFERENCE/DATACAPTURE_G (25h)
Table 34. REFERENCE/DATACAPTURE_G register
Ref7
Ref6
Ref5
Ref4
Ref3
Ref2
Ref1
Ref0
Table 35. REFERENCE/DATACAPTURE_G description
Ref 7-Ref0
8.8
Reference value for interrupt generation. Default value: 0
STATUS_REG_G (27h)
Table 36. STATUS_REG_G register
ZYXOR
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
Table 37. STATUS_REG_G description
X, Y, Z -axis data overrun. Default value: 0
ZYXOR (0: no overrun has occurred; 1: new data has overwritten the previous data before it was
read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
DocID024763 Rev 2
45/74
74
Register description
LSM9DS0
Table 37. STATUS_REG_G description (continued)
ZYXDA X, Y, Z -axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
8.9
ZDA
Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
YDA
Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
XDA
X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)
OUT_X_L_G (28h), OUT_X_H_G (29h)
X-axis angular rate data. The value is expressed as two’s complement.
8.10
OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh)
Y-axis angular rate data. The value is expressed as two’s complement.
8.11
OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)
Z-axis angular rate data. The value is expressed as two’s complement.
8.12
FIFO_CTRL_REG_G (2Eh)
Table 38. FIFO_CTRL_REG_G register
FM2
FM1
FM0
WTM4
WTM3
WTM2
Table 39. FIFO_CTRL_REG_G description
FM2-FM0
FIFO mode selection. Default value: 00 (see Table 40)
WTM4-WTM0
FIFO threshold. Watermark level setting
Table 40. FIFO mode configuration
FM2
46/74
FM1
FM0
FIFO mode
0
0
0
Bypass mode
0
0
1
FIFO mode
0
1
0
Stream mode
0
1
1
Stream-to-FIFO mode
1
0
0
Bypass-to-Stream mode
DocID024763 Rev 2
WTM1
WTM0
LSM9DS0
8.13
Register description
FIFO_SRC_REG_G (2Fh)
Table 41. FIFO_SRC_REG_G register
WTM
OVRN
EMPTY
FSS4
FSS3
FSS2
FSS1
FSS0
Table 42. FIFO_SRC_REG_G description
8.14
WTM
Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
to or higher than WTM level)
OVRN
Overrun bit status.
(0: FIFO is not completely filled; 1: FIFO is completely filled)
EMPTY
FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1
FIFO stored data level
INT1_CFG_G (30h)
Table 43. INT1_CFG_G register
AND/OR
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Table 44. INT1_CFG_G description
AND/OR
AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC reg.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower
than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower
than preset threshold)
DocID024763 Rev 2
47/74
74
Register description
LSM9DS0
Table 44. INT1_CFG_G description (continued)
8.15
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower
than preset threshold)
INT1_SRC_G (31h)
Interrupt source register. Read-only register.
Table 45. INT1_SRC_G register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 46. INT1_SRC_G description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
Reading at this address clears the INT1_SRC IA bit (and eventually the interrupt signal on
the INT_G pin) and allows the refresh of data in the INT1_SRC register if the latched option
was chosen.
