Lattice LC51024MV-75FN208I 3.3v, 2.5v and 1.8v in-system programmable expanded programmable logic device xpldâ ¢ family Datasheet

TM
ispXPLD 5000MX Family
3.3V, 2.5V and 1.8V In-System Programmable
eXpanded Programmable Logic Device XPLD™ Family
March 2006
Data Sheet
■ Expanded In-System Programmability (ispXP™)
Features
• Instant-on capability
• Single chip convenience
• In-System Programmable via IEEE 1532
Interface
• Infinitely reconfigurable via IEEE 1532 or
sysCONFIG™ microprocessor interface
• Design security
■ Flexible Multi-Function Block (MFB)
Architecture
•
•
•
•
•
SuperWIDE™ logic (up to 136 inputs)
Arithmetic capability
Single- or Dual-port SRAM
FIFO
Ternary CAM
■ High Speed Operation
■ sysCLOCK™ PLL Timing Control
• 4.0ns pin-to-pin delays, 300MHz fMAX
• Deterministic timing
• Multiply and divide between 1 and 32
• Clock shifting capability
• External feedback capability
■ Low Power Consumption
• Typical static power: 20 to 50mA (1.8V),
30 to 60mA (2.5/3.3V)
• 1.8V core for low dynamic power
■ sysIO™ Interfaces
• LVCMOS 1.8, 2.5, 3.3V
– Programmable impedance
– Hot-socketing
– Flexible bus-maintenance (Pull-up, pulldown, bus-keeper, or none)
– Open drain operation
• SSTL 2, 3 (I & II)
• HSTL (I, III, IV)
• PCI 3.3
• GTL+
• LVDS
• LVPECL
• LVTTL
■ Easy System Integration
• 3.3V (5000MV), 2.5V (5000MB) and 1.8V
(5000MC) power supply operation
• 5V tolerant I/O for LVCMOS 3.3 and LVTTL
interfaces
• IEEE 1149.1 interface for boundary scan testing
• sysIO quick configuration
• Density migration
• Multiple density and package options
• PQFP and fine pitch BGA packaging
• Lead-free package options
Table 1. ispXPLD 5000MX Family Selection Guide
Macrocells
Multi-Function Blocks
ispXPLD 5256MX
ispXPLD 5512MX
256
512
ispXPLD 5768MX ispXPLD 51024MX
768
1,024
8
16
24
32
Maximum RAM Bits
128K
256K
384K
512K
Maximum CAM Bits
48K
96K
144K
192K
2
2
2
2
tPD (Propagation Delay)
4.0ns
4.5ns
5.0ns
5.2ns
tS (Register Set-up Time)
2.2ns
2.8ns
2.8ns
3.0ns
sysCLOCK PLLs
tCO (Register Clock to Out Time)
fMAX (Maximum Operating Frequency)
2.8ns
3.0ns
3.2ns
3.7ns
300MHz
275MHz
250MHz
250MHz
System Gates
75K
150K
225K
300K
I/Os
141
149/193/253
193/317
317/381
256 fpBGA
208 PQFP
256 fpBGA
484 fpBGA
256 fpBGA
484 fpBGA
Packages
484 fpBGA
672 fpBGA
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
5kmx_12.2
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Figure 1. ispXPLD 5000MX Block Diagram
VCC
GND
PROGRAM
TCK
TMS
TDI
TDO
VCCJ
ISP Port
VCCO0
VCCO3
VREF0
VREF3
sysIO
Bank 0
MFB
MFB
sysIO
Bank 3
OSA
MFB
OSA
MFB
GCLCK3
GCLCK0
VCCP
GNDP
Global
Routing
Pool
(GRP)
sysCLOCK
PLL 0
sysCLOCK
PLL 1
GCLK2
GCLK1
sysIO
Bank 1
OSA
VREF1
MFB
OSA
Optional
sysCONFIG
Interface
MFB
sysIO
Bank 2
RESET
GOE0
GOE1
MFB
MFB
VCCO1
VREF2
VCCO2
Introduction
The ispXPLD 5000MX family represents a new class of device, referred to as the eXpanded Programmable Logic
Devices (XPLDs). These devices extend the capability of Lattice’s popular SuperWIDE ispMACH 5000 architecture
by providing flexible memory capability. The family supports single- or dual-port SRAM, FIFO, and ternary CAM
operation. Extra logic has also been included to allow efficient implementation of arithmetic functions. In addition,
sysCLOCK PLLs and sysIO interfaces provide support for the system-level needs of designers.
The devices provide designers with a convenient one-chip solution that provides logic availability at boot-up, design
security, and extreme reconfigurability. The use of advanced process technology provides industry-leading performance with combinatorial propagation delay as low as 4.0ns, 2.8ns clock-to-out delay, 2.2ns set-up time, and operating frequency up to 300MHz. This performance is coupled with low static and dynamic power consumption. The
ispXPLD 5000MX architecture provides predictable deterministic timing.
The availability of 3.3, 2.5 and 1.8V versions of these devices along with the flexibility of the sysIO interface helps
users meet the challenge of today’s mixed voltage designs. Inputs can be safely driven up to 5.5V when an I/O
bank is configured for 3.3V operation, making this family 5V tolerant. Boundary scan testability further eases integration into today’s complex systems. A variety of density and package options increase the likelihood of a good fit
for a particular application. Table 1 shows the members of the ispXPLD 5000MX family.
Architecture
The ispXPLD 5000MX devices consist of Multi-Function Blocks (MFBs) interconnected with a Global Routing Pool.
Signals enter and leave the device via one of four sysIO banks. Figure 1 shows the block diagram of the ispXPLD
2
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
5000MX. Incoming signals may connect to the global routing pool or the registers in the MFBs. An Output Sharing
Array (OSA) increases the number of I/O available to each MFB, allowing a complete function high-performance
access to the I/O. There are four clock pins that drive four global clock nets within the device. Two sysCLOCK PLLs
are provided to allow the synthesis of new clocks and control of clock skews.
Multi-Function Block (MFB)
Each MFB in the ispXPLD 5000MX architecture can be configured in one of the six following modes. This provides
a flexible approach to implementing logic and memory that allows the designer to achieve the mix of functions that
are required for a particular design, maximizing resource utilization. The six modes supported by the MFB are:
•
•
•
•
•
•
SuperWIDE Logic Mode
True Dual-port SRAM Mode
Pseudo Dual-port SRAM Mode
Single-port SRAM Mode
FIFO Mode
Ternary CAM Mode
The MFB consists of a multi-function array and associated routing. Depending on the chosen functions the multifunction array uses up to 68 inputs from the GRP and the four global clock and reset signals. The array outputs
data along with certain control functions to the macrocells. Output signals can be routed internally for use elsewhere in the device and to the sysIO banks for output. Figure 2 shows the block diagram of the MFB. The various
configurations are described in more detail in the following sections.
CLK0
CLK1
CLK2
CLK3
Reset
Cascade In
Figure 2. MFB Block Diagram
To Routing
Multifunction Array
True Dual Port
RAM
32 Feedback Signals
Pseudo Dual
Port RAM
(16,384 bit)
Single Port
RAM
(16,384 bit)
FIFO
(16,384 bit)
To I/O via OSA
(8,192 bit)
Ternary CAM
(128*48)
Logic
(68 Input * 164 Product
Term Array, 32 MC)
PTOE
Sharing
Cascade Out
3
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Cascading For Wide Operation
In several modes it is possible to cascade adjacent MFBs to support wider operation. Table 2 details the different
cascading options. There are chains of MFBs in each device which determine those MFBs that are adjacent for the
purposes of cascading. Table 3 indicates these chains. The ispXPLD 5000MX design tools automatically cascade
blocks if required by a particular design.
Table 2. Cascading Modes For Wide Support
Mode
Logic
Cascading Function
Input Width. Allows two MFBs to act as a 136-input block.
Arithmetic. Allow the carry chain to pass between two MFBs.
FIFO
Memory Width Expansion. Allows MFBs to be cascaded for greater width support.
CAM
Memory Width Expansion. Allows up to four MFBs to be cascaded for greater width support.
Table 3. MFB Cascade Chain
Device
ispXPLD 5256MX
ispXPLD 5512MX
ispXPLD 5768MX
ispXPLD 51024MX
MFBs in Cascade Chain
A→B→C→D
H -> G -> F -> E
A→B→C→D→E→F→G→H
P→Ο→N→M→L→K→J→I
D→C→B→A→X→W→V→U→T→S→R→Q
E→F→G→H→I→J→K→L→M→N→O→P
H → G → F → E → D → C → B → A → AF → AE → AD → AC → AB → AA → Z → Y
I→J→K→L→M→N→O→P→Q→R→S→T→U→V→W→X
SuperWIDE Logic Mode
In logic mode, each MFB contains 32 macrocells and a fully populated, programmable AND-array with 160 logic
product terms and four control product terms. The MFB has 68 inputs from the Global Routing Pool, which are
available in both true and complement form for every product term. It is also possible to cascade adjacent MFBs to
create a block with 136 inputs. The four control product terms are used for shared reset, clock, clock enable, and
output enable functions. Figure 3 shows the overall structure of the MFB in logic mode while Figure 4 provides a
more detailed view from the perspective of a macrocell slice.
4
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
To I/O via OSA
32 Macrocells
32 Macrocell Feedback Signals
To Routing
Dual-OR Gate
PT Sharing Array
AND Array
68 Inputs
from
Adjacent
MFB
68 inputs 164 P-Term
68 Inputs
from
Routing
Carry In
CLK0
CLK1
CLK2
CLK3
Reset
Figure 3. MFB in SuperWIDE Logic Mode†
Shared PT Clk
Shared PT Clk En
Shared PT Reset
PTOE
Sharing
Carry Out
Figure 4. Macrocell Slice in Logic Mode AND-Array
From
GRP
From Carry-in
n-7
PT OE to
I/O Block
From
I/O Cell
68
PTSA Bypass
D
Q
PTSA
Shared
PT CE
PT Clock
Output
to I/O Block or
Internal Control
(See Pin Table
for Assignments)
Clk En
GRP
R/L
Shared PTCLK
CLK0
CLK1
CLK2
CLK3
Clk
P
R
PT Preset
PT Reset
Shared PT Reset
Global Reset
AND Array
Dual-OR Array
Macrocell
To Carry-out
n+7
5
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
AND-Array
The programmable AND-Array consists of 68 inputs and 164 output product terms. The 68 inputs from the GRP are
used to form 136 lines in the AND-Array (true and complement of the inputs). Each line in the array can be connected to any of the 164 output product terms via a wired AND. Each of the 160 logic product terms feed the DualOR Array with the remaining four control product terms feeding the Shared PT Clock, Shared PT Clock Enable,
Shared PT Reset and Shared PT OE. Starting with PT0 sets of five product terms form product term clusters.
There is one product term cluster for every macrocell in the MFB. In addition to the four control product terms, the
first, third, fourth and fifth product terms of each cluster can be used as a PTOE, PT Clock, PT Preset and PT
Reset, respectively. Figure 5 is a graphical representation of the AND-Array.
Figure 5. AND Array
In[0]
In[66]
In[67]
PT0
PT1
PT2
PT3
PT4
Cluster 0
PT155
PT156
PT157
Cluster 31
PT158
PT159
PT160 Shared clock enable
PT161 Shared clock
PT162 Shared reset
PT163 Shared OE
Note:
Indicates programmable fuse.
Dual-OR Array (Including Arithmetic Support)
The Dual-OR Array consists of 64 OR gates. There are two OR gates per macrocell in the MFB. These OR gates
are referred to as the Expandable PTSA OR gate and the PTSA-Bypass OR gate. The PTSA-Bypass OR gate
receives its five inputs from the combination of product terms associated with the product term cluster. The PTSABypass OR gate feeds the macrocell directly for fast narrow logic. The Expandable PTSA OR gate receives five
inputs from the combination of product terms associated with the product term cluster. It also receives an additional
input from the Expanded PTSA OR gate of the N-7 macrocell, where N is the number of the macrocell associated
with the current OR gate. The Expandable PTSA OR gate feeds the PTSA for sharing with other product terms and
the N+7 Expandable PTSA OR gate. This allows cascading of multiple OR gates for wide functions. There is a
small timing adder for each level of expansion. Figure 6 is a graphical representation of the Dual-OR Array.
The Dual-OR PT sharing array also contains logic to aid in the efficient implementation of arithmetic functions. This
logic takes Carry In and allows the generation of Carry Out along with a SUM signal. Subtractors can be implemented using the two’s complement method. Carry is propagated from macrocells 0 to macrocell 31. Macrocell
zero can have its carry input connected to the carry output of macrocell 31 in an adjacent MFB or it can be set to
zero or one. If a macrocell is not used in an arithmetic function carry can bypass it. The carry chain flows is the
same as that for PT cascading.
6
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Figure 6. Dual-OR PT Sharing Array
From Carry
n-7
In
From PT0
PT OE
From PT1
PTSA Bypass
N
From PT2
To I/O Block
To Macrocell
To PTSA
PT Clock
To Macrocell
From PT3
PT Preset
To Macrocell
From PT4
To
n+7
Carry
Out
PT Reset
To Macrocell
Product Term Sharing Array
The Product Term Sharing Array (PTSA) consists of 32 inputs from the Dual-OR Array (Expandable PTSA OR) and
32 outputs directly to the macrocells. Each output is the OR term of any combination of the seven Expandable
PTSA OR terms connected to that output. Every Nth macrocell is connected to N-3, N-2, N-1, N, N+1, N+2 and
N+3 PTSA OR terms via a programmable connection. This wraps around the logic, for example, Macrocell 0 gets
its logic from 29, 30, 31, 0, 1, 2, 3. The Expandable PTSA OR used in conjunction with the PTSA allows wide functions to be implemented easily and efficiently. Without using the Expandable PTSA OR capability, the greatest
number of product terms that can be included in a single function with one pass of delay is 35. Up to 160 product
terms can be included in a single function through the use of the expandable PTSA OR capability. Figure 7 shows
the graphical representation of the PTSA.
Figure 7. Product Term Sharing Array (PTSA)
PTSA OR 0
Macrocell 0
PTSA OR 1
PTSA OR 2
Macrocell 1
Macrocell 2
PTSA OR 3
PTSA OR 29
Macrocell 29
PTSA OR 30
Macrocell 30
PTSA OR 31
Macrocell 31
7
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Macrocell
The 32 registered macrocells in the MFB are driven by the 32 outputs from the PTSA or the PTSA bypass. Each
macrocell contains a programmable XOR gate, a programmable register/latch flip-flop and the necessary clocks
and control logic to allow combinatorial or registered operation. All macrocells have an output that feeds the GRP.
Selected macrocells have an additional output that feeds the OSA and hence I/Os. This dual or concurrent output
capability from the macrocell gives efficient use of the hardware resources. One output can be a registered function
for example, while the other output can be an unrelated combinatorial function. A direct register input from the I/O
cell facilitates efficient use of the macrocell to construct high-speed input registers. Macrocell registers can be
clocked from one of several global or product term clocks available on the device. A global and product term clock
enable is also provided, eliminating the need to gate the clock to the macrocell registers directly. Reset and preset
for the macrocell register is provided from both global and product term signals. The macrocell register can be programmed to operate as a D-type register or a D-type latch. Figure 8 is a graphical representation of the macrocell.
Figure 8. Macrocell
From
I/O Cell
PTSA Bypass
Output to
I/O Block
D
From PTSA
PT Clock
Q
Shared
PT CE
Clk En
GRP
R/L
Shared PT Clock
CLK0
CLK1
CLK2
CLK3
Clk
P
R
PT Preset
PT Reset
Shared PT Reset
Global Reset
Memory Modes
The ispXPLD 5000MX architecture allows the MFB to be configured as a variety of memory blocks as detailed in
Table 4. The remainder of this section details operation of each of the memory modes. Additional information
regarding the memory modes can also be found in technical note number TN1030, Using Memory in ispXPLD
5000MX Devices.
8
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Table 4. MFB Memory Configuration
Max. Configuration
Size1
Memory Mode
Dual-port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 8
512 x 16
Single-port, Pseudo Dual Port, FIFO
16,384 x1
8,192 x 2
4,096 x 4
2,048 x 8
1,024 x 16
512 x 32
CAM
128 x 48
1. Smaller configurations are possible.
Input and Output
The data input and control signals to a MFB in memory mode are generated from inputs from the routing. Data signals are only available in the true non-inverted format. True or complemented versions of the inputs are available
for generating the control signals. Data and flag outputs are fed from the MFB to the GRP and OSA. Unused inputs
and outputs are not accessible in memory mode.
ROM Operation
In each of the memory modes it is possible to specify the power-on state of each bit in the memory array. This
allows the memory to be used as ROM if desired.
Increased Depth And Width
Designs that require a memory depth or width that is greater than that support by a single MFB can be supported
by cascading multiple blocks. For dual port, single port, and pseudo dual port modes additional width is easily provided by sharing address lines. Additional depth is supported by multiplexing the RAM output. For FIFO and CAM
modes additional width is supported through the cascading of MFBs.
The Lattice design tools automatically combine blocks to support the memory size specified in the user’s design.
Bus Size Matching
All of the memory modes apart from CAM mode support different widths on each of the ports. The RAM bits are
mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of
words for each port varies this mapping scheme applies to each port.
9
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
True Dual-Port SRAM Mode
In Dual-Port SRAM Mode the multi-function array is configured as a dual port SRAM. In this mode two independent
read/write ports access the same 8,192-bits of memory. Data widths of 1, 2, 4, 8, and 16 are supported by the
MFB. Figure 9 shows the block diagram of the dual port SRAM.
Write data, address, chip select and read/write signals are always synchronous (registered.) The output data signals can be synchronous or asynchronous. Resets are asynchronous. All inputs on the same port share the same
clock, clock enable, and reset selections. All outputs on the same port share the same clock, clock enable, and
reset selections. Selections may be made independently between both inputs and outputs and ports. Table 5
shows the possible sources for the clock, clock enable and initialization signals for the various registers.
Figure 9. Dual-Port SRAM Block Diagram
CLK0
CLK1
CLK2
CLK3
RESET
PORT A
Read/Write Address
RD Data A
(DOA[0:0-15])
(ADA[0:8-12])
Reset A (RSTA)
Clock A (CLKA)
Clk En A (CENA)
Write/Read A (WRA)
68 Inputs
From
Routing
Chip Sel A (CSA [0:1])
Write Data
‘
‘
Dual
Port
SRAM
Array
(DIA[0:0,1,3,7,15])
PORT B
Similar signals
as PORT A:
ADB[0:8-12], RSTB,
CLKB, CENB, WRB,
CSB[0,1], DIB[0:0,1,3,7,15]
RD Data B
(DOB[0:0-15])
Table 5. Register Clock, Clock Enable, and Reset in Dual-Port SRAM Mode
Register
Address, Write Data,
Read Data, Read/
Write, and Chip
Select
Input
Source
Clock
CLKA (CLKB) or one of the global clocks (CLK0 - CLK3). The selected signal can be inverted if desired.
Clock Enable
CENA (CENB) or one of the global clocks (CLK1 - CLK 2). The selected signal can be inverted if required.
Reset
Created by the logical OR of the global reset signal and RSTA (RSTB).
RSTA (RSTB) can be inverted is desired.
10
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Pseudo Dual-Port SRAM Mode
In Pseudo Dual-Port SRAM Mode the multi-function array is configured as a SRAM with an independent read and
write ports that access the same 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the
MFB. Figure 10 shows the block diagram of the Pseudo Dual-Port SRAM.
Write data, write address, chip select and write enable signals are always synchronous (registered). The read data
and read address signals can be synchronous or asynchronous. Reset is asynchronous. All write signals share the
same clock, and clock enable. All read signals share the same clock and clock enable. Reset is shared by both
read and write signals. Table 6 shows the possible sources for the clock, clock enable and initialization signals for
the various registers.
