Microsemi APT60N90JC3 Super junction mosfet Datasheet

900V
60A
APT60N90JC3
COOLMOS
S
S
Super Junction MOSFET
Power Semiconductors
D
G
• Ultra Low RDS(ON)
S
• Low Miller Capacitance
• Ultra Low Gate Charge, Qg
OT
22
7
"UL Recognized"
file # E145592
ISOTOP ®
• Avalanche Energy Rated
D
• Extreme dv/dt Rated
• Dual die (parallel)
G
• Popular T-MAX Package
S
Unless stated otherwise, Microsemi discrete MOSFETs contain a single MOSFET die. This device is made with
two parallel MOSFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
All Ratings per die: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
APT60N90JC3
UNIT
Drain-Source Voltage
900
Volts
Continuous Drain Current @ TC = 25°C
60
Continuous Drain Current @ TC = 100°C
38
Symbol Parameter
VDSS
ID
Amps
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage Continuous
±20
Volts
Total Power Dissipation @ TC = 25°C
390
Watts
PD
1
156
TJ,TSTG Operating and Storage Junction Temperature Range
TL
dv/
dt
Drain-Source Voltage slope (VDS = 400V, ID = 36A, TJ = 125°C)
50
V/ns
8.8
Amps
2
Avalanche Current
EAR
Repetitive Avalanche Energy
2
2.9
( Id = 8.8A, Vdd = 50V )
( Id = 8.8A, Vdd = 50V )
Single Pulse Avalanche Energy
°C
300
Lead Temperature: 0.063" from Case for 10 Sec.
IAR
EAS
-55 to 150
mJ
1940
STATIC ELECTRICAL CHARACTERISTICS
BV(DSS)
Drain-Source Breakdown Voltage (VGS = 0V, ID = 500μA)
RDS(on)
IDSS
IGSS
VGS(th)
Drain-Source On-State Resistance
MIN
3
TYP
MAX
Volts
900
(VGS = 10V, ID = 30A)
UNIT
0.05
0.06
Ohms
Zero Gate Voltage Drain Current (VDS = 900V, VGS = 0V)
-
-
20
Zero Gate Voltage Drain Current (VDS = 900V, VGS = 0V, TC = 150°C)
-
-
100
Gate-Source Leakage Current (VGS = ±20V, VDS = 0V)
-
-
200
nA
2.5
3
3.5
Volts
Gate Threshold Voltage (VDS = VGS, ID = 5.8mA)
μA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon
Technologies AG."
Microsemi Website - http://www.microsemi.com
9-2009
Characteristic / Test Conditions
050-7242 Rev A
Symbol
APT60N90JC3
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Input Capacitance
Coss
VGS = 0V
Output Capacitance
VDS = 25V
Reverse Transfer Capacitance
f = 1 MHz
Crss
Qg
4
VGS = 10V
Gate-Source Charge
VDD = 450V
Total Gate Charge
Qgs
Qgd
Gate-Drain ("Miller ") Charge
td(on)
Turn-on Delay Time
tr
tf
TYP
VGS = 15V
VDD = 600V
ID = 60A @ 25°C
RG = 4.3Ω
45
5
INDUCTIVE SWITCHING @ 25°C
VDD = 600V, VGS = 15V
2130
ID = 60A, RG = 4.3Ω
2030
5
INDUCTIVE SWITCHING @ 125°C
VDD = 600V, VGS = 15V
3010
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
UNIT
pF
330
480
60
180
7
20
500
INDUCTIVE SWITCHING
Turn-off Delay Time
MAX
14000
13000
ID = 60A @ 25°C
Rise Time
td(off)
MIN
Test Conditions
Ciss
nC
ns
μJ
2475
ID = 60A, RG = 4.3Ω
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Symbol
IS
Characteristic / Test Conditions
ISM
Pulsed Source Current
1
VSD
Diode Forward Voltage
3
dv
MIN
TYP
Continuous Source Current (Body Diode)
/dt
Peak Diode Recovery
dv
t rr
/dt
(IS = 60A, di/dt = 100A/μs)
IRRM
0.8
6
Reverse Recovery Charge
Peak Recovery Current
(IS = 60A, di/dt = 100A/μs)
UNIT
Amps
156
(VGS = 0V, IS = 30A)
(IS = 60A, di/dt = 100A/μs)
Q rr
60
(Body Diode)
Reverse Recovery Time
MAX
1.2
Volts
10
V/ns
Tj = 25°C
1180
Tj = 125°C
1300
Tj = 25°C
50
μC
Tj = 125°C
Tj = 25°C
66
90
Tj = 125°C
Amps
95
ns
THERMAL CHARACTERISTICS
Symbol
Characteristic
MIN
RθJC
Junction to Case
RθJA
Junction to Ambient
TYP
MAX
0.26
40
1 Repetitive Rating: Pulse width limited by maximum junction
4 See MIL-STD-750 Method 3471
temperature
5 Eon includes diode reverse recovery.
2 Repetitive avalanche causes additional power losses that can
6 Maximum 125°C diode commutation speed = di/dt 600A/μs
be calculated as PAV = EAR*f . Pulse width tp limited by Tj max.