8.16
INT1_THS_XH_G (32h)
Table 47. INT1_THS_XH_G register
-
THSX14
THSX13
THSX12
THSX11
THSX10
Table 48. INT1_THS_XH_G description
THSX14 - THSX8
48/74
Interrupt threshold. Default value: 000 0000
DocID024763 Rev 2
THSX9
THSX8
LSM9DS0
8.17
Register description
INT1_THS_XL_G (33h)
Table 49. INT1_THS_XL_G register
THSX7
THSX6
THSX5
THSX4
THSX3
THSX2
THSX1
THSX0
THSY9
THSY8
THSY1
THSY0
THSZ9
THSZ8
Table 50. INT1_THS_XL_G description
THSX7 - THSX0
8.18
Interrupt threshold. Default value: 0000 0000
INT1_THS_YH_G (34h)
Table 51. INT1_THS_YH_G register
-
THSY14
THSY13
THSY12
THSY11
THSY10
Table 52. INT1_THS_YH_G description
THSY14 - THSY8
8.19
Interrupt threshold. Default value: 000 0000
INT1_THS_YL_G (35h)
Table 53. INT1_THS_YL_G register
THSR7
THSY6
THSY5
THSY4
THSY3
THSY2
Table 54. INT1_THS_YL_G description
THSY7 - THSY0
8.20
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZH_G (36h)
Table 55. INT1_THS_ZH_G register
-
THSZ14
THSZ13
THSZ12
THSZ11
THSZ10
Table 56. INT1_THS_ZH_G description
THSZ14 - THSZ8
Interrupt threshold. Default value: 000 0000
DocID024763 Rev 2
49/74
74
Register description
8.21
LSM9DS0
INT1_THS_ZL_G (37h)
Table 57. INT1_THS_ZL_G register
THSZ7
THSZ6
THSZ5
THSZ4
THSZ3
THSZ2
THSZ1
THSZ0
D1
D0
Table 58. INT1_THS_ZL_G description
THSZ7 - THSZ0
8.22
Interrupt threshold. Default value: 0000 0000
INT1_DURATION_G (38h)
Table 59. INT1_DURATION_G register
WAIT
D6
D5
D4
D3
D2
Table 60. INT1_DURATION_G description
WAIT
WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
The WAIT bit has the following definitions:
Wait = ‘0’: the interrupt falls immediately if the signal crosses the selected threshold
Wait = ‘1’: if the signal crosses the selected threshold, the interrupt falls only after the
duration has counted the number of samples at the selected data rate, written into the
duration counter register.
50/74
DocID024763 Rev 2
LSM9DS0
Register description
Figure 19. Wait bit disabled
• Wait bit = ‘0’ Interrupt disabled as soon as condition
is no longer valid (ex: Rate value below threshold)
Rate
(dps)
0
t(n)
Rate
Threshold
Counter
Duration
Value
t(n)
Interrupt
“Wait”
Disabled
t(n)
Figure 20. Wait bit enabled
• Wait bit = ‘1’ Interrupt disabled after duration
sample (sort of hysteresis)
Rate
(dps)
0
t(n)
Rate
Threshold
Counter
Duration
Value
t(n)
Interrupt
“Wait”
Enabled
t(n)
Duration value is the same used to validate interrupt
DocID024763 Rev 2
51/74
74
Register description
8.23
LSM9DS0
OUT_TEMP_L_XM (05h), OUT_TEMP_H_XM (06h)
Temperature sensor data.
Refer to Section 4.4: Temperature sensor for details on how to enable and read the
temperature sensor output data.
8.24
STATUS_REG_M (07h)
Table 61. STATUS_REG_M register
ZYXMOR
ZMOR
YMOR
XMOR
ZYXMDA
ZMDA
YMDA
XMDA
Table 62. STATUS_REG_M description
ZYXMOR Magnetic X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones).
8.25
ZMOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous
one)
YMOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous
one)
XMOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous
one)
ZYXMDA
X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available).
ZMDA
Z-axis new data available. Default value: 0
(0: a new set of data for the Z-axis is not yet available; 1: a new set of data for the Z-axis
is available)
YMDA
Y-axis new data available. Default value: 0
(0: a new set of data for the Y-axis is not yet available; 1: a new set of data for the Y-axis
is available)
XMDA
X-axis new data available. Default value: 0
(0: a new set of data for the X-axis is not yet available; 1: a new set of data for the X-axis
is available)
OUT_X_L_M (08h), OUT_X_H_M (09h)
X-axis magnetic data.
The value is expressed in 16-bit as two’s complement left justified.
8.26
OUT_Y_L_M (0Ah), OUT_Y_H_M (0Bh)
Y-axis magnetic data.
The value is expressed in 16-bit as two’s complement left justified.
52/74
DocID024763 Rev 2
LSM9DS0
8.27
Register description
OUT_Z_L_M (0Ch), OUT_Z_H_M (0Dh)
Z-axis magnetic data.