Figure 10. Pseudo Dual-Port SRAM Block Diagram
CLK0
CLK1
CLK2
CLK3
RESET
Read Address
Read Data
(RAD[0:8-13])
(RD[0:0-15])
Write Address
(WAD[0:8-13])
Write Data
16,384 bit
Pseudo
‘
Dual
Write Enable (WE)
‘
Port
Write Clock (WCLK)
SRAM
Write Chip Sel (WCS[0,1])
Array
(WD[0:0,1,3,7,15,31])
68 Inputs
From
Routing
Write Clk Enable (WCEN)
Read Clk Enable (RCEN)
Read Clock (RCLK)
Reset (RST)
Table 6. Register Clock, Clock Enable, and Reset in Pseudo Dual-Port SRAM Mode
Register
Input
Clock
Write Address, Write
Clock Enable
Data, Write Enable,
and Write Chip Select
Reset
Clock
Read Data and Read Clock Enable
Address
Reset
Source
WCLK or one of the global clocks (CLK0 - CLK3). The selected signal can
be inverted if desired.
WCEN or one of the global clocks (CLK1 - CLK2). The selected signal can
be inverted if desired.
Created by the logical OR of the global reset signal and RST. RST may have
inversion if desired.
RCLK or one of the global clocks (CLK0 - CLK3). The selected signal can be
inverted if desired.
RCEN or one of the global clocks (CLK1 - CLK2). The selected signal can
be inverted if desired.
Created by the logical OR of the global reset signal and RST. RST may have
inversion if desired.
11
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Single-Port SRAM Mode
In Single-Port SRAM Mode the multi-function array is configured as a single-port SRAM. In this mode one ports
accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the MFB. Figure 11 shows
the block diagram of the single-port SRAM.
Write data, address, chip select and read/write signals are always synchronous (registered.) The output data signals can be synchronous or asynchronous. Reset is asynchronous. All signals share a common clock, clock
enable, and reset. Table 7 shows the possible sources for the clock, clock enable and reset signals.
Figure 11. Single-Port SRAM Block Diagram
CLK0
CLK1
CLK2
CLK3
RESET
Read Data
Read/Write Address
(DO[0-0,31])
(AD[0-8:13])
Write Data
(DI[0-0,1,3,7,15,31])
Write/Read (WR)
68 Inputs
from
Routing
16,384-Bit
‘
‘SRAM
Array
Clock (CLK)
Chip Select
(CS0,1)
Clk Enable (CEN)
Reset (RST)
Table 7. Register Clock, Clock Enable, and Reset in Single-Port SRAM Mode
Register
Address, Write Data,
Read Data, Read/
Write, and Chip
Select
Input
Source
Clock
CLK or one of the global clocks (CLK0 - CLK3). Each of these signals can
be inverted if required.
Clock Enable
CEN or one of the global clocks (CLK1 - CLK 2). Each of these signals can
be inverted if required.
Reset
Created by the logical OR of the global reset signal and RST. RST is routed
by the multifunction array from GRP, with inversion if desired.
12
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
FIFO Mode
In FIFO Mode the multi-function array is configured as a FIFO (First In First Out) buffer with built in control. The
read and write clocks can be different or the same dependent on the application. Four flags show the status of the
FIFO; Full, Empty, Almost Full, and Almost Empty. The thresholds for Full, Almost full and Almost empty are programmable by the user. It is possible to reset the read pointer, allowing support of frame retransmit in communications applications. If desired, the block can be used in show ahead mode allowing the early reading of the next read
address.
In this mode one ports accesses 16,384-bits of memory. Data widths of 1, 2, 4, 8, 16 and 32 are supported by the
MFB. Figure 12 shows the block diagram of the FIFO.
Write data, write enable, flag outputs and read enable are synchronous. The Write Data, Almost Full and Full share
the same clock and clock enables. Read outputs are synchronous although these can be configured in look ahead
mode. The Read Data, Empty and Almost Empty signals share the same clock and clock enables. Reset is shared
by all signals. Table 8 shows the possible sources for the clock, clock enable and reset signals for the various registers.
Figure 12. FIFO Block Diagram
CLK0
CLK1
CLK2
CLK3
RESET
Write Enable (WE)
Write Clock (WCLK)
Reset
FIFO
Control
Logic
(RST)
Read Clock (RCLK)
Reset_RP
(RSTRP)
FIFO
Flags*
Full, Empty,
Almost Full,
Almost Empty
Read Enable (RE)
‘‘
68 Inputs
From
Routing
Write Data
16,384-bit Read Data
(DO[0:0-31])
SRAM
Array
(DI[0:0-31])
*Control logic can be
duplicated in adjacent MFB
in 32-bit mode
Table 8. Register Clocks, Clock Enables, and Initialization in FIFO Mode
Register
Input
Write Data,
Clock
Write Enable Clock
Enable
Reset
Full and
Almost Full
Flags
Source
WCLK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required.
WE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required.
N/A
Clock
WCLK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required.
Clock
Enable
WE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required.
Reset
Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction
array from GRP, with inversion if desired.
Read Data,
Clock
Empty and
Clock
Almost Empty Enable
Flags
Reset
RCLK or one of the global clocks (CLK0 - CLK3). Each of these signals can be inverted if required.
RE or one of the global clocks (CLK1 - CLK 2). Each of these signals can be inverted if required.
Created by the logical OR of the global reset signal and RST. RST is routed by the multifunction
array from GRP, with inversion if desired.
13
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
CAM Mode
In CAM Mode the multi-function array is configured as a Ternary Content Addressable Memory (CAM). CAM
behaves like a reverse memory where the input is data and the output is an address. It can be used to perform a
variety of high-performance look-up functions. As such, CAM has two modes of operation. In write or update mode
the CAM behaves as a RAM and data is written to the supplied address. In read or compare operations data is supplied to the CAM and if this matches any of the data in the array the Match and Multiple Match (if there is more than
one match) flags are set to true and the lowest address with matching data is output. The CAM contains 128
entries of 48 bits. Figure 13 shows the block diagram of the CAM.
To further enhance the flexibility of the CAM a mask register is available. If enabled during updates, bits corresponding with those set to 1 in the mask register are not updated. If enabled during compare operations, bits corresponding to those set to 1 in the mask register are not included in the compare. A write don’t care signal allows
don’t cares to be programmed into the CAM if desired. Like other write operations the mask register controls this.
The write/comp data, write address, write enable, write chip select, and write don’t care signals are synchronous.
The CAM Output signals, match flag, and multimatch flag can be synchronous or asynchronous. The Enable mask
register input is not latched but must meet setup and hold times relative to the write clock. All inputs must use the
same clock and clock enable signals. All outputs must use the same clock and clock enable signals. Reset is common for both inputs and outputs. Table 9 shows the allowable sources for clock, clock enable, and reset for the various CAM registers.
Figure 13. CAM Mode
CLK0
CLK1
CLK2
CLK3
RESET
Write/Comp Data
(WD[0:31])
CAM
Output
Write Address
CO[0:6]
(WAD[0:6])
En Mask Reg (EN_MASK)
Write Enable (WE)
Write Chip Sel (WCS[0:1])‘
68 Inputs
From
Routing
‘
WR Mask Reg (WR_MASK)
128X48
CAM
Match
Out
MATCH
WR don t care (WR_DC)
Reset
(RST)
CLK (CLK)
Clock Enable (CE)
Multimatch
Out
MUL_MATCH
Table 9. Register Clocks, Clock Enables, and Initialization in CAM Mode
Register
Write data, Write address,
Enable mask register, Write
enable, write chip select, and
write don’t care, CAM Output,
Match, and Multimatch
Input
Source
Clock
CLK or one of the global clocks (CLK0 - CLK3). Each of these signals can
be inverted if required.
Clock Enable
WE or one of the global clocks (CLK1 - CLK 2). Each of these signals can
be inverted if required.
Reset
Created by the logical OR of the global reset signal and RST. RST is routed
by the multifunction array from GRP, with inversion if desired
14
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Clock Distribution
The ispXPLD 5000MX family has four dedicated clock input pins: GCLK0-GCLK3. GLCK0 and GCLK3 can be
routed through a PLL circuit or routed directly to the internal clock nets. The internal clock nets (CLK0-CLK3) are
directly related to the dedicated clock pins (see Secondary Clock Divider exception when using the sysCLOCK circuit). These feed the registers in the MFBs. Note at each register there is the option of inverting the clock if
required. Figure 14 shows the clock distribution network.
Figure 14. Clock Distribution Network
I/O/CLK_OUT0
GCLK0
CLK0
CLK_OUT0
VREF0
Clock Net
To Macrocells
Clock Net
To Macrocells
PLL0
SEC_OUT0
CLK1
GCLK1
VREF1
sysCLOCK PLLs
Global Clock Routing
VREF2
GCLK2
CLK2
Clock Net
To Macrocells
Clock Net
To Macrocells
SEC_OUT1
PLL1
VREF3
CLK_OUT1
CLK3
GCLK3
I/O/CLK_OUT1
sysCLOCK PLL
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset and feedback
signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are deskewed either at the board level or the device level.
The ispXPLD 5000MX devices provide two PLL circuits. PLL0 receives its clock inputs from GCLK 0 and provides
outputs to CLK 0 (CLK 1 when using the secondary clock). PLL1 operates with signals from GCLK 3 and CLK 3
(CLK 2 when using the secondary clock). The optional outputs CLK_OUT can be routed to an I/O pin. The optional
PLL_LOCK output is routed into the GRP. The optional input PLL_RST can be routed either from the GRP or
directly from an I/O pin. The optional PLL_FBK into can be routed directly from a pin. Figure 15 shows the ispXPLD
5000MX PLL block diagram. Figure 16 shows the connection of optional inputs and outputs.
15
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Figure 15. PLL Block Diagram
CLK_IN
Input Clock
(M) Divider
Programable
Delay
PLL_RST
VCO
and
Phase
Detector
Post-scalar
(V) Divider
CLK_OUT
Clock Net
PLL_LOCK
Feedback
Loop
(N) Divider
Secondary
Clock
(K) Divider
SEC_OUT
Clock Net
PLL_FBK
Figure 16. Connection of Optional PLL Inputs and Outputs
To GRP
PLL_LOCK
I/O Pin*
CLK_OUT
From Macrocell
To GRP
PLL_RST
I/O Pin*
To GRP
From Macrocell
To GRP
PLL_FBK
I/O Pin*
From Macrocell
*See pinout table for details
In order to facilitate the multiply and divide capabilities of the PLL, each PLL has dividers associated with it: M, N
and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The
K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and
feeds to a separate global clock net. The V divider is used to provide lower frequency output clocks, while maintaining a stable, high frequency output from the PLL’s VCO circuit. The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better performance. For more
information on the PLL, please refer to Lattice technical note number TN1003, Lattice sysCLOCK PLL Usage
Guidelines.
16
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Output Sharing Array (OSA)
A number of I/O pads are available in each sysIO bank to route the selected number of macrocells from the MFB
outputs directly to the I/O pads in logic mode. In the ispXPLD 5000MX, the large number of inputs and PTs to the
MFB as well as the presence of the PTSA can cover most routing flexibility of signals to I/O cells. The Output Sharing Array gives additional routing capability and I/O access to an MFB when a wide output function takes up the
whole MFB and cannot be easily divided across multiple MFBs. By using the OSA, the wide output function, such
as 32-bit FIFO, can have all of its output signals from the one MFB routed to I/O cells. In a given I/O block, the wide
output functions must share the I/O pads with other logic functions.
The OSA bypass option routes the MFB signal directly to the I/O cell, allowing a direct connection to the I/O cell.
The logic functions use the option to provide faster speed to the outputs. The Logic Signal Connection tables list
the OSA bypass as the primary macrocell and OSA options as alternate macrocells. Similarly, the Alternate Input
listing in the table shows the alternate macrocell input connection for a given I/O pin. Figure 17 shows the alternate
macrocell connections in an I/O cell.
sysIO Banks
The ispXPLD 5000MX devices are divided into four sysIO banks, consisting of multiple I/O cells, where each bank
is capable of supporting 16 different I/O standards. Each sysIO bank has its own I/O voltage (VCCO) and reference
voltage (VREF) resources allowing complete independence from the others.
I/O Cell
The I/O cell of the ispXPLD 5000MX devices contains an output enable (OE) MUX, a programmable tri-state output
buffer, a programmable input buffer, and programmable bus-maintenance circuitry.
The I/O cell receives inputs from its associated macrocells and the device pin. The I/O cell has a feedback line to its
associated macrocells and a direct path to GRP. The output enable (OE) MUX selects the OE signal per I/O cell.
The inputs to the OE MUX are the four global PTOE signals, PTOE and the two GOE signals. The OE MUX also
has the ability to choose either the true or inverse of each of these signals. The output of the OE MUX goes through
a logical AND with the TOE signal to allow easy tri-stating of the outputs for testing purposes. The MFBs are
grouped into segments of four for the purpose of generating Shared PTOE signals. Each Shared PTOE signal is
derived from PT 163 from one of the four MFBs. Table 10 shows the segments. The PTOE signal is derived from
the first product term in each macrocell cluster, which is directly routed to the OE MUX. Therefore, every I/O cell
can have a different OE signal. Figure 17 is a graphical representation of the I/O cell.
17
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Figure 17. I/O Cell
Shared PTOE 0
Shared PTOE 1
Shared PTOE 2
Shared PTOE 3
PTOE
GOE0
GOE1
Output Buffer
(VCCO Independent
for Open Drain
Outputs)
VCCO for
this Bank
TOE
Data Output from
Primary Macrocell
VCCO to All
Other I/Os
in Bank
Data Output from
Alternate Macrocells
GND
Differential
Output Buffer
Output Sharing
Array (OSA)
To Adjacent I/O Pad
I/O
Pad
CMOS/TTL
Input Buffer
(VREF Independent)
Data Input to Routing
To Primary
Macrocell
+
–
Delay Element
VREF Dependent
Input Buffer
To Alternate
Macrocell
VREF to All
other I/Os in Bank
+
–
Differential
I/O Buffer
To Adjacent
I/O Pad
Table 10. Shared PTOE Segments
Device
MFBs Associated With Segments
ispXPLD 5256MX
(A, B, C, D) (E, F, G, H)
ispXPLD 5512MX
(A, B, C, D) (E, F, G, H)
(I, J, K, L) (M, N, O, P)
ispXPLD 5768MX
(A, B, C, D) (E, F, G, H)
(I, J, K, L) (M, N, O, P)
(Q, R, S, T) (U, V, W, Z)
ispXPLD 51024MX
(A, B, C, D) (E, F, G, H)
(I, J, K, L) (M, N, O, P)
(Q, R, S, T) (U, V, W, Z)
(Y, Z, AA, AB) (AC, AD, AE, AF)
sysIO Standards
Each I/O within a bank is individually configurable based on the VCCO and VREF settings. Some standards also
require the use of an external termination voltage. Table 12 lists the sysIO standards with the typical values for
VCCO, VREF and VTT. For more information on the sysIO capability, please refer to Lattice technical note number
TN1000, sysIO Usage Guidelines for Lattice Devices, available at www.latticesemi.com.
Table 11. Number of I/Os per Bank
Device
Maximum Number of I/Os per Bank (n)
ispXPLD 5256MX
36
ispXPLD 5512MX
68
ispXPLD 5768MX
96
ispXPLD 51024MX
96
18
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Table 12. ispXPLD 5000MX Supported I/O Standards
sysIO Standard
Nominal VCCO
Nominal VREF
Nominal VTT
LVTTL
3.3V
N/A
N/A
LVCMOS-3.3
3.3V
N/A
N/A
LVCMOS-2.5
2.5V
N/A
N/A
LVCMOS-1.8
1.8V
N/A
N/A
PCI 3.3V
3.3V
N/A
N/A
AGP-1X
3.3V
N/A
N/A
SSTL3, Class I & II
3.3V
1.5V
1.5V
SSTL2, Class I & II
2.5V
1.25V
1.25V
CTT 3.3
3.3V
1.5V
1.5V
CTT 2.5
2.5V
1.25V
1.25V
HSTL, Class I
1.5V
0.75V
0.75V
HSTL, Class III
1.5V
0.9V
0.75V
HSTL, Class IV
1.5V
0.9V
0.75V
GTL+
N/A
1.0V
1.5V
LVPECL, Differential
2.5V, 3.3V
N/A
N/A
LVDS
2.5V, 3.3V
N/A
N/A
Table 13. Differential Interface Standard Support1
sysIO Buffer
LVDS
LVPECL
Driver
Supported
Receiver
Supported with standard termination
Driver
Supported with external resistor network
Receiver
Supported with termination
1. For more information, refer to Lattice technical note TN1000, sysIO Usage Guidelines for Lattice Devices, available at
www.latticesemi.com.
Control, Clock, sysCONFIG and JTAG Signals
Global clock pins support the same sysIO standards as general purpose I/O. When required the VREF signal is
derived from the adjacent bank. When differential standards are supported two adjacent clock pins are paired to
form the input. The TOE, PROGRAM, CFG0 and DONE pins of the ispXPLD 5000MX device are the only pins that
do not have sysIO capabilities. The JTAG TAP pins support only LVCMOS 3.3, 2.5 and 1.8V standards. The voltage
is controlled by VCCJ. These pins only support the LVTTL and LVCMOS standards applicable to the power supply
voltage of the device. The global reset global output enable pins are associated with Bank 2 and support all of the
sysIO standards.
Hotsocketing
The I/O on the ispXPLD 5000MX devices are well suited for those applications that require hot socketing capability,
when configured as LVCMOS or LVTTL. Hot socketing a device requires that the device, when powered down, can
tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the
powered-down device be minimal on active signals.
Programmable Drive Strength
The drive strength of I/Os that are programmed as LVCMOS is tightly controlled and can be programmed to a variety of different values. Thus the impedance an output driver can be closely match to the characteristic impedance
of the line it is driving. This allows users to eliminate the need for external series termination resistors.
19
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Programmable Slew Rate
The slew rate of outputs is carefully controlled. When outputs are configured as LVCMOS the devices support two
slew rates. This allows system noise and performance to be balanced in a design.
Programmable Bus-Maintenance
All general-purpose inputs have programmable bus maintenance circuitry. These are intended to maintain a valid
logic level into a device when driving devices go into the tri-state mode. Four options are available for users: pullup, pull-down, bus-keeper, or nothing.
Expanded In-System Programmability (ispXP)
The ispXPLD 5000MX family utilizes a combination of EEPROM non-volatile cells and SRAM technology to deliver
a logic solution that provides “instant-on” at power-up, a convenient single chip solution, and the capability for infinite reconfiguration. A non-volatile array distributed within the device stores the device configuration. At power-up
this information is transferred in a massively parallel fashion into SRAM bits that control the operation of the device.
Figure 18 shows the different ports and modes that are used in the configuration and programming of the ispXPLD
5000MX devices.
Figure 18. ispXP Block Diagram
sysCONFIG Peripheral Port
ISP 1149.1 TAP Port
Port
ISP
BACKGND
1532
sysCONFIG
Mode
Configuration
in milliseconds
Programming
in seconds
Power-up
E2CMOS
Memory Space
Refresh
SRAM
Memory Space
Download in
microseconds
Memory Space
IEEE 1532 ISP
In-system programming of devices provides a number of significant benefits including rapid prototyping, lower
inventory levels, higher quality and the ability to make in-field modifications. All ispXPLD 5000MX devices provide
in-system programmability through their Boundary Scan Test Access Port. This capability has been implemented in
a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE 1532 as the
communication interface through which ISP is achieved, customers get the benefit of a standard, well-defined interface.
The IEEE1532 programming interface allows programming of either the non-volatile array or reconfiguration of the
SRAM bits.