3 Pulse Test: Pulse width < 380 μs, Duty Cycle < 2%
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
D = 0.9
0.25
0.7
0.20
0.5
0.15
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
050-7242 Rev A
9-2009
0.30
0.3
t1
t2
0.05
t
0.1
SINGLE PULSE
0.05
0
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-2
0.1
1
10
RECTANGULAR PULSE DURATION (SECONDS)
Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-3
100
UNIT
°C/W
APT60N90JC3
Typical Performance Curves
125
250
10 &15V
VDS> ID (ON) x RDS (ON)MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
6V
200
ID, DRAIN CURRENT (A)
IC, DRAIN CURRENT (A)
100
5.5V
75
50
5V
25
4.5V
TJ= -55°C
150
100
TJ= 25°C
50
TJ= 125°C
4V
0
0
0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 2, Low Voltage Output Characteristics
1.3
GS
= 10V @ 47A
3
4
5
6
7
8
60
ID, DRAIN CURRENT (A)
IDR, REVERSE
2
70
1.2
VGS = 10V
1.1
1
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 3, Transfer Characteristics
NORMALIZED TO
V
0
VGS = 20V
1
0.9
50
40
30
20
10
0.8
20
60
80
100
ID, DRAIN CURRENT (A)
FIGURE 4, RDS(ON) vs Drain Current
1.20
1.15
1.10
1.05
1.0
0.95
0.90
0.85
0.10
25
50
75
100
125
150
TC, CASE TEMPERATURE (C°)
FIGURE 5, Maximum Drain Current vs Case Temperature
3
2. 5
2
1. 5
1
0. 5
0.75
0.70
0
-50 -25
0 25
50 75 100 125 150
TJ, Junction Temperature (°C)
FIGURE 6, Breakdown Voltage vs Temperature
-50
-25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE (C°)
FIGURE 7, On-Resistance vs Temperature
000
1.2
1.1
1
0.9
0.8
0.7
0.6
-50
-25
0
25
50 75 100 125 150
TC, Case Temperature (°C)
FIGURE 8, Threshold Voltage vs Temperature
10
1
0.10
10μs
100μs
1ms
10ms
100ms
DC line
1
10
100
1000
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 9, Maximum Safe Operating Area
050-7242 Rev A 9-2009
100
ID, DRAIN CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
0
RDS(ON), DRAIN-TO-SOURCE ON
RESISTANCE (NORMALIZED)
BVDSS, DRAIN-TO-SOURCE BREAKDOWN
VOLTAGE (NORMALIZED)
40
APT60N90JC3
Typical Performance Curves
100,000
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
12
Ciss
10,000
C, CAPACITANCE (pF)
Coss
1000
100
Crss
10
0
10
20
30
40
50
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 10, Capacitance vs Drain-To-Source Voltage
TJ= +150°C
100
D
10
VDS= 180V
8
4
2
0
TJ = =25°C
10
100
200
300
400
500
600
Qg, TOTAL GATE CHARGE (nC)
FIGURE 11, Gate Charges vs Gate-To-Source Voltage
600
DD
= 600V
= 5W
G
T = 125°C
J
L = 100μH
400
300
200
td(on)
0
0
R
G
DD
R
6000
tf
tr
0
0
0
100
G
= 600V
= 5W
T = 125°C
J
L = 100μH
5000
EON includes
diode reverse recovery.
4000
3000
Eon
Eoff
2000
1000
0
0
20
40
60
80
100
ID (A)
FIGURE 14 , Rise and Fall Times vs Current
10000
Eoff
8000
6000
Eon
4000
V
DD
= 600V
I = 60A
D
T = 125°C
J
L = 100μH
2000
EON includes
diode reverse recovery.
0
40
60
80
ID (A)
FIGURE 13, Delay Times vs Current
V
= 5W
0
0
20
7000
= 600V
T = 125°C
J
L = 100μH
0
0
SWITCHING ENERGY (μJ)
DD
tr, and tf (ns)
td(off)
V
100
V
SWITCHING ENERGY (uJ)
0
R
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
FIGURE 12, Source-Drain Diode Forward Voltage
0
9-2009
VDS= 720V
6
1
050-7242 Rev A
VDS= 450V
500
td(on) and td(off) (ns)
IDR, REVERSE DRAIN CURRENT (A)
300
I = 60A
0
5
10
15
20
25
30
RG, GATE RESISTANCE (Ohms)
FIGURE 16, Switching Energy vs Gate Resistance
0
0
20
40
60
80
100
ID (A)
FIGURE 15, Switching Energy vs Current
APT60N90JC3
Typical Performance Curves
TJ = 125°C
TJ = 125°C
10%
90%
Gate Voltage
90%
Gate Voltage
td(off)
td(on)
Source Current
Source Voltage
tr
5%
10%
tf
5%
Source Voltage
Source Current
10%
0
Switching Energy
Switching Energy
Figure 18, Turn-off Switching Waveforms and Definitions
Figure 17, Turn-on Switching Waveforms and Definitions
APT30DF60
V DD
II CD
V CE
V
DS
G
D.U.T.
FigureFigure
19, Inductive
Switching
Test Circuit
20, Inductive
Switching
Test Circuit
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Source
30.1 (1.185)
30.3 (1.193)
Drain
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Source
Gate
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
050-7242 Rev A 9-2009
31.5 (1.240)
31.7 (1.248)
Similar pages