The value is expressed in 16-bit as two’s complement left justified.
8.28
WHO_AM_I_XM (0Fh)
Table 63. WHO_AM_I_XM register
0
1
0
0
1
0
0
1
4D
MIEN
Device identification register.
8.29
INT_CTRL_REG_M (12h)
Table 64. INT_CTRL_REG_M register
XMIEN
YMIEN
ZMIEN
PP_OD
IEA
IEL
Table 65. INT_CTRL_REG_M description
XMIEN
Enable interrupt recognition on X-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
YMIEN
Enable interrupt recognition on Y-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
ZMIEN
Enable interrupt recognition on Z-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
PP_OD
Interrupt pin configuration. Default value: 0.
(0: push-pull; 1: open drain)
IEA
Interrupt polarity for both accelerometer and magnetometer. Default value: 0.
(0: interrupt active-low; 1: interrupt active-high)
IEL
Latch interrupt request on accelerometer INT_GEN_1_SRC (31h) and INT_GEN_2_SRC
(35h) registers, and magnetometer INT_SRC_REG_M (13h) register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
Once the IEL is set to ‘1’ the interrupt is cleared by reading for the accelerometer the
INT_GEN_1_SRC (31h) and INT_GEN_2_SRC (35h) registers, and for the magnetometer the INT_SRC_REG_M (13h) register.
4D
4D enable: 4D detection on acceleration data is enabled when 6D bit in
INT_GEN_1_REG (30h) is set to 1.
MIEN
Enable interrupt generation for magnetic data. Default value: 0.
(0: disable interrupt generation;1: enable interrupt generation)
DocID024763 Rev 2
53/74
74
Register description
8.30
LSM9DS0
INT_SRC_REG_M (13h)
Table 66. INT_SRC_REG_M register
M_PTH_X
M_PTH_Y
M_PTH_Z
M_NTH_X M_NTH_Y M_NTH_Z MROI
MINT
M_PTH_X
Magnetic value on X-axis exceeds the threshold on the positive side. Default value: 0.
M_PTH_Y
Magnetic value on Y-axis exceeds the threshold on the positive side. Default value: 0.
M_PTH_Z
Magnetic value on Z-axis exceeds the threshold on the positive side. Default value: 0.
M_NTH_X
Magnetic value on X-axis exceeds the threshold on the negative side. Default value: 0.
M_NTH_Y
Magnetic value on Y-axis exceeds the threshold on the negative side. Default value: 0.
M_NTH_Z
Magnetic value on Z-axis exceeds the threshold on the negative side. Default value: 0.
MROI
Internal measurement range overflow on magnetic value. Default value: 0.
To enable this feature need to set to 1 MIEN bit in 8.29: INT_CTRL_REG_M (12h)
MINT
Magnetic interrupt event. The magnetic field value exceeds the threshold. Default
value: 0.
Table 67. INT_SRC_REG_M description
8.31
INT_THS_L_M (14h), INT_THS_H_M (15h)
Magnetic interrupt threshold. Default value: 0.
The value is expressed in 16-bit unsigned.
Even if the threshold is expressed in absolute value, the device detects both positive and
negative thresholds.
8.32
OFFSET_X_L_M (16h), OFFSET_X_H_M (17h)
Magnetic offset for X-axis. Default value: 0.
The value is expressed in 16-bit as two’s complement left justified.
8.33
OFFSET_Y_L_M (18h), OFFSET_Y_H_M (19h)
Magnetic offset for Z-axis. Default value: 0.
The value is expressed in 16-bit as two’s complement left justified.
8.34
OFFSET_Z_L_M (1Ah), OFFSET_Z_H_M (1Bh)
Magnetic offset for Y-axis. Default value: 0.
The value is expressed in 16-bit as two’s complement left justified.
54/74
DocID024763 Rev 2
LSM9DS0
8.35
Register description
REFERENCE_X (1Ch)
Reference value for high-pass filter for x-axis acceleration data.
8.36
REFERENCE_Y (1Dh)
Reference value for high-pass filter for y-axis acceleration data.