The ispXPLD 5000MX devices can be programmed across the commercial temperature and voltage range. The
PC-based Lattice software facilitates in-system programming of ispXPLD 5000MX devices. The software takes the
JEDEC file output produced by the design implementation software, along with information about the scan chain,
and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain
via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispXPLD 5000MX devices during the testing
of a circuit board.
20
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
sysCONFIG Interface
In addition to being able to program the device through the IEEE 1532 interface a microprocessor style interface
(sysCONFIG interface) allows reconfiguration of the SRAM bits within the device. For more information on the
sysCONFIG capability, please refer to technical note number TN1026, ispXP Configuration Usage Guidelines.
Security Scheme
A programmable security scheme is provided on the ispXPLD 5000MX devices as a deterrent to unauthorized
copying of the array configuration patterns. Once programmed, this bit prevents readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. The security bit also prevents programming and verification. The entire device must be erased in order to erase the security bit.
Low Power Consumption
The ispXPLD 5000MX devices use zero power non-volatile cells along with full CMOS design to provide low static
power consumption. The 1.8V core reduces dynamic power consumption compared with devices with higher core
voltages. For information on estimating power consumption, please refer to Lattice technical note number TN1031,
Power Estimation in ispXPLD 5000MX Devices.
Density Migration
The ispXPLD 5000MX family has been designed to ensure that different density devices in the same package have
compatible pin-outs. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization
will impact the likely success in each case.
IEEE 1149.1-Compliant Boundary Scan Testability
All ispXPLD 5000MX devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This
allows functional testing of the circuit board on which the device is mounted through a serial scan path that can
access all critical logic notes. Internal boundary scan registers are linked internally, allowing test data to be shifted
in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition,
these devices can be linked into a board-level serial scan path for board-level testing. The test access port has its
own supply voltage and can operate with LVCMOS3.3, 2.5 and 1.8V standards.
sysIO Quick Configuration
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’
physical nature should be minimal so that board test time is minimized. The ispXPLD 5000MX family of devices
allows this by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice’s ispVM™ System programming software can either perform the quick configuration through the PC parallel
port, or can generate the ATE or test vectors necessary for a third-party test system.
21
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Absolute Maximum Ratings1, 2, 3
ispXPLD 5000MC
1.8V
ispXPLD 5000MB/V
2.5V/3.3V
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V
PLL Supply Voltage (VCCP) . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V
Output Supply Voltage (VCCO) . . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . . . . . . . . -0.5 to 4.5V
IEEE 1149.1 TAP Supply Voltage (VCCJ) . . . . . . . . -0.5 to 4.5V . . . . . . . . . . . . . . . . -0.5 to 4.5V
Input Voltage Applied4, 5 . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C
Junction Temperature (TJ) with Power Applied . . . -55 to 150°C . . . . . . . . . . . . . . . -55 to 150°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, following the programming specifications).
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and Undershoot of -2V to (VIHMAX +2) volts not to exceed 6V is permitted for a duration of <20ns.
5. A maximum of 64 I/Os per device with VIN > 3.6V is allowed.
Recommended Operating Conditions
Symbol
VCC
VCCP
TJ
Min.
Max.
Units
Supply Voltage for 1.8V Devices (ispXPLD 5000MC)
Parameter
1.65
1.95
V
Supply Voltage for 2.5V Devices (ispXPLD 5000MB)
2.3
2.7
V
Supply Voltage for 3.3V Devices (ispXPLD 5000MV)
3
3.6
V
PLL Block Supply Voltage for PLL 1.8V Devices
1.65
1.95
V
PLL Block Supply Voltage for PLL 2.5V Devices
2.3
2.7
V
PLL Block Supply Voltage for PLL 3.3V Devices
3
3.6
V
Junction Temperature (Commercial Operation)
0
90
C
-40
105
C
Min.
Max.
Units
1,000
—
Cycles
Min.
Typ.
Max.
Units
—
+/-50
+/-800
μA
Junction Temperature (Industrial Operation)
E2CMOS Erase Reprogram Specifications
Parameter
1
Erase/Reprogram Cycle
1. Valid over commercial temperature range.
Hot Socketing Characteristics1, 2, 3, 4
Symbol
IDK
Parameter
Input or I/O Leakage Current
Condition
0 ≤ VIN ≤ 3.0V
1. Insensitive to sequence of VCC and VCCO when VCCO ≤ 1.0V. For VCCO > 1.0V, VCC min must be present. However, assumes monotonic
rise/fall rates for VCC and VCCO, provided (VIN - VCCO) ≤ 3.6V.
2. 0 ≤ VCC ≤ VCC (MAX), 0 ≤ VCCO ≤ VCCO (MAX)
3. IDK is additive to IPU, IPD or IBH. Device defaults to pull-up until non-volatile cells are active.
4. LVTTL, LVCMOS only.
22
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
0 ≤ VIN ≤ (VCCO - 0.2V)
—
—
10
µA
(VCCO - 0.2V) < VIN ≤ 3.6V
—
—
40
µA
IIL, IIH1
Input or I/O Leakage
IIH4
Input High Leakage Current
3.6V < VIN ≤ 5.5V and
3.0V ≤ VCCO ≤ 3.6V
—
—
3
mA
IPU3
I/O Active Pullup Current
0 ≤ VIN ≤ 0.7 VCCO
-30
—
-150
µA
IPD
I/O Active Pulldown Current
VIL (MAX) ≤ VIN ≤ VIH (MAX)
30
—
150
µA
IBHLS
Bus Hold Low Sustaining Current VIN = VIL (MAX)
30
—
—
µA
IBHHS
Bus Hold High Sustaining Current VIN = 0.7 VCCO
30
—
—
µA
IBHLO
Bus Hold Low Overdrive Current
0 ≤ VIN ≤ VIH (MAX)
—
—
150
µA
IBHHO
Bus Hold High Overdrive Current
0 ≤ VIN ≤ VIH (MAX)
—
—
150
µA
VBHT
Bus Hold Trip Points
0 ≤ VIN ≤ VIH (MAX)
C1
C2
C3
I/O Capacitance2
Clock Capacitance2
Global Input Capacitance2
VCCO * 0.35
—
VCCO * 0.65
µA
VCCO = 3.3V, 2.5V, 1.8V
—
8
—
pf
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
8
—
pf
VCCO = 3.3V, 2.5V, 1.8V
—
8
—
pf
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
8
—
pf
VCCO = 3.3V, 2.5V, 1.8V
—
8
—
pf
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
8
—
pf
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured
with the output driver active. Bus maintenance circuits are disabled.
2. TA 25°C, f=1.0MHz
3. IPU on JTAG pins has a maximum of -175µA for 5512MX devices.
4. 5V tolerant inputs and I/Os should be placed in banks where 3.0V ≤ VCCO ≤ 3.6V. The JTAG and sysCONFIG ports are not included for the
5V tolerant interface.
23
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Supply Current
Symbol
Min.
Typ.3
Max.
Units
VCC = 3.3V, f = 1.0MHz
—
26
—
mA
VCC = 2.5V, f = 1.0MHz
—
26
—
mA
VCC = 1.8V, f = 1.0MHz
—
16
—
mA
VCCO = 3.3V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 2.5V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 1.8V, f = 1.0MHz, unloaded
—
3
—
mA
VCCP = 3.3V, f = 10MHz
—
11
—
mA
VCCP = 2.5V, f = 10MHz
—
11
—
mA
Parameter
Condition
ispXPLD 5256
ICC
1,2
ICCO
ICCP
ICCJ
Operating Power Supply Current
Standby Power Supply Current
(per I/O Bank)
PLL Power Supply Current
(per PLL Bank)
Standby IEEE 1149.1 TAP Power
Supply Current
VCCP = 1.8V, f = 10MHz
—
3
—
mA
VCCJ = 3.3V
—
1
—
mA
VCCJ = 2.5V
—
1
—
mA
VCCJ = 1.8V
—
1
—
mA
VCC = 3.3V, f = 1.0MHz
—
33
—
mA
VCC = 2.5V, f = 1.0MHz
—
33
—
mA
VCC = 1.8V, f = 1.0MHz
—
22
—
mA
VCCO = 3.3V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 2.5V, f = 1.0MHz, unloaded
—
4
—
mA
ispXPLD 5512
ICC
1,2
ICCO
ICCP
ICCJ
Operating Power Supply Current
Standby Power Supply Current
(per I/O Bank)
PLL Power Supply Current
(per PLL Bank)
Standby IEEE 1149.1 TAP Power
Supply Current
VCCO = 1.8V, f = 1.0MHz, unloaded
—
3
—
mA
VCCP = 3.3V, f = 10MHz
—
11
—
mA
VCCP = 2.5V, f = 10MHz
—
11
—
mA
VCCP = 1.8V, f = 10MHz
—
3
—
mA
VCCJ = 3.3V
—
1
—
mA
VCCJ = 2.5V
—
1
—
mA
VCCJ = 1.8V
—
1
—
mA
VCC = 3.3V, f = 1.0MHz
—
40
—
mA
VCC = 2.5V, f = 1.0MHz
—
40
—
mA
VCC = 1.8V, f = 1.0MHz
—
30
—
mA
VCCO = 3.3V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 2.5V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 1.8V, f = 1.0MHz, unloaded
—
3
—
mA
VCCP = 3.3V, f = 10MHz
—
11
—
mA
VCCP = 2.5V, f = 10MHz
—
11
—
mA
ispXPLD 5768
ICC
1,2
ICCO
ICCP
ICCJ
Operating Power Supply Current
Standby Power Supply Current
(per I/O Bank)
PLL Power Supply Current
(per PLL Bank)
Standby IEEE 1149.1 TAP Power
Supply Current
VCCP = 1.8V, f = 10MHz
—
3
—
mA
VCCJ = 3.3V
—
1
—
mA
VCCJ = 2.5V
—
1
—
mA
VCCJ = 1.8V
—
1
—
mA
24
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Supply Current (Continued)
Symbol
Min.
Typ.3
Max.
Units
VCC = 3.3V, f = 1.0MHz
—
75
—
mA
VCC = 2.5V, f = 1.0MHz
—
75
—
mA
VCC = 1.8V, f = 1.0MHz
—
55
—
mA
VCCO = 3.3V, f = 1.0MHz, unloaded
—
4
—
mA
VCCO = 2.5V, f = 1.0MHz, unloaded
—
4
—
mA
Parameter
Condition
ispXPLD 51024
ICC1,2
ICCO
ICCP
ICCJ
Operating Power Supply Current
Standby Power Supply Current
(per I/O Bank)
PLL Power Supply Current
(per PLL Bank)
Standby IEEE 1149.1 TAP Power
Supply Current
VCCO = 1.8V, f = 1.0MHz, unloaded
—
3
—
mA
VCCP = 3.3V, f = 10MHz
—
11
—
mA
VCCP = 2.5V, f = 10MHz
—
11
—
mA
VCCP = 1.8V, f = 10MHz
—
3
—
mA
VCCJ = 3.3V
—
1
—
mA
VCCJ = 2.5V
—
1
—
mA
VCCJ = 1.8V
—
1
—
mA
1. Device configured with 16-bit counters.
2. ICC varies with specific device configuration and operating frequency.
3. TA = 25°C
25
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
sysIO Recommended Operating Conditions
VCCO (V)2
Standard
LVCMOS 3.3
VREF (V)
Min.
Typ.
Max.
Min.
Typ.
Max.
3.0
3.3
3.6
—
—
—
LVCMOS 2.5
2.3
2.5
2.7
—
—
—
LVCMOS 1.81
1.65
1.8
1.95
—
—
—
LVTTL
3.0
3.3
3.6
—
—
—
PCI 3.3
3.0
3.3
3.6
—
—
—
AGP-1X
3.15
3.3
3.45
—
—
—
SSTL 2
2.3
2.5
2.7
1.15
1.25
1.35
SSTL 3
3.0
3.3
3.6
1.3
1.5
1.7
CTT 3.3
3.0
3.3
3.6
1.35
1.5
1.65
CTT 2.5
2.3
2.5
2.7
1.35
1.5
1.65
HSTL Class I
1.4
1.5
1.6
0.68
0.75
0.9
HSTL Class III
1.4
1.5
1.6
—
0.9
—
HSTL Class IV
1.4
1.5
1.6
—
0.9
—
GTL+
1.4
—
3.6
0.882
1.0
1.122
LVDS
2.3
2.5/3.3
3.6
—
—
—
1. Design tools default setting.
2. Inputs are independent of VCCO setting. However, VCCO must be set within the valid operating range for one of the supported standards.
26
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
sysIO Single Ended DC Electrical Characteristics
Over Recommended Operating Conditions
Input/Output
Standard
LVCMOS 3.3
LVTTL
-0.3
-0.3
LVCMOS 2.5
1, 3
LVCMOS 1.8
VIH
VIL
Min (V)
-0.3
-0.3
Max (V)
0.8
0.8
0.7
0.68
Min (V)
2.0
2.0
1.7
1.07
Max (V)
5.5
5.5
3.6
3.6
IOL2
(mA)
IOH2
(mA)
VOL
Max (V)
VOH
Min (V)
0.4
2.4
0.2
VCCO - 0.2
0.1
-0.1
0.4
2.4
4
-4
0.2
VCCO - 0.2
0.1
-0.1
0.4
VCCO - 0.4
16, 12, 8,
5.33, 4
-16, -12, -8,
-5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
8
-8
0.4
VCCO - 0.4
0.4
VCCO -0.4
20, 16, 12, -20, -16, -12,
8, 5.33, 4 -8, -5.33, -4
12, 5.33, 4 -12, -5.33, -4
LVCMOS 1.83
-0.3
0.68
1.07
3.6
0.2
VCCO - 0.2
0.1
-0.1
PCI 3.34
-0.3
1.08
1.5
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
AGP-1X4
-0.3
1.08
1.5
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
SSTL3 class I
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.7
VCCO - 1.1
8
-8
SSTL3 class II
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.5
VCCO - 0.9
16
-16
SSTL2 class I
-0.3
VREF - 0.18 VREF + 0.18
3.6
0.54
VCCO - 0.62
7.6
-7.6
SSTL2 class II
-0.3
VREF - 0.18 VREF + 0.18
3.6
0.35
VCCO - 0.43
15.2
-15.2
CTT 3.3
-0.3
VREF - 0.2
VREF + 0.2
3.6
VREF - 0.4
VREF + 0.4
8
-8
CTT 2.5
-0.3
VREF - 0.3
VREF + 0.2
3.6
VREF - 0.4
VREF + 0.4
8
-8
HSTL class I
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCO - 0.4
8
-8
HSTL class III
-0.3
VREF - 0.2
VREF + 0.1
3.6
0.4
VCCO - 0.4
24
-8
HSTL class IV
-0.3
VREF - 0.3
VREF + 0.1
3.6
0.4
VCCO - 0.4
48
-8
GTL+
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.6
n/a
36
n/a
1. Software default setting.
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND
connections or between the last GND in a bank and the end of a bank.
3. For 1.8V devices (ispXPLD 5000MC) these specifications are VIL = 0.35 * VCC and VIH = 0.65 * VCC.
4. For 1.8V devices (ispXPLD 5000MC) these specifications are VIL = 0.3 * VCC * 3.3/1.8, VIH = 0.5 * VCC * 3.3/1.8.
27
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
sysIO Differential DC Electrical Characteristics
Over Recommended Operating Conditions
Parameter
Description
Test Conditions
Min.
Typ.
Max.
0V
—
2.4V
+/-100mV
—
—
—
—
+/-10uA
LVDS
VINP
Input Voltage
VTHD
Differential Input Threshold
0.2 ≤ VCM ≤ 1.8V
IIN
Input Current
Power On
VOH
Output High Voltage for VOP or VOM
RT = 100 Ohm
—
1.38V
1.60V
VOL
Output Low Voltage for VOP or VOM
RT = 100 Ohm
0.9V
1.03V
—
VOD
Output Voltage Differential
(VOP - VOM), RT = 100 Ohm
250mV
350mV
450mV
ΔVOD
Change in VOD Between High and Low
—
—
50mV
VOS
Output Voltage Offset
1.125V
1.20V
1.375V
ΔVOS
Change in VOS Between H and L
—
—
50mV
IOSD
Output Short Circuit Current
—
—
24mA
(VOP - VOM)/2, RT = 100 Ohm
VOD = 0V Driver outputs
shorted
LVPECL1
DC
Parameter
Parameter Description
Min.
Max.
Min.
3.0
VCCO
Max.
Min.
3.3
Max.
3.6
Units
V
VIH
Input Voltage High
1.49
2.72
1.49
2.72
1.49
2.72
V
VIL
Input Voltage Low
0.86
2.125
0.86
2.125
0.86
2.125
V
VOH
Output Voltage High
1.7
2.11
1.92
2.28
2.03
2.41
V
VOL
Output Voltage Low
0.96
1.27
1.06
1.43
1.3
1.57
V
Differential Input voltage
0.3
—
0.3
—
0.3
—
V
VDIFF2
1. These values are valid at the output of the source termination pack as shown above with 100-ohm differential load only (see Figure 19).
The VOH levels are 200mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges.
2. Valid for 0.2 ≤ VCM ≤ 1.8V
Figure 19. LVPECL Driver with Three Resistor Pack
1/4 of Bourns P/N
CAT 16-PC4F12
A
Zo
RT=100
Rs
RD
ispXPLD Emulated
LVPECL Buffer
Rs
Zo
28
to LVPECL
differential
receiver
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family External Switching Characteristics 1, 2, 3
Over Recommended Operating Conditions
-4
Parameter
Description
-45
-5
-52
-75
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Min.
tPD
Data Propagation Delay,
5-PT Bypass
—
4.0
—
4.5
—
5.0
—
5.2
—
7.5
ns
tPD_PTSA
Data propagation delay
—
4.8
—
5.7
—
6.0
—
6.5
—
9.5
ns
tS
MFB Register Setup Time
Before Clock, 5-PT Bypass
2.2
—
2.8
—
2.8
—
3.0
—
4.5
—
ns
tS_PTSA
MFB Register Setup Time
Before Clock
2.5
—
3.1
—
3.1
—
3.6
—
5.5
—
ns
tSIR
MFB Register Setup Time
Before Clock, Input Register
Path
1.0
—
1.0
—
1.0
—
0.5
—
1.7
—
ns
tH
MFB Register Hold Time
Before Clock, 5-PT Bypass
0.0
—
0.0
—
0.0
—
0.0
—
0.0
—
ns
tH_PTSA
MFB Register Hold Time
Before Clock
0.0
—
0.0
—
0.0
—
0.0
—
0.0
—
ns
tHIR
MFB Register Hold Time
Before Clock, Input Register
Path
0.5
—
0.5
—
0.5
—
1.0
—
1.3
—
ns
tCO
MFB Register Clock-to-Output Delay
—
2.8
—
3.0
—
3.2
—
3.7
—
5.0
ns
tR
External Reset Pin to Output
Delay
—
4.0
—
4.5
—
5.0
—
5.0
—
7.5
ns
tRW
Reset Pulse Duration
1.8
—
1.8
—
1.8
—
2.0
—
3.0
—
ns
tLPTOE/DIS
Input to Output Local Product
Term Output Enable/Disable
—
6.0
—
7.0
—
7.5
—
8.5
—
10.5
ns
tSPTOE/DIS
Input to Output Shared
Product Term Output Enable/
Disable
—
6.0
—
7.0
—
7.5
—
8.5
—
10.5
ns
tGOE/DIS
Global OE Input to Output
Enable/Disable
—
4.5
—
5.5
—
5.5
—
6.5
—
7.5
ns
tCW
Clock Width, High or Low
1.5
—
1.5
—
1.5
—
1.8
—
2.5
—
ns
tGW
Gate Width Low (for Low
Transparent) or High (for
High Transparent)
1.5
—
1.5
—
1.5
—
1.8
—
2.5
—
ns
tWIR
Input Register Clock Width,
High or Low
1.5
—
1.5
—
1.5
—
1.8
—
2.5
—
ns
tSKEW
Clock-to-Out Skew, Block
Level
—
0.6
—
0.6
—
0.6
—
0.6
—
1.0
ns
fMAX4
Clock Frequency with
Internal Feedback
—
300
—
275
—
250
—
250
—
150
MHz
fMAX (Ext.)