8.37
REFERENCE_Z (1Eh)
Reference value for high-pass filter for z-axis acceleration data.
8.38
CTRL_REG0_XM (1Fh)
Table 68. CTRL_REG0_XM register
BOOT
FIFO_EN
WTM_EN
0(1)
0(1)
HP_Click
HPIS1
HPIS2
1. These bits must be set to ‘0’ for the correct operation of the device
Table 69. CTRL_REG0_XM description
8.39
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
WTM_EN
FIFO programmable watermark enable. Default value: 0
(0: disable; 1: Enable)
HP_Click
High-pass filter enabled for Click function. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPIS1
High-pass filter enabled for interrupt generator 1. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPIS2
High-pass filter enabled for interrupt generator 2. Default value: 0
(0: filter bypassed; 1: filter enabled)
CTRL_REG1_XM (20h)
Table 70. CTRL_REG1_XM register
AODR3
AODR2
AODR1
AODR0
BDU
DocID024763 Rev 2
AZEN
AYEN
AXEN
55/74
74
Register description
LSM9DS0
Table 71. CTRL_REG1_XM description
AODR3AODR0
Acceleration data rate selection. Default value: 0000
(0000: power-down mode; others: refer to Table 72: Acceleration data rate configuration)
BDU
Block data update for acceleration and magnetic data. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB have been
read)
AZEN
Acceleration Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
AYEN
Acceleration Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
AXEN
Acceleration X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
AODR[3:0] is used to set the power mode and ODR selection. The following table indicates
all frequencies resulting from the combination of AODR[3:0].
Table 72. Acceleration data rate configuration
AODR3
8.40
AODR2
AODR1
AODR0
Power mode selection
0
0
0
0
Power-down mode
0
0
0
1
3.125 Hz
0
0
1
0
6.25 Hz
0
0
1
1
12.5 Hz
0
1
0
0
25 Hz
0
1
0
1
50 Hz
0
1
1
0
100 Hz
0
1
1
1
200 Hz
1
0
0
0
400 Hz
1
0
0
1
800 Hz
1
0
1
0
1600 Hz
CTRL_REG2_XM (21h)
Table 73. CTRL_REG2_XM register
ABW1
56/74
ABW0
AFS2
AFS1
AFS0
DocID024763 Rev 2
AST1
AST0
SIM
LSM9DS0
Register description
Table 74. CTRL_REG2_XM description
ABW[1:0]
Accelerometer anti-alias filter bandwidth. Default value: 00
Refer to Table 75: Acceleration anti-alias filter bandwidth
AFS[2:0]
Acceleration full-scale selection. Default value: 000
Refer to Table 76: Acceleration full-scale selection
AST[1:0]
Acceleration self-test enable. Default value: 00
(00: self-test disabled; see Table 77: Self-test mode configuration)
SIM
SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface)
Table 75. Acceleration anti-alias filter bandwidth
ABW1
ABW0
Anti-alias filter bandwidth
0
0
773 Hz
0
1
194 Hz
1
0
362 Hz
1
1
50 Hz
Table 76. Acceleration full-scale selection
AFS2
AFS1
AFS0
Acceleration full scale
0
0
0
±2 g
0
0
1
±4 g
0
1
0
±6 g
0
1
1
±8 g
1
0
0
±16 g
Table 77. Self-test mode configuration
AST1
8.41
AST0
Self-test mode
0
0
Normal mode
0
1
Positive sign self-test
1
0
Negative sign self-test
1
1
Not allowed
CTRL_REG3_XM (22h)
Table 78. CTRL_REG3_XM register
P1_BOOT
P1_TAP
P1_INT1
P1_INT2
P1_INTM P1_DRDYA
DocID024763 Rev 2
P1_DRDYM
P1_EMPTY
57/74
74
Register description
LSM9DS0
Table 79. CTRL_REG3_XM description
8.42
P1_BOOT
Boot on INT1_XM pin enable. Default value: 0
(0: disable; 1: enable)
P1_TAP
Tap generator interrupt on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_INT1
Inertial interrupt generator 1 on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_INT2
Inertial interrupt generator 2 on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_INTM
Magnetic interrupt generator on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_DRDYA
Accelerometer data-ready signal on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_DRDYM
Magnetometer data-ready signal on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
P1_EMPTY
FIFO empty indication on INT1_XM pin. Default value: 0
(0: disable; 1: enable)
CTRL_REG4_XM (23h)
Table 80. CTRL_REG4_XM register
P2_TAP
P2_INT1
P2_INT2
P2_INTM
P2_DRDYA
P2_DRDYM
P2_Overrun
Table 81. CTRL_REG4_XM description
58/74
P2_TAP
Tap generator interrupt on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_INT1
Inertial interrupt generator 1 on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_INT2
Inertial interrupt generator 2 on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_INTM
Magnetic interrupt generator on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_DRDYA
Accelerometer data-ready signal on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_DRDYM
Magnetometer data-ready signal on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_Overrun
FIFO overrun interrupt on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
P2_WTM
FIFO watermark interrupt on INT2_XM pin. Default value: 0
(0: disable; 1: enable)
DocID024763 Rev 2
P2_WTM
LSM9DS0
8.43
Register description
CTRL_REG5_XM (24h)
Table 82. CTRL_REG5_XM register
TEMP_EN
M_RES1
M_RES0
M_ODR2
M_ODR1
M_ODR0
LIR2
LIR1
Table 83. CTRL_REG5_XM description
TEMP_EN
Temperature sensor enable. Default value: 0
(0: temperature sensor disabled; 1: temperature sensor enabled)
M_RES[1:0] Magnetic resolution selection. Default value: 00
(00: low resolution, 11: high resolution)
M_ODR[2:0] Magnetic data rate selection. Default value: 110
Refer to Table 84: Magnetic data rate configuration
LIR2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
LIR1
Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by
reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
Table 84. Magnetic data rate configuration
M_ODR2
M_ODR1
M_ODR0
Power mode selection
0
0
0
3.125 Hz
0
0
1
6.25 Hz
0
1
0
12.5 Hz
0
1
1
25 Hz
1
0
0
50 Hz
1
0
1
100 Hz(1)
1
1
0
Reserved
1
1
1
Reserved
1. Available only for accelerometer ODR > 50 Hz or accelerometer in power-down mode (refer to Table 72,
AODR setting).
8.44
CTRL_REG6_XM (25h)
Table 85. CTRL_REG6_XM register
0(1)
MFS1
MFS0
0(1)
0(1)
0(1)
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device
DocID024763 Rev 2
59/74
74
Register description
LSM9DS0
Table 86. CTRL_REG6_XM description
MFS1MFS0
Magnetic full-scale selection. Default value: 01
Refer to Table 87: Magnetic full-scale selection
Table 87. Magnetic full-scale selection
MFS1
8.45
MFS0
Magnetic full scale
0
0
± 2 gauss
0
1
± 4 gauss
1
0
± 8 gauss
1
1
± 12 gauss
CTRL_REG7_XM (26h)
Table 88. CTRL_REG7_XM register
AHPM1
AHPM0
0(1)
AFDS
0(1)
MLP
MD1
MD0
1. These bits must be set to ‘0’ for the correct operation of the device
Table 89. CTRL_REG7_XM description
AHPM1AHPM0
High-pass filter mode selection for acceleration data. Default value: 00
Refer to Table 90: High-pass filter mode selection
AFDS
Filtered acceleration data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
MLP
Magnetic data low-power mode. Default value: 0
If this bit is ‘1’ the MODR is set to 3.125 Hz independently from the MODR settings.
Once the bit is set to ‘0’ the magnetic data rate is configured by MODR bits in
CTRL_REG5_XM (24h) register.