Clock Frequency with
External Feedback,
1/ (tS + tCO)
—
200
—
171
—
166
—
149
—
105
MHz
fMAX (Tog.)
Clock Frequency Max.
Toggle
—
333
—
333
—
333
—
277
—
200
MHz
fMAX (CAMC)5
Clock Frequency to CAM
(Configure Mode)
—
280
—
280
—
230
—
230
—
168
MHz
fMAX (CAM)5
Clock Frequency to CAM
(Compare Mode)
—
150
—
150
—
150
—
135
—
90
MHz
29
Max. Units
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family External Switching Characteristics (Continued)1, 2, 3
Over Recommended Operating Conditions
-4
Parameter
Description
-45
-5
-52
-75
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Single Port Mode
—
155
—
155
—
155
—
155
—
Dual Port Mode
—
155
—
155
—
155
—
155
Pseudo Dual Port Mode
—
180
—
180
—
160
—
160
Max. Units
Clock Frequency to RAM in:
fMAX (RAM)5
5
93
MHz
—
93
MHz
—
106
MHz
fMAX (FIFO)
Clock Frequency to FIFO
—
225
—
220
—
210
—
210
—
132
MHz
tPWR_ON
Power-on Time
—
200
—
200
—
200
—
200
—
200
µs
Timing v.1.8
1.
2.
3.
4.
5.
Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate timing for other standards.
Measured using standard switching circuit, global routing loading of 1, worst case PTSA loading and 1 output switching.
Pulse widths and clock widths less than minimum will cause unknown behavior.
Standard 16-bit counter using GRP feedback.
CAM, FIFO, RAM fMAX specification used shared PT Clk.
30
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Timing Model
The task of determining timing in a ispXPLD 5000MX device is relatively simple. The timing model show in
Figure 20 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of a function can easily be determined from the timing
model. The Lattice design tools report the timing delays based on the same timing model. Note that internal timing
parameters are for reference only, and are not tested. The external timing parameters are tested and guaranteed
for every device.
Figure 20. ispXPLD 5000MX Timing Model Diagram
t PDb
From Feedback
Feedback
tPDi
IN
t ROUTE
tROUTEMF
tBLA
tCASC
t IN
tIOI
t PTSA
t EXP
Memory
Functions
tCICOMFB
tCICOMC
tSUM
t INREG
t INDIO
tGCLK
GCLK
t GCLK _IN
t IOI
C.E.
t PTSR
t BSR
3
OE
Q
tPLL _DELAY
t PLL _SEC_DELAY
RST
DATA
t PTCLK
t BCLK
t RST
tIOI
S/R
CLK, CE and Reset Only
t PTOE
t SPTOE
t GPTOE
t GOE
tIOI
Path only available for
FIFO Flags
t FBK
Some paths not available in memory
mode. Refer to timing tables for details.
31
MC Reg.
tOSA
t BUF
tIOO
t EN
t DIS
OUT
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
In/Out Delays
tIN
Input Buffer Delay
—
—
0.70
—
0.91
—
0.96
—
1.11
—
1.30
ns
tGCLK_IN
Global Clock Input
Buffer Delay
—
—
0.40
—
0.35
—
0.35
—
0.35
—
0.55
ns
tRST
Global RESET Pin
Delay
—
—
3.77
—
4.24
—
4.71
—
4.71
—
7.07
ns
tGOE
Global OE Pin
Delay
—
—
1.98
—
2.66
—
2.34
—
2.87
—
3.27
ns
tBUF
Delay through
Output Buffer
—
—
1.16
—
1.30
—
1.45
—
1.60
—
2.17
ns
tEN
Output Enable Time
—
—
2.52
—
2.84
—
3.16
—
3.63
—
4.23
ns
tDIS
Output Disable
Time
—
—
1.92
—
2.40
—
2.40
—
2.40
—
3.60
ns
Routing Delays
tROUTE
Delay through SRP
—
—
1.95
—
2.06
—
2.34
—
2.24
—
3.66
ns
tINREG
Input Buffer to
Macrocell Register
Delay
—
—
0.60
—
0.60
—
0.60
—
0.47
—
1.63
ns
tPTSA
Product Term
Sharing Array Delay
—
—
0.50
—
0.50
—
0.53
—
0.83
—
1.34
ns
tFBK
Internal Feedback
Delay
—
—
0.19
—
0.02
—
0.39
—
0.03
—
0.60
ns
tGCLK
Global Clock Tree
Delay
—
—
0.52
—
0.32
—
0.72
—
0.82
—
0.78
ns
tBCLK
Block PT Clock
Delay
—
—
0.12
—
0.14
—
0.15
—
0.15
—
0.23
ns
tPTCLK
Macrocell PT Clock
Delay
—
—
0.12
—
0.14
—
0.15
—
0.15
—
0.23
ns
tPLL_DELAY
Programmable PLL
Delay Increment
—
—
0.30
—
0.30
—
0.30
—
0.30
—
0.30
ns
tBSR
Block PT Reset
Delay
—
—
0.72
—
0.81
—
0.90
—
0.94
—
1.35
ns
tPTSR
Macrocell PT Set/
Reset Delay
—
—
0.60
—
0.75
—
0.75
—
0.75
—
1.13
ns
tLPTOE
Macrocell PT OE
Delay
—
—
0.83
—
1.19
—
1.04
—
1.52
—
1.31
ns
tSPTOE
Segment PT OE
Delay
—
—
0.83
—
1.19
—
1.04
—
1.52
—
1.31
ns
tOSA
Output Sharing
Array Delay
—
—
0.80
—
0.90
—
1.00
—
1.00
—
1.50
ns
tPTOE
Global PT OE Delay
—
—
0.83
—
1.04
—
1.04
—
1.04
—
1.56
ns
tPDB
5-PT Bypass
Propagation Delay
—
—
0.20
—
0.23
—
0.25
—
0.25
—
0.38
ns
tPDI
Macrocell
Propagation Delay
—
—
0.50
—
0.93
—
0.72
—
0.72
—
1.04
ns
32
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Registered Delays
tS
D-Register Setup
Time, Global Clock
—
0.28
—
0.31
—
0.35
—
0.55
—
0.52
—
ns
tS_PT
D-Register Setup
Time, PT Clock
—
-0.13
—
-0.11
—
-0.10
—
-0.10
—
-0.07
—
ns
tH
D-Register Hold
Time
—
1.90
—
2.56
—
2.50
—
2.40
—
4.00
—
ns
tCOi
Register Clock to
OSA Time
—
—
0.72
—
1.03
—
0.68
—
0.93
—
1.50
ns
tCESi
Clock Enable Setup
Time
—
1.07
—
1.20
—
1.33
—
1.33
—
2.00
—
ns
tCEHi
Clock Enable Hold
Time
—
0.00
—
0.00
—
0.00
—
0.00
—
0.00
—
ns
tSIR
D-Input Register
Setup Time, Global
Clock
—
0.66
—
0.20
—
0.53
—
0.12
—
0.08
—
ns
tSIR_PT
D-Input Register
Setup Time, PT
Clock
—
0.42
—
0.37
—
0.34
—
0.34
—
0.22
—
ns
tHIR
D-Input Register
Hold Time, Global
Clock
—
0.84
—
1.31
—
1.01
—
1.41
—
2.91
—
ns
tHIR_PT
D-Input Register
Hold Time, PT
Clock
—
0.00
—
0.00
—
0.00
—
0.00
—
0.00
—
ns
Latched Delays
tSL
Latch Setup Time,
Global Clock
—
0.18
—
0.00
—
0.00
—
0.00
—
0.00
—
ns
tSL_PT
Latch Setup Time,
PT Clock
—
0.18
—
0.00
—
0.00
—
0.00
—
0.34
—
ns
tHL
Latch Hold Time
—
-0.06
—
0.00
—
0.00
—
0.00
—
-0.03
—
ns
tGOi
Latch Gate to OSA
Time
—
—
0.07
—
0.08
—
0.08
—
0.08
—
0.13
ns
tPDLi
Propagation Delay
through Latch to
OSA Transparent
—
—
0.52
—
0.58
—
0.65
—
0.65
—
0.97
ns
Reset and Set Delays
tSRi
Asynchronous
Reset or Set to OSA
Delay
—
—
0.23
—
0.26
—
0.29
—
0.29
—
0.43
ns
tSRR
Asynchronous
Reset or Set
Recovery
—
—
0.42
—
0.47
—
0.53
—
0.55
—
0.79
ns
—
—
2.00
—
2.25
—
2.51
—
2.61
—
3.76
ns
eXtended Function Routing Delays
tROUTEMF
Delay through SRP
when Implementing
Memory Functions
33
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tCASC
Additional Delay for
PT Cascading
between MFBs
—
—
0.71
—
0.80
—
0.89
—
0.92
—
1.33
ns
tCICOMFB
Carry Chain Delay,
MFB to MFB
—
—
0.35
—
0.39
—
0.44
—
0.46
—
0.66
ns
tCICOMC
Carry Chain Delay,
Macro-Cell to
Macro-Cell
—
—
0.10
—
0.11
—
0.13
—
0.13
—
0.19
ns
tFLAG
Routing Delay for
Extended Function
Flags
—
—
2.62
—
2.94
—
3.27
—
3.40
—
4.91
ns
tFLAGEXP
Additional Flag
Delay when
Expanding Data
Widths
tFLAGFULL,
tFLAGAFULL,
tFLAGEMPTY,
tFLAGAEMPTY
—
2.57
—
2.89
—
3.21
—
3.34
—
4.82
ns
tSUM
Counter Sum Delay
tPTSA
—
0.80
—
0.90
—
1.00
—
1.04
—
1.50
ns
Optional Adjusters
tBLA
Block Loading
Adder
tROUTE
—
0.04
—
0.04
—
0.05
—
0.05
—
0.07
ns
tEXP
PT Expander Adder
tROUTE
—
0.53
—
0.60
—
0.66
—
0.69
—
0.99
ns
tINDIO
Additional Delay for
the Input Register
tINREG
—
0.50
—
0.56
—
0.63
—
0.65
—
0.94
ns
tPLL_SEC_DELA
Y
Secondary PLL
Output Delay
tPLL_DELAY
—
0.91
—
0.91
—
0.91
—
0.91
—
0.91
ns
tINEXP
MFB Input Extender
tROUTE
—
0.62
—
0.70
—
0.78
—
0.81
—
1.16
ns
Input and Output Buffer Delays
tIOI
tIOO
Input Buffer Selection Adder
Output Buffer
Selection Adder
tGCLK_IN, tIN,
tGOE, tRST
ns
Refer to sysIO Adjuster Tables
tBUF
ns
FIFO
tFIFOWCLKS
Write Data Setup
before Write Clock
Time
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tFIFOWCLKH
Write Data Hold
after Write Clock
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tFIFOCLKSKEW
Opposite Clock
Cycle Delay
—
—
1.40
—
1.40
—
1.76
—
1.76
—
1.83
ns
tFIFOFULL
Write Clock to Full
Flag Delay
—
—
3.08
—
3.08
—
3.85
—
3.85
—
4.00
ns
tFIFOAFULL
Write Clock to
Almost Full Flag
Delay
—
—
3.08
—
3.08
—
3.86
—
3.86
—
4.01
ns
tFIFOEMPTY
Read Clock to
Empty Flag Delay
—
—
3.08
—
3.08
—
3.86
—
3.86
—
4.01
ns
tFIFOAEMPTY
Read Clock to
Almost Empty Flag
Delay
—
—
3.08
—
3.08
—
3.86
—
3.86
—
4.01
ns
34
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tFIFOWES
Write-Enable setup
before Write Clock
—
2.33
—
2.33
—
2.91
—
2.91
—
3.03
—
ns
tFIFOWEH
Write-Enable hold
after Write Clock
—
-2.95
—
-2.95
—
-2.36
—
-2.36
—
-2.27
—
ns
tFIFORES
Read-Enable setup
before Read Clock
—
2.69
—
2.35
—
2.79
—
2.38
—
4.14
—
ns
tFIFOREH
Read-Enable hold
after Read Clock
—
-3.17
—
-3.17
—
-2.53
—
-2.53
—
-2.44
—
ns
tFIFORSTO
Reset to Output
Delay
—
—
3.30
—
3.30
—
4.13
—
4.13
—
4.29
ns
tFIFORSTR
Reset Recovery
Time
—
1.20
—
1.20
—
1.50
—
1.50
—
1.56
—
ns
tFIFORSTPW
Reset Pulse Width
—
0.14
—
0.14
—
0.18
—
0.18
—
0.19
—
ns
tFIFORCLKO
Read Clock to FIFO
Out Delay
—
—
3.73
—
3.73
—
4.66
—
4.66
—
4.84
ns
CAM – Update Mode
tCAMMSS
Memory Select
Setup before CLK
—
1.40
—
0.70
—
1.50
—
1.40
—
1.44
—
ns
tCAMMSH
Memory Select
Hold after CLK
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMENMSKS
Enable Mask
Register Setup
Time before CLK
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMENMSKH
Enable Mask
Register Setup
Time after CLK
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMADDS
Address Setup
Time before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMADDH
Address Hold Time
after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMDATAS
Data Setup Time
before Clock
—
-0.41
—
-0.41
—
-0.33
—
-0.33
—
-0.31
—
ns
tCAMDATAH
Data Hold Time
after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMDCS
“Don’t Care” Setup
Time before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMDCH
“Don’t Care” Hold
Time after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMRWS
R/W Setup Time
before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMRWH
R/W Enable Hold
Time after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMCES
Clock Enable Setup
Time before Clock
—
1.55
—
1.55
—
1.94
—
1.94
—
2.02
—
ns
tCAMCEH
Clock Enable Hold
Time after Clock
—
-2.95
—
-2.95
—
-2.36
—
-2.36
—
-2.27
—
ns
35
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tCAMWMSKS
Write Mask
Register Setup
Time before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMWMSKH
Write Mask
Register Setup
Time after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMRSTO
Reset to CAM
Output Delay
—
—
3.30
—
3.30
—
4.13
—
4.13
—
4.29
ns
tCAMRSTR
Reset Recovery
Time
—
1.20
—
1.20
—
1.50
—
1.50
—
1.56
—
ns
tCAMRSTPW
Reset Pulse Width
—
0.14
—
0.14
—
0.18
—
0.18
—
0.19
—
ns
CAM – Compare Mode
tCAMDATAS
Data Setup Time
before Clock
—
-0.41
—
-0.41
—
-0.33
—
-0.33
—
-0.31
—
ns
tCAMDATAH
Data Hold Time
after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMENMSKS
Enable Mask
Register Setup
Time before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tCAMENMSKH
Enable Mask
Register Setup
Time after Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tCAMCASC
CAM Width
Expansion Delay
—
—
0.40
—
0.40
—
0.50
—
0.50
—
0.51
ns
tCAMCO
Clock to Output
(Address Out)