MD1-MD0
Magnetic sensor mode selection. Default 10
Refer to Table 91: Magnetic sensor mode selection
Table 90. High-pass filter mode selection
AHPM1
60/74
AHPM0
High-pass filter mode
0
0
Normal mode (resets x, y and z-axis reading REFERENCE_X (1Ch), REFERENCE_Y (1Dh) and REFERENCE_Y (1Dh) registers respectively)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
DocID024763 Rev 2
LSM9DS0
Register description
Table 91. Magnetic sensor mode selection
MD1-0
8.46
MD1-0
Magnetic sensor mode
0
0
Continuous-conversion mode
0
1
Single-conversion mode
1
0
Power-down mode
1
1
Power-down mode
STATUS_REG_A (27h)
Table 92. STATUS_REG_A register
ZYXAOR
ZAOR
YAOR
XAOR
ZYXADA
ZADA
YADA
XADA
Table 93. STATUS_REG_A description
ZYXAOR Acceleration X-, Y- and Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous one)
ZAOR
Acceleration Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data for the Z-axis has overwritten the previous one)
YAOR
Acceleration Y-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data for the Y-axis has overwritten the previous one)
XAOR
Acceleration X-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data for the X-axis has overwritten the previous one)
ZYXADA Acceleration X-, Y- and Z-axis new value available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
8.47
ZADA
Acceleration Z-axis new value available. Default value: 0
(0: a new set of data for the Z-axis is not yet available; 1: a new set of data for the Z-axis
is available)
YADA
Acceleration Y-axis new value available. Default value: 0
(0: a new set of data for the Y-axis is not yet available; 1: a new set of data for the Y-axis
is available)
XADA
Acceleration X-axis new value available. Default value: 0
(0: a new set of data for the X-axis is not yet available; 1: a new set of data for the Xaxis is available)
OUT_X_L_A (28h), OUT_X_H_A (29h)
X-axis acceleration data.
The value is expressed in 16 bit as two’s complement left justified.
DocID024763 Rev 2
61/74
74
Register description
8.48
LSM9DS0
OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)
Y-axis acceleration data.
The value is expressed in 16-bit as two’s complement left justified.
8.49
OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)
Z-axis acceleration data.
The value is expressed in 16-bit as two’s complement left justified.
8.50
FIFO_CTRL_REG (2Eh)
Table 94. FIFO_CTRL_REG register
FM2
FM1
FM0
FTH4
FTH3
FTH2
FTH1
FTH0
Table 95. FIFO_CTRL_REG description
FM2-FM0
FIFO mode selection. Default value: 000
FTH4-FTH0
FIFO watermark level. Default value: 00000
Table 96. FIFO mode configuration
FM2
FM1
FM0
FIFO mode
0
0
0
Bypass mode
0
0
1
FIFO mode
0
1
0
Stream mode
0
1
1
Stream-to-FIFO mode
1
0
0
Bypass-to-Stream mode
Interrupt generator 2 can change the FIFO mode.
8.51
FIFO_SRC_REG (2Fh)
Table 97. FIFO_SRC_REG register
WTM
OVRN
EMPTY
FSS4
FSS3
FSS2
FSS1
Table 98. FIFO_SRC_REG description
62/74
WTM
Watermark status.
WTM bit is set to ‘1’ when FIFO content exceeds watermark level.
OVRN
FIFO Overrun status.
OVRN bit is set to ‘1’ when FIFO buffer is full.
DocID024763 Rev 2
FSS0
LSM9DS0
Register description
Table 98. FIFO_SRC_REG description (continued)
8.52
EMPTY
Empty status.
EMPTY bit is set to ‘1’ when all FIFO samples have been read and FIFO is empty.
FSS4-FSS0
FIFO stored data level.
FSS4-FSS0 bits contain the current number of unread FIFO levels.
INT_GEN_1_REG (30h)
This register contains the settings for the inertial interrupt generator 1.
Table 99. INT_GEN_1_REG register
AOI
6D
ZHIE/
ZUPE
ZLIE/
YHIE/
ZDOWNE YUPE
YLIE/
XHIE/
YDOWNE XUPE
XLIE/
XDOWNE
Table 100. INT_GEN_1_REG description
AOI
And/Or combination of Interrupt events. Default value: 0. Refer to Table 101:
Interrupt mode
6D
6-direction detection function enabled. Default value: 0. Refer to Table 101:
Interrupt mode
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWNE
Enable interrupt generation on X low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Table 101. Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
DocID024763 Rev 2
63/74
74
Register description
LSM9DS0
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’ is as follows:
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation
moves from an unknown zone to a known zone. The interrupt signal stays for a duration
ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is
inside a known zone. The interrupt signal stays until the orientation is inside the zone.