Delay
—
—
6.19
—
6.13
—
6.81
—
6.61
—
9.63
ns
tCAMMATCH
Clock to Match Flag
Delay
—
—
6.19
—
6.13
—
6.07
—
6.61
—
10.22
ns
tCAMMMATCH
Clock to MultiMatch Flag Delay
—
—
5.50
—
5.50
—
6.38
—
6.38
—
7.72
ns
tCAMRSTFLAG
CAM Reset to Flags
Delay
—
—
3.16
—
3.16
—
3.95
—
3.95
—
4.11
ns
Single Port RAM
tSPADDDATA
Address to Data
Delay
—
—
5.97
—
5.97
—
5.97
—
5.97
—
7.76
ns
tSPMSS
Memory Select
Setup Before Clock
Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tSPMSH
Memory Select
Hold time after
Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tSPCES
Clock Enable Setup
before Clock Time
—
2.30
—
2.30
—
2.30
—
2.30
—
9.80
—
ns
tSPCEH
Clock Enable Hold
time after Clock
Time
—
-2.95
—
-2.95
—
-2.95
—
-2.95
—
-2.27
—
ns
tSPADDS
Address Setup
before Clock Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
36
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tSPADDH
Address Hold time
after Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tSPRWS
R/W Setup before
Clock Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tSPRWH
R/W Hold time after
Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tSPDATAS
Data Setup before
Clock Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tSPDATAH
Data Hold time after
Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tSPCLKO
Clock to Output
Delay
—
—
5.97
—
5.97
—
5.97
—
5.97
—
9.86
ns
tSPRSTO
Reset to RAM
Output Delay
—
—
3.30
—
3.30
—
3.30
—
3.30
—
4.29
ns
tSPRSTR
Reset Recovery
Time
—
1.20
—
1.20
—
1.20
—
1.20
—
1.56
—
ns
tSPRSTPW
Reset Pulse Width
—
0.14
—
0.14
—
0.14
—
0.14
—
0.19
—
ns
Pseudo Dual Port RAM
tPDPMSS
Memory Select
Setup Before Clock
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tPDPMSH
Memory Select
Hold time after
Clock
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tPDPRCES
Clock Enable Setup
before Read Clock
Time
—
2.33
—
2.33
—
2.91
—
2.91
—
3.03
—
ns
tPDPRCEH
Clock Enable Hold
time after Read
Clock Time
—
-2.95
—
-2.95
—
-2.36
—
-2.36
—
-2.27
—
ns
tPDPWCES
Clock Enable Setup
before Write Clock
Time
—
1.87
—
1.87
—
2.34
—
2.34
—
2.43
—
ns
tPDPWCEH
Clock Enable Hold
time after Write
Clock Time
—
-2.95
—
-2.95
—
-2.36
—
-2.36
—
-2.27
—
ns
tPDPRADDS
Read Address
Setup before Read
Clock Time
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tPDPRADDH
Read Address Hold
after Read Clock
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tPDPWADDS
Write Address
Setup before Write
Clock Time
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tPDPWADDH
Write Address Hold
after Write Clock
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tPDPRWS
R/W Setup before
Clock Time
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
37
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tPDPRWH
R/W Hold time after
Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tPDPDATAS
Data Setup before
Clock Time
—
-0.27
—
-0.27
—
-0.22
—
-0.22
—
-0.21
—
ns
tPDPDATAH
Data Hold time after
Clock Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tPDPRCLKO
Read Clock to
Output Delay
—
—
5.08
—
5.02
—
5.66
—
5.45
—
8.54
ns
tPDPCLKSKEW
Opposite Clock
Cycle Delay
—
1.40
—
1.40
—
1.76
—
1.76
—
1.83
—
ns
tPDPRSTO
Reset to RAM
Output Delay
—
—
3.30
—
3.30
—
4.13
—
4.13
—
4.29
ns
tPDPRSTR
Reset Recovery
Time
—
1.20
—
1.20
—
1.50
—
1.50
—
1.56
—
ns
tPDPRSTPW
Reset Pulse Width
—
0.14
—
0.14
—
0.18
—
0.18
—
0.19
—
ns
tDPMSAS
Memory Select A
Setup Before R/W A
Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPMSAH
Memory Select
Hold time after R/W
A Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPCEAS
Clock Enable A
Setup before Clock
A Time
—
3.72
—
3.72
—
3.72
—
3.72
—
4.84
—
ns
tDPCEAH
Clock Enable A
Hold time after
Clock A Time
—
-2.95
—
-2.95
—
-2.95
—
-2.95
—
-2.27
—
ns
tDPADDAS
Address A Setup
before Clock A Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPADDAH
Address A Hold
time after Clock A
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPRWAS
R/W A Setup before
Clock A Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPRWAH
R/W A Hold time
after Clock A Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPDATAAS
Write Data A Setup
before Clock A Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPDATAAH
Write Data A Hold
time after Clock A
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPMSBS
Memory Select B
Setup Before R/W B
Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPMSBH
Memory Select
Hold time after R/W
B Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
Dual Port RAM
38
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
Parameter
Description
Base
Parameter
-4
-45
-5
-52
-75
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tDPCEBS
Clock Enable B
Setup before Clock
B Time
—
2.33
—
2.33
—
2.33
—
2.33
—
3.03
—
ns
tDPCEBH
Clock Enable Hold
B after Clock B
Time
—
-2.95
—
-2.95
—
-2.95
—
-2.95
—
-2.27
—
ns
tDPADDBS
Address B Setup
before Clock B Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPADDBH
Address B Hold
time after Clock B
Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPRWBS
R/W B Setup before
Clock B Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPRWBH
R/W B Hold time
after Clock B Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPDATABS
Write Data B Setup
before Clock B Time
—
-0.27
—
-0.27
—
-0.27
—
-0.27
—
-0.21
—
ns
tDPDATABH
Write Data B Hold
after Clock B Time
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
-0.01
—
ns
tDPRCLKAO
Read Clock A to
Output Delay
—
—
5.97
—
5.92
—
5.86
—
5.65
—
9.86
ns
tDPRCLKBO
Read Clock B to
Output Delay
—
—
5.16
—
5.16
—
5.16
—
5.16
—
6.71
ns
tDPCLKSKEW
Opposite Clock
Cycle Delay
—
1.40
—
1.40
—
1.40
—
1.40
—
1.83
—
ns
tDPRSTO
Reset to RAM
Output Delay
—
—
3.30
—
3.30
—
3.30
—
3.30
—
4.29
ns
tDPRSTR
Reset Recovery
Time
—
1.20
—
1.20
—
1.20
—
1.20
—
1.56
—
ns
tDPRSTPW
Reset Pulse Width
—
0.14
—
0.14
—
0.14
—
0.14
—
0.19
—
ns
Timing v.1.8
1. The PT-delay to clock of RAM/FIFO/CAM should be tBCLK instead of tPTCLK.
2. The PT-delay to set/reset of RAM/FIFO/CAM should be tBSR instead of tPTSR.
39
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Timing Adders
Parameter
Description
-4
-45
-5
-52
-75
Base
Param. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
tIOI Input Adjusters
LVTTL_in
Using 3.3V TTL
tIOIN
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS_18_in
Using 1.8V
CMOS
tIOIN
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS_25_in
Using 2.5V
CMOS
tIOIN
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS_33_in
Using 3.3V
CMOS
tIOIN
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
AGP_1X_in
Using AGP 1x
tIOIN
—
1.0
—
1.0
—
1.0
—
1.0
—
1.0
ns
CTT25_in
Using CTT 2.5V
tIOIN
—
1.0
—
1.0
—
1.0
—
1.0
—
1.0
ns
CTT33_in
Using CTT 3.3V
tIOIN
—
1.0
—
1.0
—
1.0
—
1.0
—
1.0
ns
GTL+_in
Using GTL+
tIOIN
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
HSTL_I_in
Using HSTL 2.5V,
tIOIN
Class I
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
HSTL_III_in
Using HSTL 2.5V,
tIOIN
Class III
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
HSTL_IV_in
Using HSTL 2.5V,
tIOIN
Class IV
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
LVDS_in
Using Low Voltage Differential
tIOIN
Signaling (LVDS)
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
LVPECL_in
Using Low
Voltage PECL
tIOIN
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
PCI_in
Using PCI
tIOIN
—
1.0
—
1.0
—
1.0
—
1.0
—
1.0
ns
SSTL2_I_in
Using SSTL 2.5V,
tIOIN
Class I
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
SSTL2_II_in
Using SSTL 2.5V,
tIOIN
Class II
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
SSTL3_I_in
Using SSTL 3.3V,
tIOIN
Class I
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
SSTL3_II_in
Using SSTL 3.3V,
tIOIN
Class II
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
—
0.9
—
0.9
—
0.9
—
0.9
—
0.9
ns
tIOO Output Adjusters – Output Signal Modifiers
Slow Slew
Using Slow Slew
(LVTTL and
LVCMOS
Outputs Only)
tIOBUF,
tIOEN
tIOO Output Adjusters – Output Configurations
LVTTL_out
Using 3.3V TTL
Drive
tIOBUF,
tIOEN,
tIODIS
—
1.2
—
1.2
—
1.2
—
1.2
—
1.2
ns
LVCMOS_18_4mA_out
tIOBUF,
Using 1.8V
CMOS Standard, tIOEN,
tIODIS
4mA Drive
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
Using 1.8V
tIOBUF,
LVCMOS_18_5.33mA_out CMOS Standard, tIOEN,
tIODIS
5.33mA Drive
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
40
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Timing Adders (Continued)
Parameter
Description
-4
-45
-5
-52
-75
Base
Param. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
LVCMOS_18_8mA_out
Using 1.8V
tIOBUF,
CMOS Standard, tIOEN,
8mA Drive
tIODIS
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS_18_12mA_out
Using 1.8V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
12mA Drive
—
0.0
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS_25_4mA_out
Using 2.5V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
4mA Drive
—
1.2
—
1.2
—
1.2
—
1.2
—
1.2
ns
Using 2.5V
tIOBUF,
LVCMOS_25_5.33mA_out CMOS Standard, tIOEN,
tIODIS
5.33 mA Drive
—
1.0
—
1.0
—
1.0
—
1.0
—
1.0
ns
LVCMOS_25_8mA_out
Using 2.5V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
8mA Drive
—
0.4
—
0.4
—
0.4
—
0.4
—
0.4
ns
LVCMOS_25_12mA_out
Using 2.5V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
12mA Drive
—
0.4
—
0.4
—
0.4
—
0.4
—
0.4
ns
LVCMOS_25_16mA_out
Using 2.5V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
16mA Drive
—
0.4
—
0.4
—
0.4
—
0.4
—
0.4
ns
LVCMOS_33_4mA_out
Using 3.3V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
4mA Drive
—
1.2
—
1.2
—
1.2
—
1.2
—
1.2
ns
Using 3.3V
tIOBUF,
LVCMOS_33_5.33mA_out CMOS Standard, tIOEN,
tIODIS
5.33mA Drive
—
1.2
—
1.2
—
1.2
—
1.2
—
1.2
ns
LVCMOS_33_8mA_out
Using 3.3V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
8mA Drive
—
0.8
—
0.8
—
0.8
—
0.8
—
0.8
ns
LVCMOS_33_12mA_out
Using 3.3V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
12mA Drive
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
LVCMOS_33_16mA_out
Using 3.3V
tIOBUF,
CMOS Standard, tIOEN,
tIODIS
16mA Drive
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
LVCMOS_33_20mA_out
tIOBUF,
Using 3.3V
CMOS Standard, tIOEN,
tIODIS
20mA Drive
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
AGP_1X_out
Using AGP 1x
Standard
tIOBUF,
tIOEN,
tIODIS
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
CTT25_out
Using CTT 2.5V
tIOBUF,
tIOEN,
tIODIS
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
CTT33_out
Using CTT 3.3V
tIOBUF,
tIOEN,
tIODIS
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
ns
GTL+_out
Using GTL+
tIOBUF,
tIOEN,
tIODIS
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
41
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Family Timing Adders (Continued)
Parameter
Description
-4
-45
-5
-52
-75
Base
Param. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
HSTL_I_out
t
Using HSTL 2.5V, IOBUF,
tIOEN,
Class I
tIODIS
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
HSTL_III_out
t
Using HSTL 2.5V, IOBUF,
tIOEN,
Class III
tIODIS
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
HSTL_IV_out
t
Using HSTL 2.5V, IOBUF,
tIOEN,
Class IV
tIODIS
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
LVDS_out
Using Low
Voltage Differential Signaling
(LVDS)
tIOBUF,
tIOEN,
tIODIS
—
0.8
—
0.8
—
0.8
—
0.8
—
0.8
ns
LVPECL_out
Using Low
Voltage PECL
tIOBUF,
tIOEN,
tIODIS
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
PCI_out
Using PCI
Standard
tIOBUF,
tIOEN,
tIODIS
—
0.6
—
0.6
—
0.6
—
0.6
—
0.6
ns
SSTL2_I_out
t
Using SSTL 2.5V, IOBUF,
tIOEN,
Class I
tIODIS
—
0.3
—
0.3
—
0.3
—
0.3
—
0.3
ns
SSTL2_II_out
t
Using SSTL 2.5V, IOBUF,
tIOEN,
Class II
tIODIS
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
ns
SSTL3_I_out
t
Using SSTL 3.3V, IOBUF,
tIOEN,
Class I
tIODIS
—
0.2
—
0.2
—
0.2
—
0.2
—
0.2
ns
SSTL3_II_out
t
Using SSTL 3.3V, IOBUF,
tIOEN,
Class II
tIODIS
—
0.4
—
0.4
—
0.4
—
0.4
—
0.4
ns
Timing v.1.8
42
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Min
Max
Units
tPWH
Symbol
Input clock, high time
Parameter
80% to 80%
1.2
—
ns
tPWL
Input clock, low time
20% to 20%
1.2
—
ns
tR, tF
Input Clock, rise and fall time
20% to 80%
—
3.0
ns
tINSTB
Input clock stability, cycle to cycle (peak)
—
+/- 250
ps
fMDIVIN
M Divider input, frequency range
10
320
MHz
fMDIVOUT
M Divider output, frequency range
10
320
MHz
fNDIVIN
N Divider input, frequency range
10
320
MHz
fNDIVOUT
N Divider output, frequency range
10
320
MHz
fVDIVIN
V Divider input, frequency range
100
400
MHz
fVDIVOUT
V Divider output, frequency range
10
320
MHz
tOUTDUTY
Output clock, duty cycle
40
60
%
Clean reference.
10 MHz < fMDIVOUT < 20 MHz or
100MHz < fVDIVIN < 160 MHz1
—
+/- 250
ps
Clean reference.
20 MHz < fMDIVOUT < 320 MHz and
160MHz < fVDIVIN < 320 MHz1
—
+/- 150
ps
Clean reference.
10 MHz < fMDIVOUT < 20 MHz or
100MHz < fVDIVIN < 160 MHz1
—
+/- 300
ps
Clean reference.
20 MHz < fMDIVOUT < 320 MHz and
160MHz < fVDIVIN < 320 MHz1
—
+/- 150
ps
Output clock, cycle to cycle jitter (peak)
tJIT(CC)
TJIT(PERIOD)
2
Output clock, period jitter (peak)
Conditions
tCLK_OUT_DLY
Input clock to CLK_OUT delay
Internal feedback
—
3.0
ns
tPHASE
Input clock to external feedback delta
External feedback
—
600
ps
tLOCK
Time to acquire phase lock after input stable
—
25
us
tPLL_DELAY
Delay increment (Lead/Lag)
tRANGE
Total output delay range (lead/lag)
tPLL_RSTW
Minimum reset pulse width
—
1.8
ns
tCLK_IN3
Global clock input delay
—
1.0
ns
tPLL_SEC_DELA Secondary PLL output delay (tPLL_DELAY)
—
1.5
ns
Typical = +/- 250ps
+/- 120 +/- 550
+/- 0.84 +/- 3.85
Y
1. This condition assures that the output phase jitter will remain within specification.
2. Accumulated jitter measured over 10,000 waveform samples.
3. Internal timing for reference only.
43
ps
ns
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXP sysCONFIG Port Timing Specifications
Symbol
Timing Parameter
Min.
Max.
Units
10
—
ns
sysCONFIG Write Cycle Timing
tSUCS
Input setup time of CS to CCLK rise
tHCS
Hold time of CS to CCLK rise
1
—
ns
tSUWD
Input setup time of write data to CCLK rise
10
—
ns
tHWD
Hold time of write data to CCLK rise
0
—
ns
tPRGM
Low time to reset device SRAM
5
50
ns
tDINIT
INIT delay time
—
5
ms
tIODISS
User I/O disable
—
—
ns
tIOENSS
User I/O enable
—
—
ns
tWH
Write clock High pulse width
18
—
ns
tWL
Write clock Low pulse width
18
—
ns
fMAXW
Write fMAX
—
27
MHz
1
—
ns
sysCONFIG Read Cycle Timing
tHREAD
Hold time of READ to CCLK rise
tSUREAD
Input setup time of READ High to CCLK rise
15
—
ns
tRH
READ clock high pulse width
18
—
ns
tRL
READ clock low pulse width
18
—
ns
fMAXR
Read fMAX
—
27
MHz
tCORD
Clock to out for read data
—
25
ns
44
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Boundary Scan Timing Specifications
Over Recommended Operating Conditions
Parameter
Description
Min
Max
Units
tBTCP
TCK [BSCAN] clock pulse width
40
—
ns
tBTCPH
TCK [BSCAN] clock pulse width high
20
—
ns
tBTCPL
TCK [BSCAN] clock pulse width low
20
—
ns
tBTS
TCK [BSCAN] setup time
8
—
ns
tBTH
TCK [BSCAN] hold time
10
—
ns
tBTRF
TCK [BSCAN] rise/fall time
50
—
mV/ns
tBTCO
TAP controller falling edge of clock to valid output
—
10
ns
tBTCODIS
TAP controller falling edge of clock to valid disable
—
10
ns
tBTCOEN
TAP controller falling edge of clock to valid enable
—
10
ns
tBTCRS
BSCAN test capture register setup time
8
—
ns
tBTCRH
BSCAN test capture register hold time
10
—
ns
tBUTCO
BSCAN test update register, falling edge of clock to valid output
—
25
ns
tBTUODIS
BSCAN test update register, falling edge of clock to valid disable
—
25
ns
tBTUPOEN
BSCAN test update register, falling edge of clock to valid enable
—
25
ns
45
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Power Consumption
ispXPLD 5000MC Typical ICC vs. Frequency
ispXPLD 5000MV/B Typical ICC vs. Frequency
800
700
700
600
Max. ICC (mA)
Max. ICC (mA)
51024V/B
800
51024MC
5768MC
500
400
5512MC
300
5256MC
200
5768MV/B
600
500
400
5512V/B
300
5256V/B
200
100
100
0
0
0
100
200
0
400
100
Operating Frequency (MHz)
200
400
Operating Frequency (MHz)
Note: The device is configured with maximum
number of 16-bit counters, no PLL, typical
current at 3.3V (MV) or 2.5V (MB), 25°C.
Note: The device is configured with maximum
number of 16-bit counters, no PLL, typical
current at 1.8V, 25°C.
Power Estimation Coefficients
DC
K5
K6
K7
ispXPLD
5000MC
ispXPLD
5000MV/B
Device
K0
K1
K2
K3
K4
ispXPLD 5256
2.2
8.4
7
12
100
0.1379 0.0433
6.476
16
24
ispXPLD 5512
2.2
8.4
9.4
18
151
0.1379 0.0433
6.476
17
25
ispXPLD 5768
2.2
8.4
10.2
21
170
0.1379 0.0433
6.476
27
36
ispXPLD 51024
2.2
8.4
13
27.6
200
0.1379 0.0433
6.476
35
43
Note: For further information about the use of these coefficients, refer to technical note TN1031, Power Estimation in ispXPLD 5000MX
Devices.
Memory Coefficients
Device
•
•
•
•
•
•
•
•
•
•
•
•
K8
K9
K10
K11
ispXPLD 5256
0.004719
0.0924
4.4
2.9
ispXPLD 5512
0.004719
0.0924
4.4
2.9
ispXPLD 5768
0.004719
0.0924
4.4
2.9
ispXPLD 51024
0.004719
0.0924
4.4
2.9
K0 = Current per MFB input (µA/MHz)
K1 = Current per Product Term (µA/MHz)
K2 = Current per GRP from MFB (µA/MHz)
K3 = Current per GRP from I/O (µA/MHz)
K4 = Global clock tree current (µA/MHz)
K5 = PLL digital (mA/MHz)
K6 = PLL analog (mA/MHz)
K7 = PLL analog baseline (mA)
DC = Baseline current at 0Mhz (mA)
K8 = CAM frequency component (mA/MHz)
K9 = CAM DC component (mA)
K10 = Current per row decoder (µA/MHz)
46
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
• K11 = Current per column driver (µA/MHz)
Power Estimation Equations
ICC = ICC_DC + IMFB_CPLD + IMFB_ SRAM/PDPRAM/FIFO + IMFB_DPRAM + IMFB_CAM + IPLL_D
ICC_DC
Use the appropriate value for 5000MC (1.8V power supply) or 5000MV/B (2.5V/3.3V power supply) from the data
sheet.
IMFB_CPLD
= ((K0 * CPLD MFB inputs + K1 * CPLD Logical Product Terms + K2 * CPLD GRP from MFB + K3 * CPLD GRP
from IFB) * AF+ K4) * FREQ / 1000µA/mA
IMFB_CAM
= CAM Memory MFBs * ((FREQ * K8) + K9) (CAM operating in typical mode)
IMFB_ SRAM/PDPRAM/FIFO
= (WR_ PERCENT * (K1 + WR_ PERCENT * 8 * K0 + K10 + K11) + RD_ PERCENT * (K1 + 128 * RD_PERCENT
* K0 + 8 * OSW_PERCENT * K2)) * SRAM/PDPRAM/FIFO Memory MFBs * FREQ / 1000µA/mA
IMFB_ DPRAM
= (WR_ PERCENT * (2 * K1 + 2 * WR_ PERCENT * 8 * K0 + K10 + K11) + RD_ PERCENT * (2 * K1 + 2 * 128 *
RD_PERCENT * K0 + 8 * OSW_PERCENT * K2)) * DPRAM Memory MFBs * FREQ / 1000µA/mA
IPLL_D
= K5 * PLL_FREQ * number of PLLs used. IPPL_D is the PLL digital component of the VCC supply current.
Analog portion of PLL supply current consumption, from PLL power pin:
IPLL_A = (K6 * PLL_FREQ + K7) * number of PLLs used
Notes:
•
•
•
•
•
•
•
•
ICC = Current consumption of VCC power supply (mA)
ICC-DC = ICC DC component – Current consumption at 0Mhz (mA)
IMFB_CPLD = CPLD (non-memory logic) current consumption (mA)
IMFB_SRAM/PDPRAM/FIFO = Current consumption for SRAM, PDPRAM, and FIFO (mA)
IMFB_DPRAM = Current consumption for DPRAM (mA)
IMFB_CAM = Current consumption for CAM (mA)
IPLL_D = PLL Current consumption of digital VCC power supply (mA)
IPLL_A = PLL analog power pin current consumption (VCCP pin)
47
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Switching Test Conditions
Figure 21 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 14.
Figure 21. Output Test Load, LVTTL and LVCMOS Standards
VCCO
R1
Test
Point
Device
Output
R2
CL*
*CL includes test fixture and probe capacitance.
Table 14. Test Fixture Required Components
Test Condition
R1
R2
CL
Default LVCMOS 1.8 I/O (L -> H, H -> L)
106
106
35pF
LVCMOS I/O (L -> H, H -> L)
—
—
35pF
Timing Ref.
VCCO
VCCO/2
1.8V
LVCMOS3.3 = 1.5V
LVCMOS3.3 = 3.0V
LVCMOS2.5 = VCCO/2
LVCMOS2.5 = 2.3V
LVCMOS1.8 = VCCO/2
LVCMOS1.8 = 1.65V
Default LVCMOS 1.8 I/O (Z -> H)
—
106
35pF
VCCO/2
1.65V
Default LVCMOS 1.8 I/O (Z -> L)
106
—
35pF
VCCO/2
1.65V
Default LVCMOS 1.8 I/O (H -> Z)
—
106
5pF
VOH - 0.15
1.65V
Default LVCMOS 1.8 I/O (L -> Z)
106
—
5pF
VOL + 0.15
1.65V
Note: Output test conditions for all other interfaces are determined by the respective standards.
48
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Signal Descriptions
Signal Names
Descriptions
TMS
Input – This pin is the Test Mode Select input, which is used to control the IEEE 1149.1
state machine.
TCK
Input – This pin is the Test Clock input pin, used to clock the IEEE 1149.1 state
machine.
TDI
Input – This pin is the IEEE 1149.1 Test Data in pin, used to load data.
TDO
Output – This pin is the IEEE 1149.1 Test Data out pin used to shift data out.
TOE
Input – Test Output Enable pin. TOE tristates all I/O pins when driven low.
GOE0, GOE1
Input – Global output enable inputs.
RESET
Input – This pin resets all the registers in the device. The global polarity for this pin is
selectable on a global basis. The default is active low. An external pull-down is required
when polarity is set to active high.
yzz
Input/Output – These are the general purpose I/O used by the logic array. y is the MFB
reference (alpha) and z is the macrocell reference (numeric)
y: A-X (768 macrocells)
y: A-P (512 macrocells)
y: A-H (256 macrocells)
z: 0-31
GND
GND – Ground
NC
No connect
VCC
VCC – The power supply pins for core logic.
VCCO0, VCCO1, VCCO2, VCCO3
VCC – The power supply pins for I/O banks 0, 1, 2, and 3.
VREF0, VREF1, VREF2, VREF3
Input – This pin defines the reference voltage for I/O banks 0, 1, 2, and 3.
GCLK0, GCLK1, GCLK2, GCLK3
Input – Global clock/clock enable inputs (see Figure 14 for differential pairing).
CLK_OUT0, CLK_OUT1
Output – Optional clock output from PLL 0 and 1.
PLL_RST0, PLL_RST1
Input – Optional input resets the M divider in PLL 0 and 1.
PLL_FBK0, PLL_FBK1
Input – Optional feedback input for PLL 0 and 1.
GNDP
GND – Ground for PLLs.
VCCP
VCC – The power supply pin for PLLs.
VCCJ
VCC – The power supply for the IEEE 1149.1 interface.
DATAx
I/O – sysCONFIG data pins, bit x.
CSB
Input – sysCONFIG interface chip select. Drive low to select sysCONFIG interface.
CFG0
Input – Defines SRAM configuration mode. Low: sysCONFIG port, high: E2CMOS or
IEEE 1149.1 TAP.
PROGRAMB
Input – Controls the programming of SRAM. Hold high for normal operation. Toggle low
to reload SRAM from E2 memory.
CCLK1
Input – Clock for sysCONFIG interface. Reads and writes occur on the rising edge of
the clock.
READ1
Input – Drive high to perform reads from the sysCONFIG interface.
INITB
I/O – Indicates status of configuration. Can be driven low to inhibit configuration.
DONE
Output (open drain) – Indicates status of configuration.
1. These inputs should not toggle during power up for proper power-up configuration.
49
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MX Power Supply and NC Connections1
Signals
208 PQFP4
256 fpBGA3, 5
484 fpBGA, 53
672 fpBGA3, 5
AA21, AA6, F21, F6, G20, G7, J13,
J14, K13, K14, L13, L14, M13, M14,
N10, N11, N12, N15, N16, N17, N18,
N9, P10, P11, P12, P15, P16, P17,
P18, P9, R13, R14, T13, T14, U13,
U14, V13, V14, Y20, Y7
VCC
10, 49, 76, 114, D4, D13, F6, F11, L6,
153, 180
L11, N4, N13
A17, A6, AA2, AA21, AB17,
AB6, B2, B21, D19, D4, F1,
F22, G10, G11, G12, G13, K16,
K7, L16, L7, M16, M7, T10, T11,
T12, T13, T14, T9, U1, U22,
W19, W4
VCCO0
5, 17, 189, 204 A1, F7, G6
B9, C3, G8, G9, H7, J2, J7, P4 H10, H11, H8, H9, J8, J9, K8, L8, M8,
N8
VCCO1
42, 57, 72
K6, L7, T1
AA9, R7, T3, T8, Y3
P8, R8, T8, U8, V8, V9, W10, W11,
W8, W9
VCCO2
85, 100, 107,
121
K11, L10, T16
AA14, R16, T15, T20, Y20
P19, R19, T19, U19, V18, V19, W12,
W13, W14, W15, W16, W17, W18,
W19
VCCO3
146, 161, 176
A16, F10, G11
B14, C20, G14, G15, H16, J16, H12, H13, H14, H15, H16, H17, H18,
J21, P19
H19, J18, J19, K19, L19, M19, N19
VCCP
136
J16
M22
N25
VCCJ
27
J1
M1
N4
GND
15, 29, 44, 81,
119, 148, 185,
7, 19, 191, 205,
40, 56, 70, 87,
101, 109, 123,
144, 160, 174
K1, C3, C14, E5, E12,
G7, G8, G9, G10, H7,
H8, H9, H10, J7, J8, J9,
J10, K7, K8, K9, K10,
M5, M12, P3
N1, A1, A2, A21, A22, AA1,
AA22, AB1, AB22, B1, B22,
C15, C8, D11, D12, E18, E5,
F17, F6, G16, G7, H10, H11,
H12, H13, H14, H15, H20, H3,
H8, H9, J10, J11, J12, J13, J14,
J15, J8, J9, K10, K11, K12,
K13, K14, K15, K8, K9, L10,
L11, L12, L13, L14, L15, L19,
L4, L8, L9, M10, M11, M12,
M13, M14, M19, M4, M9, N10,
N11, N12, N13, N14, N9, P10,
P11, P12, P13, P14, P9, R10,
R11, R12, R13, R14, R15, R8,
R9, T16, T7, W11, W12, Y15, Y8
A11, A16, A2, A25, AE1, AE2, AE25,
AE26, AF11, AF16, AF2, AF25, B1,
B2, B25, B26, J10, J11, J12, J15, J16,
J17, K10, K11, K12, K15, K16, K17,
K18, K9, L1, L10, L11, L12, L15, L16,
L17, L18, L26, L9, M10, M11, M12,
M15, M16, M17, M18, M9, N13, N14,
P13, P14, R10, R11, R12, R15, R16,
R17, R18, R9, T1, T10, T11, T12, T15,
T16, T17, T18, T26, T9, U10, U11,
U12, U15, U16, U17, U18, U9, V10,
V11, V12, V15, V16, V17
GNDP
134
K16
N22
P26
—
5256MX: A2, A11, A12,
A15, B2, B12, B15,
B16, C4, C12, C15,
C16, D1, D11, D14,
D15, D16, E1, E4, E10,
E11, E13, E14, F4, F5,
F12, F13, L1, L4, M3,
M7, M13, N2, N6, P1,
P2, P5, P6, P13, P14,
P15, P16, R1, R2, R4,
R5, R6, R16, T2, T3,
T4, T5, T6
5512MX: P1, AA19, AB2, AB21,
J17, J6, K1, K17, K18, K19, K2,
K20, K21, K22, K3, K4, K5, K6,
L1, L17, L18, L2, L20, L21, L22,
L3, L5, L6, M15, M17, M18, M2,
M20, M21, M3, M5, M6, M8,
N15, N17, N18, N19, N2, N20,
N21, N3, N4, N5, N6, N8, P15,
P17, P18, P2, P21, P22, P5,
P6, P8, U17, U6, V18, V5, W6
A12, A13, A14, A15, AA10, AA11,
AA12, AA13, AA14, AA15, AA16,
AA17, AA7, AB10, AB11, AB12,
AB13, AB14, AB15, AB16, AB17,
AC10, AC11, AC12, AC13, AC14,
AC15, AC16, AC17, AD11, AD12,
AD13, AD14, AD15, AD16, AE11,
AE12, AE13, AE14, AE15, AE16,
AF12, AF13, AF14, AF15, B11, B12,
B13, B14, B15, B16, C11, C12, C13,
C14, C15, C16, C3, D10, D11, D12,
D13, D14, D15, D16, D17, E10, E11,
E12, E13, E14, E15, E16, E17, E6,
E7, E8, F10, F11, F12, F13, F14, F15,
F16, F17, G10, G11, G12, G13, G14,
G15, G16, G17, Y10, Y11, Y12, Y13,
Y14, Y15, Y16, Y17
NC
2
5768MX/51024MX: None
5512MX/5768MX: L1
1. All grounds must be electrically connected at the board level.
2. NC pins should not be connected to any active signals, VCC or GND.
3. Balls for GND, VCC and VCCOX are connected within the substrate to their respective common signals. Pin orientation A1 starts from the
upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
4. Pin orientation follows the conventional counter-clockwise order from pin 1 marking of the topside view.
5. Internal GNDs and I/O GNDs (Bank 0 - Bank 3) are connected inside package. VCCO balls connect to four power planes within the package, one each for VCCOX.
50
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5256MX Logic Signal Connections
Alternate Outputs
sysIO Bank
LVDS Pair
Primary Macrocell/
Function
Macrocell 1
Macrocell 2
Alternate Input
256 fpBGA
Ball Number
0
61N
H30
G17
H17
H31
B1
0
61P
H28
G16
H16
H29
C1
0
62N
H26
G15
H15
H27
D3
0
62P
H24
G14
H14
H25
C2
0
63N
H22
G13
H13
H23
E3
0
63P
H21
G12
H12
-
D2
-
-
VCC
-
-
-
VCC
0
64N
H20
G11
H11
-
E2
0
64P
H18/CLK_OUT0
G10
H10
H19
F2
0
65N
H16
G9
H9
H17
F1
0
65P
H14
G8
H8
H15
G1
-
-
GND
-
-
-
GND
0
66N
H12
G7
H7
H13
F3
-
-
VCCO0
-
-
-
VCCO0
0
66P
H10
G6
H6
H11
G5
-
-
GND (Bank 0)
-
-
-
GND (Bank 0)
0
67N
H8
G5
H5
H9
H5
0
67P
H6/PLL_RST0
G4
H4
H7
G4
0
68N
H5
-
-
-
G3
0
68P
H4/PLL_FBK0
-
-
-
H3
0
69N
H2
-
-
H3
G2
H1
0
69P
H0
-
-
H1
-
GCLK0P
GCLK0
-
-
-
H2
-
See Power Supply and
NC Connections Table
-
-
VCCJ
-
-
-
GCLK0N
GCLK1
-
-
-
J2
-
-
GND
-
-
-
GND
-
-
TDI
-
-
-
H6
-
-
TMS
-
-
-
H4
-
-
TCK
-
-
-
J6
-
-
TDO
-
-
-
K2
1
0P
A0/DATA0
A0
B0
A1
K3
1
0N
A2/DATA1
A1
B1
A3
J3
1
1P
A4/DATA2
A2
B2
-
J5
1
1N
A5/DATA3
A3
B3
-
J4
1
2P
A6/DATA4
A4
B4
A7
L2
1
2N
A8/DATA5
A5
B5
A9
M1
-
-
GND (Bank 1)
-
-
-
GND (Bank 1)
1
3P
A10/DATA6
A6
B6
A11
K4
-
-
VCCO1
-
-
-
VCCO1
1
3N
A12/DATA7
A7
B7
A13
L3
-
-
GND
-
-
-
GND
1
4P
A14/INITB
A8
B8
A15
K5
51
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5256MX Logic Signal Connections (Continued)
Primary Macrocell/
Function
sysIO Bank
LVDS Pair
1
4N
A16/CSB
1
5P
A18/READ
1
5N
A20/CCLK
-
-
VCC
Alternate Outputs
Macrocell 1
256 fpBGA
Ball Number
Macrocell 2
Alternate Input
A9
B9
A17
L5
A10
B10
A19
N1
A11
B11
A21
M2
-
-
-
VCC
-
-
DONE
-
-
-
M4
1
6P
A22
A12
B12
A23
N3
1
6N
A24
A13
B13
A25
P4
1
7P
A26
A14
B14
A27
N5
1
7N
A28
A15
B15
A29
M6
-
-
PROGRAMB
-
-
-
R3
-
-
GND (Bank 1)
-
-
-
GND (Bank 1)
-
-
VCCO1
-
-
-
VCC01
-
-
CFG0
-
-
-
L8
1
8P
B2
A16
B16
B3
T7
1
8N
B4
A17
B17
-
R7
1
9P
B5
A18
B18
-
N7
1
9N
B6
A19
B19
B7
P7
1
10P
B8
A20
B20
B9
T8
1
10N
B10
A21
B21
B11
R8
1
11P
B12
A22
B22
B13
M8
1
11N
B14
A23
B23
B15
P8
1
-
B16/VREF1
-
-
B17
L9
1
12P
B18
A24
B24
B19
N8
1
12N
B20
A25
B25
-
M9
-
-
GND (Bank 1)
-
-
-
GND (Bank 1)
1
13P
B21
A26
B26
-
N10
-
-
VCCO1
-
-
-
VCCO1
1
13N
B22
A27
B27
B23
T9
1
14P
B24
A28
B28
B25
T10
1
14N
B26
A29
B29
B27
R9
-
-
VCC
-
-
-
VCC
1
15P
B28
A30
B30
B29
P9
1
15N
B30
A31
B31
B31
N9
2
16P
C0
C0
D0
C1
T11
2
16N
C2
C1
D1
C3
T12
2
17P
C4
C2
D2
-
P10
2
17N
C5
C3
D3
-
R10
2
18P
C6
C4
D4
C7
R11
-
-
VCCO2
-
-
-
VCCO2
2
18N
C8
C5
D5
C9
M10
-
-
GND (Bank 2)
-
-
-
GND (Bank 2)
2
19P
C10
C6
D6
C11
M11
2
19N
C12
C7
D7
C13
T13
52
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5256MX Logic Signal Connections (Continued)
sysIO Bank
LVDS Pair
Alternate Outputs
Primary Macrocell/
Function
Macrocell 1
Macrocell 2
Alternate Input
256 fpBGA
Ball Number
2
20P
C14
-
-
C15
P11
2
20N
C16/VREF2
-
-
C17
T14
2
21P
C18
C8
D8
C19
R12
2
21N
C20
C9
D9
-
R13
2
22P
C21
C10
D10
-
N11
2
22N
C22
C11
D11
C23
T15
2
23P
C24
C12
D12
C25
R14
2
23N
C26
C13
D13
C27
N12
2
24P
C28
C14
D14
C29
P12
2
24N
C30
C15
D15
C31
R15
-
-
VCCO2
-
-
-
VCCO2
-
-
GND (Bank 2)
-
-
-
GND (Bank 2)
2
25P
D0
-
-
D1
N15
2
25N
D2
-
-
D3
N14
2
26P
D4
C16
D16
-
N16
2
26N
D5
C17
D17
-
M16
2
27P
D6
C18
D18
D7
M14
2
27N
D8
C19
D19
D9
M15
-
-
VCC
-
-
-
VCC
2
28P
D10
C20
D20
D11
L13
2
28N
D12
C21
D21
D13
L12
2
29P
D14
C22
D22
D15
L15
2
29N
D16
C23
D23
D17
L16
-
-
GND
-
-
-
GND
2
30P
D18
C24
D24
D19
L14
-
-
VCCO2
-
-
-
VCCO2
2
30N
D20
C25
D25
-
K15
-
-
GND (Bank 2)
-
-
-
GND (Bank 2)
2
31P
D21
C26
D26
-
K14
2
31N
D22
C27
D27
D23
K12
2
32P
D24
C28
D28
D25
K13
2
32N
D26
C29
D29
D27
J13
2
33P
D28
C30
D30
D29
J14
2
33N
D30
C31
D31
D31
J12
-
-
TOE
-
-
-
J15
-
-
RESET
-
-
-
J11
-
-
GOE0
-
-
-
H11
-
-
GOE1
-
-
-
H13
See Power Supply and
NC Connections Table
-
-
GNDP
-
-
-
-
GCLK3N
GCLK2
-
-
-
H15
-
-
VCCP
-
-
-
See Power Supply and
NC Connections Table
-
GCLK3P
GCLK3
-
-
-
H16
53
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5256MX Logic Signal Connections (Continued)
Primary Macrocell/
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate Input
256 fpBGA
Ball Number
sysIO Bank
LVDS Pair
3
34N
E30
-
-
E31
H14
3
34P
E28
-
-
E29
G16
3
35N
E26
-
-
E27
G15
3
35P
E24/PLL_FBK1
-
-
E25
F15
3
36N
E22/PLL_RST1
E27
F27
E23
H12
3
36P
E21
E26
F26
-
G14
-
-
GND (Bank 3)
-
-
-
GND (Bank 3)
3
37N
E20
E25
F25
-
F16
-
-
VCCO3
-
-
-
VCCO3
3
37P
E18
E24
F24
E19
E16
-
-
GND
-
-
-
GND
3
38N
E16
E23
F23
E17
G13
3
38P
E14
E22
F22
E15
G12
3
39N
E12
E21
F21
E13
F14
3
39P
E10/CLK_OUT1
E20
F20
E11
E15
-
-
VCC
-
-
-
VCC
3
40N
E8
E19
F19
E9
D12
3
40P
E6
E18
F18
E7
B14
3
41N
E5
E17
F17
-
C13
3
41P
E4
E16
F16
-
A14
3
42N
E2
E31
F31
E3
A13
3
42P
E0
E30
F30
E1
B13
-
-
GND (Bank 3)
-
-
-
GND (Bank 3)
-
-
VCCO3
-
-
-
VCCO3
3
43N
F30
E15
F15
F31
B11
3
43P
F28
E14
F14
F29
C11
3
44N
F26
E13
F13
F27
B10
3
44P
F24
E12
F12
F25
A10
3
45N
F22
E11
F11
F23
C10
3
45P
F21
E10
F10
-
D10
3
46N
F20
E9
F9
-
C9
3
46P
F18
E8
F8
F19
E9
3
47N
F16/VREF3
E29
F29
F17
D9
3
47P
F14
E28
F28
F15
F9
3
48N
F12
E7
F7
F13
A9
3
48P
F10
E6
F6
F11
F8
-
-
GND (Bank 3)
-
-
-
GND (Bank 3)
3
49N
F8
E5
F5
F9
E8
-
-
VCCO3
-
-
-
VCCO3
3
49P
F6
E4
F4
F7
A8
3
50N
F5
E3
F3
-
B9
3
50P
F4
E2
F2
-
D8
-
-
VCC
-
-
-
VCC
54
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5256MX Logic Signal Connections (Continued)
Primary Macrocell/
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate Input
256 fpBGA
Ball Number
sysIO Bank
LVDS Pair
3
51N
F2
E1
F1
F3
B8
3
51P
F0
E0
F0
F1
C8
0
52N
G30
G31
H31
G31
B7
0
52P
G28
G30
H30
G29
A7
-
-
GND
-
-
-
NC
0
53N
G26
G29
H29
G27
D7
0
53P