8.53
INT_GEN_1_SRC (31h)
This register contains the status for the inertial interrupt generator 1.
Table 102. INT_GEN_1_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 103. INT_GEN_1_SRC description
IA
Interrupt Status. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Reading at this address clears the INT_GEN_1_SRC (31h) IA bit (and the interrupt signal
on the corresponding interrupt pin) and allows the refreshment of data in the
INT_GEN_1_SRC (31h) register if the latched option was chosen.
8.54
INT_GEN_1_THS (32h)
Table 104. INT1_THS register
0
THS6
THS5
THS4
THS3
THS2
Table 105. INT1_THS description
THS6 - THS0
64/74
Interrupt 1 threshold. Default value: 000 0000
DocID024763 Rev 2
THS1
THS0
LSM9DS0
8.55
Register description
INT_GEN_1_DURATION (33h)
Table 106. INT1_DURATION register
0
D6
D5
D4
D3
D2
D1
D0
Table 107. INT1_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
8.56
INT_GEN_2_REG (34h)
This register contains the settings for the inertial interrupt generator 2.
Table 108. INT_GEN_2_REG register
AOI
6D
ZHIE/
ZUPE
ZLIE/
YHIE/
ZDOWNE YUPE
YLIE/
XHIE/
YDOWNE XUPE
XLIE/
XDOWNE
Table 109. INT_GEN_2_REG description
AOI
And/Or combination of Interrupt events. Default value: 0. Refer to
Table 109: INT_GEN_2_REG description
6D
6 direction detection function enabled. Default value: 0. Refer to
Table 109: INT_GEN_2_REG description
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWNE
Enable interrupt generation on X low event or on Direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
DocID024763 Rev 2
65/74
74
Register description
LSM9DS0
Table 110. Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’ is as follows:
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation
moves from an unknown zone to a known zone. The interrupt signal stays for a duration
ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is
inside a known zone. The interrupt signal stays until the orientation is inside the zone.
8.57
INT_GEN_2_SRC (35h)
This register contains the status for the inertial interrupt generator 2.
Table 111. INT_GEN_2_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 112. INT_GEN_2_SRC description
IA
Interrupt status. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Reading at this address clears the INT_GEN_2_SRC (35h) IA bit (and the interrupt signal
on the corresponding interrupt pin) and allows the refreshment of data in the
INT_GEN_2_SRC (35h) register if the latched option was chosen.
66/74
DocID024763 Rev 2
LSM9DS0
8.58
Register description
INT_GEN_2_THS (36h)
Table 113. INT_GEN_2_THS register
0
THS6
THS5
THS4
THS3
THS2
THS1
THS0
D1
D0
Table 114. INT_GEN_2_THS description
THS6 - THS0
8.59
Interrupt 1 threshold. Default value: 000 0000
INT_GEN_2_DURATION (37h)
Table 115. INT_GEN_2_DURATION register
0
D6
D5
D4
D3
D2
Table 116. INT_GEN_2_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
8.60
CLICK_CFG (38h)
Table 117. CLICK_CFG register
--
--
ZD
ZS
YD
YS
XD
XS
Table 118. CLICK_CFG description
ZD
Enable interrupt double-click on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS
Enable interrupt single-click on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD
Enable interrupt double-click on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS
Enable interrupt single-click on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
DocID024763 Rev 2
67/74
74
Register description
LSM9DS0
Table 118. CLICK_CFG description
8.61
XD
Enable interrupt double-click on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS
Enable interrupt single-click on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
CLICK_SRC (39h)
Table 119. CLICK_SRC register
--
IA
DClick
SClick
Sign
Z
Y
X
Table 120. CLICK_SRC description
8.62
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DClick
Double-click enable. Default value: 0 (0: double-click detection disabled,
1: double-click detection enabled)
SClick
Single-click enable. Default value: 0 (0: single-click detection disabled,
1: single-click detection enabled)
Sign
Click sign. 0: positive detection, 1: negative detection
Z
Z click detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y
Y click detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X
X click detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
CLICK_THS (3Ah)
Table 121. CLICK_THS register
-
Ths6
Ths5
Ths4
Ths3
Ths2
Table 122. CLICK_SRC description
Ths6-Ths0
68/74
Click threshold. Default value: 000 0000
DocID024763 Rev 2
Ths1
Ths0
LSM9DS0
8.63
Register description
TIME_LIMIT (3Bh)
Table 123. TIME_LIMIT register
-
TLI6
TLI5
TLI4
TLI3
TLI2
TLI1
TLI0
TLA1
TLA0
TW1
TW0
Acth1
Acth0
Table 124. TIME_LIMIT description
TLI7-TLI0
8.64
Click time limit. Default value: 000 0000
TIME_LATENCY (3Ch)
Table 125. TIME_LATENCY register
TLA7
TLA6
TLA5
TLA4
TLA3
TLA2
Table 126. TIME_LATENCY description
TLA7-TLA0
8.65
Click time latency. Default value: 0000 0000
TIME WINDOW (3Dh)
Table 127. TIME_WINDOW register
TW7
TW6
TW5
TW4
TW3
TW2
Table 128. TIME_WINDOW description
TW7-TW0
8.66
Click time window
Act_THS (3Eh)
Table 129. TIME_WINDOW register
--
Acth6
Acth5
Acth4
Acth3
Acth2
Table 130. TIME_WINDOW description
Acth[6:0]
Sleep-to-Wake, Return-to-Sleep activation threshold
1 LSb = 16 mg
DocID024763 Rev 2
69/74
74
Register description
8.67
LSM9DS0
Act_DUR (3Fh)
Table 131. Act_DUR register
ActD7
ActD6
ActD5
ActD4
ActD3
ActD2
Table 132. Act_DUR description
ActD[7:0]
70/74
Sleep-to-Wake, Return-to-Sleep duration
DUR = (Act_DUR + 1)*8/ODR
DocID024763 Rev 2
ActD1
ActD0
LSM9DS0
9
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Table 133. LGA 4x4x1 mm 24-lead mechanical data (see note 1 and 2)
Databook
Symbol
Min.
Typ.
Max.
A
Note
1.070
A1
0.000
-
b
0.050
0.200
7
6
D
4.000
D2
1.750
E
4.000
E2
1.750
e1
0.500
e2
2.500
L
0.350
6
7
L1
-
0.100
-
L2
-
0.100
-
N
24
R1
-
4
5
0.080
-
Tolerance of Form and Position
Symbol
Databook
D/E
0.15
Notes
1 and 2
REF
-
Δ
Note:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters.
3. The “Pin 1 Indicator” is identified on top and/or bottom surfaces of the package.
4. A1 is defined as the distance from the seating plane to the land.
5. “N” is the maximum number of terminal positions for the specified body size.
6. The tolerance of the typical value is specified in table "Tolerance of Form and Position".
7. Dimensions “b” and “L” are specified:
For solder mask defined: at terminal plating surface
For non-solder mask defined: at solder mask opening
DocID024763 Rev 2
71/74
74
Package information
LSM9DS0
Figure 21. LGA 4x4x1 mm 24-lead outline
8382494_B
72/74
DocID024763 Rev 2
LSM9DS0
10
Revision history
Revision history
Table 134. Document revision history
Date
Revision
24-Jun-2013
1
Initial release
2
Updated LA_So in Table 3
Updated Figure 4, Figure 5, and Table 7
Updated Section 5.1
Updated Section 9: Package information
Minor textual updates throughout Section 8: Register description
05-Aug-2013
Changes
DocID024763 Rev 2
73/74
74
LSM9DS0
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
74/74
DocID024763 Rev 2
Similar pages