G24
G28
H28
G25
C7
0
54N
G22
G27
H27
G23
B6
-
-
VCCO0
-
-
-
VCCO0
0
54P
G21
G26
H26
-
E7
-
-
GND (Bank 0)
-
-
-
GND (Bank 0)
0
55N
G20
G25
H25
-
E6
0
55P
G18
G24
H24
G19
A6
0
56N
G16/VREF0
G3
H3
G17
A5
0
56P
G14
G2
H2
G15
A4
0
57N
G12
G23
H23
G13
B5
0
57P
G10
G22
H22
G11
A3
0
58N
G8
G21
H21
G9
B4
0
58P
G6
G20
H20
G7
B3
0
59N
G5
G19
H19
-
C5
0
59P
G4
G18
H18
-
C6
0
60N
G2
G1
H1
G3
D5
0
60P
G0
G0
H0
G1
D6
-
-
VCCO0
-
-
-
VCCO0
-
-
GND (Bank 0)
-
-
-
GND (Bank 0)
Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to
receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs
55
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
0
109N
O30
0
109P
O28
0
110N
O26
0
110P
O24
0
111N
O22
—
—
O11
P18
O31
208
C4
B4
O10
P16
O29
1
E4
A4
M17
O17
O27
2
B1
B3
M16
O16
O25
3
C1
A3
M15
O15
O23
4
D3
F5
VCCO0
—
—
—
5
VCCO0
VCCO0
C2
G6
0
111P
O20
M14
O14
O21
6
—
—
GND (Bank 0)
—
—
—
7
0
112N
O18
M13
O13
O19
8
E3
H6
0
112P
O16
M12
O12
O17
9
D2
G5
0
113N
O14
O9
P14
O15
—
—
D3
0
113P
O12
O8
P12
O13
—
—
D2
0
114N
O10
O7
P10
O11
—
—
E4
0
114P
O8
O6
P8
O9
—
—
E3
0
115N
O6
O5
P6
O7
—
—
F4
0
115P
O4
O4
P4
O5
—
—
G4
GND (Bank 0) GND (Bank 0)
0
116N
O2
O3
P2
O3
—
—
C2
—
—
VCCO0
—
—
—
—
VCCO0
VCCO0
—
C1
0
116P
O0
O2
P0
O1
—
—
—
GND (Bank 0)
—
—
—
—
0
117N
P30
O1
—
P31
—
D1
F3
0
117P
P28
O0
—
P29
—
E1
G3
0
118N
P26
O31
—
P27
—
F4
H4
—
—
VCC
—
—
—
10
VCC
VCC
0
118P
P24
O30
—
P25
—
F5
J4
0
119N
P22
M11
O11
P23
11
E2
H5
0
119P
P20/CLK_OUT0
M10
O10
P21
12
F2
J5
0
120N
P18
M9
O9
P19
13
F1
E2
GND (Bank 0) GND (Bank 0)
0
120P
P16
M8
O8
P17
14
G1
F2
—
—
GND
—
—
—
15
GND
GND
0
121N
P14
M7
O7
P15
16
F3
D1
—
—
VCCO0
—
—
—
17
VCCO0
VCCO0
G5
E1
0
121P
P12
M6
O6
P13
18
—
—
GND (Bank 0)
—
—
—
19
0
122N
P10
M5
O5
P11
20
H5
J3
0
122P
P8/PLL_RST0
M4
O4
P9
21
G4
H2
0
123N
P6
—
—
P7
22
G3
G2
0
123P
P4/PLL_FBK0
—
—
P5
23
H3
G1
0
124N
P2
—
—
P3
24
G2
H1
0
124P
P0
—
—
P1
25
H1
J1
—
GCLK0P
GCLK0
—
—
—
26
H2
N7
—
—
VCCJ
—
—
56
—
GND (Bank 0) GND (Bank 0)
See Power Supply and
NC Connections Table
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
—
GCLK0N
GCLK1
—
—
—
28
J2
P7
—
—
GND
—
—
—
29
GND
GND
—
—
TDI
—
—
—
30
H6
R1
—
—
TMS
—
—
—
31
H4
R2
—
—
TCK
—
—
—
32
J6
T1
—
—
TDO
—
—
—
33
K2
V1
1
0P
A0/DATA0
B0
D0
A1
34
K3
W1
1
0N
A2/DATA1
B1
D1
A3
35
J3
Y1
1
1P
A4/DATA2
B2
D2
A5
36
J5
P3
1
1N
A6/DATA3
B3
D3
A7
37
J4
R3
1
2P
A8/DATA4
B4
D4
A9
38
L2
T2
1
2N
A10/DATA5
B5
D5
A11
39
M1
U2
—
—
GND (Bank 1)
—
—
—
40
1
3P
A12/DATA6
B6
D6
A13
41
K4
V2
GND (Bank 1) GND (Bank 1)
—
—
VCCO1
—
—
—
42
VCCO1
VCCO1
1
3N
A14/DATA7
B7
D7
A15
43
L3
W2
—
—
GND
—
—
—
44
GND
GND
1
4P
A16/INITB
B8
D8
A17
45
K5
R4
1
4N
A18/CSB
B9
D9
A19
46
L5
T4
1
5P
A20/READ
B10
D10
A21
47
N1
R6
1
5N
A22/CCLK
B11
D11
A23
48
M2
R5
1
6P
A24
—
—
A25
—
—
U3
—
—
VCC
—
—
—
49
VCC
VCC
1
6N
A26
—
—
A27
—
P11
V3
1
7P
A28
—
—
A29
—
M3
Y2
1
7N
A30
—
—
A31
—
L4
W3
1
8P
B0
A0
—
B1
—
N2
U5
1
8N
B2
A2
—
B3
—
P2
T5
—
—
GND (Bank 1)
—
—
—
—
1
9P
B4
A4
—
—
—
R1
U4
—
—
VCCO1
—
—
—
—
VCCO1
VCCO1
1
9N
B5
A6
—
—
—
R2
V4
1
10P
B6
A8
—
B7
—
T2
AA3
1
10N
B8
A10
—
B9
—
T3
AB3
GND (Bank 1) GND (Bank 1)
1
—
B10
A12
—
B11
—
—
Y4
—
—
DONE
—
—
—
50
M4
AA4
1
11P
B14
B12
D12
B15
51
N3
AB4
1
11N
B16
B13
D13
B17
52
P4
AB5
1
12P
B18
B14
D14
B19
53
N5
T6
1
12N
B20
B15
D15
B21
54
M6
U7
—
—
PROGRAMB
—
—
—
55
R3
W5
1
—
B22
A14
—
B23
—
P5
U8
—
—
GND (Bank 1)
—
—
—
56
57
GND (Bank 1) GND (Bank 1)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
sysIO
Bank
LVDS
Pair
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
1
13P
B24
A16
—
B25
—
T4
V6
—
—
VCCO1
—
—
—
57
VCCO1
VCCO1
1
13N
B26
A18
—
B27
—
T5
V7
1
14P
B28
A20
—
B29
—
R4
Y5
1
14N
B30
A22
—
B31
—
N6
AA5
1
15P
C0
—
—
C1
—
R5
Y6
1
15N
C2
—
—
C3
—
P6
Y7
1
16P
C4
—
—
C5
—
—
AA6
1
16N
C8
—
—
C9
—
—
AA7
1
17P
C10
—
—
C11
—
—
W7
1
1
17N
C12
—
—
C13
—
M7
V8
1
18P
C16
—
—
C17
—
T6
W8
R6
U9
1
18N
C18
—
—
C19
—
—
—
GND0 (Bank 1)
—
—
—
—
—
—
CFG0
—
—
—
58
L8
U10
—
—
VCCO1
—
—
—
—
VCCO1
VCCO1
GND (Bank 1) GND (Bank 1)
1
19P
C24
B16
D16
C25
59
T7
AB7
1
19N
C26
B17
D17
C27
60
R7
AA8
1
20P
C28
B18
D18
C29
61
N7
AB8
1
20N
D0
B19
D19
D1
62
P7
AB9
1
21P
D2
B20
D20
D3
63
T8
W9
1
21N
D4
B21
D21
D5
64
R8
Y9
1
22P
D6
B22
D22
D7
65
M8
AB10
1
22N
D8
B23
D23
D9
66
P8
AA10
1
—
D10/VREF1
—
—
D11
67
L9
W10
1
23P
D12
B24
D24
D13
68
N8
Y10
M9
Y11
1
23N
D16
B25
D25
D17
69
—
—
GND (Bank 1)
—
—
—
70
GND (Bank 1) GND (Bank 1)
1
24P
D18
B26
D26
D19
71
N10
V9
—
—
VCCO1
—
—
—
72
VCCO1
VCCO1
1
24N
D20
B27
D27
D21
73
T9
V10
1
25P
D22
B28
D28
D23
74
T10
AA11
1
25N
D24
B29
D29
D25
75
R9
AB11
—
—
VCC
—
—
—
76
VCC
VCC
1
26P
D26
B30
D30
D27
77
P9
U11
1
26N
D28
B31
D31
D29
78
N9
V11
2
27P
E0
F0
H0
E1
79
T11
AB12
2
27N
E2
F1
H1
E3
80
T12
AA12
—
—
GND
—
—
—
81
NC
GND
—
—
GND
—
—
—
—
GND
GND
2
28P
E4
F2
H2
E5
82
P10
Y12
2
28N
E6
F3
H3
E7
83
R10
AA13
2
29P
E8
F4
H4
E9
84
R11
V12
58
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
sysIO
Bank
LVDS
Pair
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
—
—
VCCO2
—
—
—
85
VCCO2
VCCO2
2
29N
E10
F5
H5
E11
86
M10
U12
—
—
GND (Bank 2)
—
—
—
87
2
30P
E12
F6
H6
E13
88
2
30N
E16
F7
H7
E17
89
T13
Y13
2
31P
E18
—
—
E19
90
P11
V13
GND (Bank 2) GND (Bank 2)
M11
AB13
2
31N
E20/VREF2
—
—
E21
91
T14
W13
2
32P
E22
F8
H8
E23
92
R12
V14
2
32N
E24
F9
H9
E25
93
R13
W14
2
33P
E26
F10
H10
E27
94
N11
Y14
2
33N
E28
F11
H11
E29
95
T15
AB14
2
34P
F0
F12
H12
F1
96
R14
AB15
2
34N
F2
F13
H13
F3
97
N12
AA15
2
35P
F4
F14
H14
F5
98
P12
U13
—
—
VCCO2
—
—
—
—
VCCO2
VCCO2
2
35N
F6
F15
H15
F7
99
R15
U14
—
—
GND (Bank 2)
—
—
—
—
2
36P
F8
E0
—
F9
—
—
W15
2
36N
F10
E2
—
F11
—
—
W16
2
37P
F12
E4
—
F13
—
—
Y16
2
37N
F16
E6
—
F17
—
—
AA16
2
38P
F18
E8
—
F19
—
—
AB16
2
38N
F20
E10
—
F21
—
—
AA17
2
39P
F22
E12
—
F23
—
—
Y17
2
39N
F24
E16
—
F25
—
—
AA18
2
40P
F26
E20
—
F27
—
—
W17
2
40N
F28
E22
—
F29
—
—
W18
G1
—
—
V15
GND (Bank 2) GND (Bank 2)
2
41P
G0
—
—
—
—
VCCO2
—
—
—
100
VCCO2
VCCO2
2
41N
G2
—
—
G3
—
—
U15
—
—
GND (Bank 2)
—
—
—
101
2
42P
G4
—
—
G5
102
2
42N
G6
—
—
G7
103
P15
V17
2
43P
G8
—
—
G9
—
M13
V16
2
43N
G10
—
—
G11
—
P14
U16
2
44P
G12
—
—
G13
—
—
AB18
2
44N
G14
—
—
G15
—
—
AB19
2
45P
G16
—
—
G17
—
—
U18
2
45N
G18
—
—
G19
—
—
T17
2
46P
G20
—
—
G21
104
R16
AB20
2
46N
G22
—
—
G23
105
P16
AA20
2
47P
G24
—
—
G25
106
N15
Y19
—
—
VCCO2
—
—
—
107
VCCO2
VCCO2
59
GND (Bank 2) GND (Bank 2)
P13
Y18
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
2
47N
G26
—
—
G27
108
—
—
GND (Bank 2)
—
—
—
109
2
48P
G28
F16
H16
G29
110
N16
T18
2
48N
G30
F17
H17
G31
111
M16
R17
2
49P
H0
F18
H18
H1
112
M14
U19
2
49N
H2
F19
H19
H3
113
M15
T19
N14
V19
GND (Bank 2) GND (Bank 2)
2
50P
H4
E24
—
H5
—
—
V20
—
—
VCC
—
—
—
114
VCC
VCC
2
50N
H6
E26
—
H7
—
NC
U20
2
51P
H8
F20
H20
H9
115
L13
W20
2
51N
H10
F21
H21
H11
116
L12
Y21
2
52P
H12
F22
H22
H13
117
L15
R18
2
52N
H14
F23
H23
H15
118
L16
R19
—
—
GND
—
—
—
119
GND
GND
2
53P
H16
F24
H24
H17
120
L14
W21
—
—
VCCO2
—
—
—
121
VCCO2
VCCO2
2
53N
H18
F25
H25
H19
122
K15
Y22
—
—
GND (Bank 2)
—
—
—
123
GND (Bank 2) GND (Bank 2)
2
54P
H20
F26
H26
H21
124
K14
R20
2
54N
H22
F27
H27
H23
125
K12
P20
2
55P
H24
F28
H28
H25
126
K13
T21
2
55N
H26
F29
H29
H27
127
J13
R21
2
56P
H28
F30
H30
H29
128
J14
U21
2
56N
H30
F31
H31
H31
129
J12
V21
—
—
TOE
—
—
—
130
J15
W22
—
—
RESET
—
—
—
131
J11
V22
—
—
GOE0
—
—
—
132
H11
T22
—
—
GOE1
—
—
—
133
H13
R22
—
—
GNDP
—
—
—
—
GCLK3N
GCLK2
—
—
—
—
—
VCCP
—
—
—
—
GCLK3P
GCLK3
—
—
—
137
3
57N
I30
—
—
I31
138
H14
J22
3
57P
I28
—
—
I29
139
G16
H22
3
58N
I26
—
—
I27
140
G15
E22
3
58P
I24/PLL_FBK1
—
—
I25
141
F15
E21
3
59N
I22/PLL_RST1
I27
K27
I23
142
H12
G22
3
59P
I20
I26
K26
I21
143
G14
F21
—
—
GND (Bank 3)
—
—
—
144
3
60N
I18
I25
K25
I19
145
F16
H21
—
—
VCCO3
—
—
—
146
VCCO3
VCCO3
3
60P
I16
I24
K24
I17
147
E16
G21
—
—
GND
—
—
—
148
GND
GND
60
See Power Supply and NC Connections Table
135
H15
P16
See Power Supply and NC Connections Table
H16
N16
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
3
61N
I14
I23
K23
I15
149
G13
D22
3
61P
I12
I22
K22
I13
150
G12
D21
3
62N
I10
I21
K21
I11
151
F14
J20
3
62P
I8/CLK_OUT1
I20
K20
I9
152
E15
J19
3
63N
I6
K31
—
I7
—
F12
E20
—
—
VCC
—
—
—
153
VCC
VCC
3
63P
I4
K30
L30
I5
—
F13
F20
3
64N
I2
K29
L28
I3
—
D16
H17
D15
H18
3
64P
I0
K28
L26
I1
—
—
—
GND (Bank 3)
—
—
—
—
3
65N
J30
K27
—
J31
—
—
J18
—
—
VCCO3
—
—
—
—
VCCO3
VCCO3
3
65P
J28
K26
—
J29
—
—
H19
3
66N
J26
K25
—
J27
—
—
G20
3
66P
J24
K24
—
J25
—
—
G19
3
67N
J22
K23
—
J23
—
—
C22
3
67P
J20
K22
—
J21
—
—
C21
3
68N
J18
K21
—
J19
—
—
D20
3
68P
J16
K20
—
J17
—
—
C19
3
69N
J14
K19
—
J15
—
C16
F19
B16
E19
GND (Bank 3) GND (Bank 3)
3
69P
J12
K18
—
J13
—
—
—
GND (Bank 3)
—
—
—
—
3
70N
J10
K17
—
J11
—
C15
G18
—
—
VCCO3
—
—
—
—
VCCO3
VCCO3
3
70P
J8
K16
—
J9
—
B15
F18
3
71N
J6
K15
—
J7
—
E14
B20
3
71P
J4
K14
—
J5
—
D14
B19
3
72N
J2
K13
—
J3
—
E13
A20
GND (Bank 3) GND (Bank 3)
3
72P
J0
K12
—
J1
—
A15
A19
3
73N
K30
I19
K19
K31
154
D12
D18
3
73P
K28
I18
K18
K29
155
B14
C18
3
74N
K26
I17
K17
K27
156
C13
G17
3
74P
K24
I16
K16
K25
157
A14
F16
3
75N
K22
I31
K31
K23
158
A13
E17
B13
D17
3
75P
K21
I30
K30
—
159
—
—
GND (Bank 3)
—
—
—
160
3
76N
K20
K11
L21
—
—
D11
B18
—
—
VCCO3
—
—
—
161
VCCO3
VCCO3
3
76P
K18
K10
L20
K19
—
B12
A18
3
77N
K16
K9
L18
K17
—
C12
C17
3
77P
K14
K8
L16
K15
—
E11
B17
3
78N
K12
K7
L12
K13
—
—
C16
3
78P
K10
K6
L10
K11
—
—
B16
61
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
3
79N
K8
K5
L8
K9
—
—
F13
3
79P
K6
K4
L6
K7
—
—
F15
3
80N
K5
K3
L5
—
—
—
D16
3
80P
K4
K2
L4
—
—
E101
E16
3
81N
K2
K1
L2
K3
—
A12
A16
3
81P
K0
K0
L0
K1
—
A11
A15
—
—
GND (Bank 3)
—
—
—
—
3
82N
L30
I15
K15
L31
162
B11
B15
—
—
VCCO3
—
—
—
—
VCCO3
VCCO3
3
82P
L28
I14
K14
L29
163
C11
A14
3
83N
L26
I13
K13
L27
164
B10
D15
3
83P
L24
I12
K12
L25
165
A10
E15
3
84N
L22
I11
K11
L23
166
C10
D14
3
84P
L21
I10
K10
—
167
D10
F14
3
85N
L20
I9
K9
—
168
C9
A13
3
85P
L18
I8
K8
L19
169
E9
B13
3
86N
L16/VREF3
I29
K29
L17
170
D9
C14
3
86P
L14
I28
K28
L15
171
F9
E14
3
87N
L12
I7
K7
L13
172
A9
E13
3
87P
L10
I6
K6
L11
173
F8
F12
—
—
GND (Bank 3)
—
—
—
174
3
88N
L8
I5
K5
L9
175
E8
D13
—
—
VCCO3
—
—
—
176
VCCO3
VCCO3
3
88P
L6
I4
K4
L7
177
A8
C13
3
89N
L5
I3
K3
—
178
B9
E12
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
3
89P
L4
I2
K2
—
179
D8
C12
—
—
VCC
—
—
—
180
VCC
VCC
3
90N
L2
I1
K1
L3
181
B8
B12
3
90P
L0
I0
K0
L1
182
C8
A12
0
91N
M30
M31
O31
M31
183
B7
E11
0
91P
M28
M30
O30
M29
184
A7
C11
—
—
GND
—
—
—
185
—
GND
—
—
GND
—
—
—
—
GND
GND
0
92N
M26
M29
O29
M27
186
D7
B11
0
92P
M24
M28
O28
M25
187
C7
A11
0
93N
M22
M27
O27
M23
188
B6
F11
—
—
VCCO0
—
—
—
189
VCCO0
VCCO0
0
93P
M21
M26
O26
M22
190
E7
F10
—
—
GND (Bank 0)
—
—
—
191
0
94N
M20
M25
O25
M21
192
GND (Bank 0) GND (Bank 0)
E6
E10
0
94P
M18
M24
O24
M19
193
A6
C10
0
95N
M16/VREF0
M3
O3
M17
194
A5
D10
0
95P
M14
M2
O2
M15
195
A4
B10
62
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5512MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate 208 PQFP
256 fpBGA
484 fpBGA
Primary Macrocell/
Macrocell 1 Macrocell 2 Input Pin Number Ball Number Ball Number
Function
sysIO
Bank
LVDS
Pair
0
96N
M12
M23
O23
M13
196
B5
A10
0
96P
M10
M22
O22
M11
197
A3
A9
0
97N
M8
M21
O21
M9
198
B4
C9
0
97P
M6
M20
O20
M7
199
B3
D9
0
98N
M5
M19
O19
—
200
C5
F9
0
98P
M4
M18
O18
—
201
C6
E9
0
99N
M2
M1
O1
M3
202
D5
A8
—
—
VCCO0
—
—
—
—
VCCO0
VCCO0
D6
B8
0
99P
M0
M0
O0
M1
203
—
—
GND (Bank 0)
—
—
—
—
0
100N
N30
O29
—
N31
—
—
A7
0
100P
N28
O28
—
N29
—
—
B7
0
101N
N26
O27
—
N27
—
—
A5
0
101P
N24
O26
—
N25
—
—
B5
0
102N
N22
O25
—
N23
—
—
B6
0
102P
N21
O24
—
—
—
—
C7
0
103N
N20
O23
—
—
—
—
E8
0
103P
N18
O22
—
N19
—
—
E7
0
104N
N16
O21
—
N17
—
—
E6
0
104P
N14
O20
—
N15
—
—
D6
GND (Bank 0) GND (Bank 0)
0
105N
N12
O19
—
N13
—
—
D8
—
—
VCCO0
—
—
—
204
VCCO0
VCCO0
—
F8
0
105P
N10
O18
—
N11
—
—
—
GND (Bank 0)
—
—
—
205
0
106N
N8
O17
—
N9
—
—
F7
0
106P
N6
O16
—
N7
—
—
D7
0
107N
N5
O15
—
—
206
A2
C6
0
107P
N4
O14
—
—
207
B2
C5
0
108N
N2
O13
—
N3
—
—
C4
0
108P
N0
O12
—
N1
—
—
D5
GND (Bank 0) GND (Bank 0)
1. Not available for differential pair.
Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to
receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs.
63
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
0
127N
S22
S11
T18
S23
C4
B4
0
127P
S20
S10
T16
S21
E4
A4
0
128N
S18
Q17
S17
S19
B1
B3
0
128P
S16
Q16
S16
S17
C1
A3
0
129N
S14
Q15
S15
S15
D3
F5
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
129P
S12
Q14
S14
S13
C2
G6
-
-
GND (Bank 0)
-
-
-
0
130N
S10
Q13
S13
S11
E3
H6
0
130P
S8
Q12
S12
S9
D2
G5
0
131N
S6
S9
T14
S7
—
D3
0
131P
S4
S8
T12
S5
—
D2
0
132N
S2
S7
T10
S3
—
E4
-
-
VCC
-
-
-
VCC
VCC
0
132P
S0
S6
T8
S1
—
E3
-
-
GND
-
-
-
GND
GND
0
133N
T30
S5
T6
T31
—
F4
0
133P
T28
S4
T4
T29
—
G4
0
134N
T26
S3
T2
T27
—
C2
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
134P
T24
S2
T0
T25
—
C1
-
-
GND (Bank 0)
-
-
-
0
135N
T22
S1
-
T23
D1
F3
0
135P
T20
S0
-
T21
E1
G3
0
136N
T18
S31
-
T19
F4
H4
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
-
-
VCC
-
-
-
VCC
VCC
0
136P
T16
S30
-
T17
F5
J4
0
137N
T14
Q11
S11
T15
E2
H5
0
137P
T12/CLK_OUT0
Q10
S10
T13
F2
J5
0
138N
T10
Q9
S9
T11
F1
E2
0
138P
T8
Q8
S8
T9
G1
F2
-
-
GND
-
-
-
GND
GND
0
139N
T6
Q7
S7
T7
F3
D1
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
139P
T4
Q6
S6
T5
G5
E1
-
-
GND (Bank 0)
-
-
-
0
140N
T2
Q5
S5
T3
0
140P
T0/PLL_RST0
Q4
S4
T1
G4
H2
0
141N
U30
U31
W31
U31
G3
G2
0
141P
U28/PLL_FBK0
U30
W30
U29
H3
G1
0
142N
U26
U29
W29
U27
—
J6
0
142P
U24
U28
W28
U25
—
K4
64
GND (Bank 0) GND (Bank 0)
H5
J3
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
0
143N
U22
U27
W27
U23
—
K6
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
143P
U20
U26
W26
U21
—
K3
-
-
GND (Bank 0)
-
-
-
0
144N
U18
U25
W25
U19
—
K5
0
144P
U16
U24
W24
U17
—
K2
0
145N
U14
U23
W23
U15
—
L5
0
145P
U12
U22
W22
U13
—
K1
0
146N
U10
U21
W21
U11
—
L6
0
146P
U8
U20
W20
U9
—
L1
0
147N
U6
U19
W19
U7
—
M5
0
147P
U4
U18
W18
U5
—
L2
0
148N
U2
U17
W17
U3
—
N5
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
148P
U0
U16
W16
U1
—
L3
-
-
GND (Bank 0)
-
-
-
0
149N
W30
U15
W15
W31
—
M6
0
149P
W28
U14
W14
W29
—
M2
0
150N
W26
U13
W13
W27
—
P5
-
-
VCC
-
-
-
VCC
VCC
0
150P
W24
U12
W12
W25
—
P6
0
151N
W22
U11
W11
W23
—
M3
0
151P
W20
U10
W10
W21
—
N6
0
152N
W18
U9
W9
W19
—
N2
0
152P
W16
U8
W8
W17
—
P1
-
-
GND
-
-
-
GND
GND
0
153N
W14
U7
W7
W15
—
N3
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
153P
W12
U6
W6
W13
—
M8
-
-
GND (Bank 0)
-
-
-
0
154N
W10
U5
W5
W11
—
N8
0
154P
W8
U4
W4
-
—
P2
0
155N
W6
U3
W3
W7
—
P8
0
155P
W4
U2
W2
W5
—
N4
0
156N
W2
U1
W1
W3
G2
H1
0
156P
W0
U0
W0
W1
H1
J1
-
GCLK0P
GCLK0
-
-
-
H2
N7
-
See Power Supply and
NC Connections Table
-
-
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
-
-
VCCJ
-
GCLK0N
GCLK1
-
-
-
J2
P7
-
-
GND
-
-
-
GND
GND
-
-
TDI
-
-
-
H6
R1
-
-
TMS
-
-
-
H4
R2
65
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
-
-
TCK
-
-
-
J6
T1
-
-
TDO
-
-
-
K2
V1
1
0P
A30/DATA0
C0
A0
A31
K3
W1
1
0N
A28/DATA1
C1
A1
A29
J3
Y1
1
1P
A26/DATA2
C2
A2
A27
J5
P3
1
1N
A24/DATA3
C3
A3
A25
J4
R3
1
2P
A22/DATA4
C4
A4
A23
L2
T2
1
2N
A20/DATA5
C5
A5
A21
M1
U2
-
-
GND (Bank 1)
-
-
-
1
3P
A18/DATA6
C6
A6
A19
K4
V2
GND (Bank 1) GND (Bank 1)
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
3N
A16/DATA7
C7
A7
A17
L3
W2
-
-
GND
-
-
-
GND
GND
1
4P
A14/INITB
C8
A8
A15
K5
R4
1
4N
A12/CSB
C9
A9
A13
L5
T4
1
5P
A10/READ
C10
A10
A11
N1
R6
1
5N
A8/CCLK
C11
A11
A9
M2
R5
1
6P
A6
-
-
A7
—
U3
-
-
VCC
-
-
-
VCC
VCC
1
6N
A4
-
-
A5
P1
V3
1
7P
A2
-
-
A3
M3
Y2
1
7N
A0
-
-
A1
L4
W3
1
8P
B30
D0
-
B31
N2
U5
1
8N
B28
D2
-
B29
P2
T5
-
-
GND (Bank 1)
-
-
-
1
9P
B26
D4
-
B27
R1
U4
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
9N
B24
D6
-
B25
R2
V4
1
10P
B22
D8
-
B23
T2
AA3
1
10N
B20
D10
-
B21
T3
AB3
1
-
B18
D12
-
B19
—
Y4
-
-
DONE
-
-
-
M4
AA4
1
11P
B14
-
-
B15
—
AB2
1
11N
B12
-
-
B13
—
U6
-
-
GND (Bank 1)
-
-
-
1
12P
B10
-
-
B11
—
V5
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
12N
B8
-
-
B9
—
W6
1
13P
B6
C12
A12
B7
N3
AB4
1
13N
B4
C13
A13
B5
P4
AB5
1
14P
B2
C14
A14
B3
N5
T6
1
14N
B0
C15
A15
B1
M6
U7
-
-
PROGRAMB
-
-
-
R3
W5
66
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
P5
U8
1
-
C28
D14
-
C29
-
-
GND (Bank 1)
-
-
-
1
15P
C26
D16
-
C27
T4
V6
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
15N
C24
D18
-
C25
T5
V7
-
-
GND
-
-
-
GND
GND
1
16P
C22
D20
-
C23
R4
Y5
-
-
VCC
-
-
-
VCC
VCC
1
16N
C20
D22
-
C21
N6
AA5
1
17P
C18
-
-
C19
R5
Y6
1
17N
C16
-
-
C17
P6
Y7
1
18P
C14
-
-
C15
—
AA6
1
18N
C12
-
-
C13
—
AA7
1
19P
C10
-
-
C11
—
W7
1
19N
C8
-
-
C9
M7
V8
1
20P
C6
-
-
C7
T6
W8
1
20N
C4
-
-
C5
R6
U9
-
-
GND (Bank 1)
-
-
-
-
-
CFG0
-
-
-
L8
U10
-
-
VCCO1
-
-
-
VCCO1
VCCO1
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
1
21P
C0
C16
A16
C1
T7
AB7
1
21N
D30
C17
A17
D31
R7
AA8
1
22P
D28
C18
A18
D29
N7
AB8
1
22N
D26
C19
A19
D27
P7
AB9
1
23P
D24
C20
A20
D25
T8
W9
1
23N
D22
C21
A21
D23
R8
Y9
1
24P
D20
C22
A22
D21
M8
AB10
1
24N
D18
C23
A23
D19
P8
AA10
1
-
D16/VREF1
-
-
D17
L9
W10
1
25P
D14
C24
A24
D15
N8
Y10
1
25N
D12
C25
A25
D13
M9
Y11
-
-
GND (Bank 1)
-
-
-
1
26P
D10
C26
A26
D11
N10
V9
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
26N
D8
C27
A27
D9
T9
V10
1
27P
D6
C28
A28
D7
T10
AA11
-
-
GND
-
-
-
GND
GND
1
27N
D4
C29
A29
D5
R9
AB11
GND (Bank 1) GND (Bank 1)
-
-
VCC
-
-
-
VCC
VCC
1
28P
D2
C30
A30
D3
P9
U11
1
28N
D0
C31
A31
D1
N9
V11
2
29P
E0
F0
H0
E1
T11
AB12
-
-
VCC
-
-
-
VCC
VCC
67
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
2
29N
E2
F1
H1
E3
T12
AA12
-
-
GND
-
-
-
GND
GND
2
30P
E4
F2
H2
E5
P10
Y12
2
30N
E6
F3
H3
E7
R10
AA13
2
31P
E8
F4
H4
E9
R11
V12
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
31N
E10
F5
H5
E11
M10
U12
-
-
GND (Bank 2)
-
-
-
2
32P
E12
F6
H6
E13
M11
AB13
2
32N
E14
F7
H7
E15
T13
Y13
GND (Bank 2) GND (Bank 2)
2
33P
E16
H0
-
E17
P11
V13
2
33N
E18/VREF2
H1
-
E19
T14
W13
2
34P
E20
F8
H8
E21
R12
V14
2
34N
E22
F9
H9
E23
R13
W14
2
35P
E24
F10
H10
E25
N11
Y14
2
35N
E26
F11
H11
E27
T15
AB14
2
36P
E28
F12
H12
E29
R14
AB15
2
36N
E30
F13
H13
E31
N12
AA15
2
37P
F0
F14
H14
F1
P12
U13
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
37N
F2
F15
H15
F3
R15
U14
-
-
GND (Bank 2)
-
-
-
2
38P
F4
H2
E0
F5
2
38N
F6
H3
E2
2
39P
F8
H4
E4
2
39N
F10
H5
E6
F11
—
AA16
2
40P
F12
H6
E8
F13
—
AB16
2
40N
F14
H7
E10
F15
—
AA17
2
41P
F16
H8
E12
F17
—
Y17
2
41N
F18
H9
E16
F19
—
AA18
2
42P
F20
H10
E20
F21
—
W17
-
-
VCC
-
-
-
VCC
VCC
2
42N
F22
H11
E22
F23
—
W18
-
-
GND
-
-
-
GND
GND
2
43P
F24
H12
-
F25
—
V15
GND (Bank 2) GND (Bank 2)
—
W15
F7
—
W16
F9
—
Y16
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
43N
F26
H13
-
F27
—
U15
-
-
GND (Bank 2)
-
-
-
2
44P
F28
H14
-
F29
P13
Y18
2
44N
F30
H15
-
F31
P15
V17
2
45P
G0
H16
-
G1
M13
V16
2
45N
G2
H17
-
G3
P14
U16
2
46P
G4
H18
-
G5
—
AB18
68
GND (Bank 2) GND (Bank 2)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
2
46N
G6
H19
-
G7
—
AB19
2
47P
G8
H20
-
G9
—
AA19
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
47N
G10
H21
-
G11
—
U17
-
-
GND (Bank 2)
-
-
-
2
48P
G12
H22
-
G13
GND (Bank 2) GND (Bank 2)
—
V18
2
48N
G14
H23
-
G15
—
AB21
2
49P
G16
H24
-
G17
—
U18
2
49N
G18
H25
-
G19
—
T17
2
50P
G20
H26
-
G21
R16
AB20
2
50N
G22
H27
-
G23
P16
AA20
2
51P
G24
H28
-
G25
N15
Y19
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
51N
G26
H29
-
G27
N14
V19
-
-
GND (Bank 2)
-
-
-
2
52P
G28
F16
H16
G29
GND (Bank 2) GND (Bank 2)
2
52N
G30
F17
H17
G31
M16
R17
2
53P
H0
F18
H18
H1
M14
U19
2
53N
H2
F19
H19
H3
M15
T19
2
54P
H4
H30
E24
H5
—
V20
-
-
VCC
-
-
-
VCC
VCC
2
54N
H6
H31
E26
H7
—
U20
N16
T18
2
55P
H8
F20
H20
H9
L13
W20
2
55N
H10
F21
H21
H11
L12
Y21
2
56P
H12
F22
H22
H13
L15
R18
2
56N
H14
F23
H23
H15
L16
R19
-
-
GND
-
-
-
GND
GND
2
57P
H16
F24
H24
H17
L14
W21
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
57N
H18
F25
H25
H19
K15
Y22
-
-
GND (Bank 2)
-
-
-
2
58P
H20
F26
H26
H21
2
58N
H22
F27
H27
2
59P
H24
F28
H28
2
59N
H26
F29
H29
H27
J13
R21
2
60P
H28
F30
H30
H29
J14
U21
2
60N
H30
F31
H31
H31
J12
V21
-
-
TOE
-
-
-
J15
W22
-
-
RESET
-
-
-
J11
V22
-
-
GOE0
-
-
-
H11
T22
-
-
GOE1
-
-
-
H13
R22
-
-
GNDP
-
-
69
GND (Bank 2) GND (Bank 2)
K14
R20
H23
K12
P20
H25
K13
T21
-
See Power Supply and
NC Connections Table
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
-
GCLK3N
GCLK2
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
-
-
-
H15
P16
-
-
-
-
VCCP
-
GCLK3P
GCLK3
-
-
-
H16
N16
3
61N
J0
L31
J31
-
H14
J22
3
61P
J2
L30
J30
J3
G16
H22
3
62N
J4
L29
J29
J5
—
N19
3
62P
J6
L28
J28
J7
—
P15
3
63N
J8
L27
J27
J9
—
P21
3
63P
J10
L26
J26
J11
—
N15
-
-
GND (Bank 3)
-
-
-
3
64N
J12
L25
J25
J13
—
M15
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
64P
J14
L24
J24
J15
—
N20
-
-
GND
-
-
-
GND
GND
3
65N
J16
L23
J23
J17
—
P22
3
65P
J18
L22
J22
J19
—
N21
3
66N
J20
L21
J21
J21
—
N17
3
66P
J22
L20
J20
J23
—
M20
3
67N
J24
L19
J19
J25
—
P17
-
-
VCC
-
-
-
VCC
VCC
3
67P
J26
L18
J18
J27
—
P18
3
68N
J28
L17
J17
J29
—
M21
3
68P
J30
L16
J16
J31
—
M17
-
-
GND (Bank 3)
-
-
-
3
69N
L0
L15
J15
-
—
L20
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
69P
L2
L14
J14
L3
—
N18
3
70N
L4
L13
J13
L5
—
L21
3
70P
L6
L12
J12
L7
—
M18
3
71N
L8
L11
J11
L9
—
L22
3
71P
L10
L10
J10
L11
—
L17
3
72N
L12
L9
J9
L13
—
K22
3
72P
L14
L8
J8
L15
—
L18
3
73N
L16
L7
J7
L17
—
K21
3
73P
L18
L6
J6
L19
—
K18
-
-
GND (Bank 3)
-
-
-
3
74N
L20
L5
J5
L21
—
K20
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
74P
L22
L4
J4
L23
—
K17
3
75N
L24
L3
J3
L25
—
K19
3
75P
L26
L2
J2
L27
—
J17
3
76N
L28
L1
J1
L29
G15
E22
70
-
See Power Supply and
NC Connections Table
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
3
76P
L30/PLL_FBK1
L0
J0
L31
F15
E21
3
77N
M0/PLL_RST1
P27
N27
M1
H12
G22
3
77P
M2
P26
N26
M3
G14
F21
-
-
GND (Bank 3)
-
-
-
3
78N
M4
P25
N25
M5
F16
H21
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
78P
M6
P24
N24
-
E16
G21
-
-
GND
-
-
-
GND
GND
3
79N
M8
P23
N23
M9
G13
D22
3
79P
M10
P22
N22
M11
G12
D21
3
80N
M12
P21
N21
M13
F14
J20
3
80P
M14/CLK_OUT1
P20
N20
M15
E15
J19
3
81N
M16
N31
-
M17
F12
E20
-
-
VCC
-
-
-
VCC
VCC
3
81P
M18
N30
M30
M19
F13
F20
3
82N
M20
N29
M28
M21
D16
H17
3
82P
M22
N28
M26
M23
D15
H18
-
-
GND (Bank 3)
-
-
-
3
83N
M24
N27
-
M25
—
J18
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
83P
M26
N26
-
M27
—
H19
3
84N
M28
N25
-
M29
—
G20
3
84P
M30
N24
-
M31
—
G19
-
-
GND
-
-
-
GND
GND
3
85N
N0
N23
-
N1
—
C22
-
-
VCC
-
-
-
VCC
VCC
3
85P
N2
N22
-
N3
—
C21
3
86N
N4
N21
-
-
—
D20
3
86P
N6
N20
-
-
—
C19
3
87N
N8
N19
-
N9
C16
F19
3
87P
N10
N18
-
N11
B16
E19
-
-
GND (Bank 3)
-
-
-
3
88N
N12
N17
-
N13
C15
G18
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
88P
N14
N16
-
N15
B15
F18
3
89N
N16
N15
-
N17
E14
B20
3
89P
N18
N14
-
N19
D14
B19
3
90N
N20
N13
-
N21
E13
A20
3
90P
N22
N12
-
N23
A15
A19
3
91N
N24
P19
N19
N25
D12
D18
3
91P
N26
P18
N18
N27
B14
C18
3
92N
N28
P17
N17
N29
C13
G17
3
92P
N30
P16
N16
N31
A14
F16
71
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
3
93N
O0
P31
N31
O1
A13
E17
3
93P
O2
P30
N30
O3
B13
D17
-
-
GND (Bank 3)
-
-
-
3
94N
O4
N11
M21
O5
D11
B18
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
94P
O6
N10
M20
O7
B12
A18
-
-
GND
-
-
-
GND
GND
3
95N
O8
N9
M18
O9
C12
C17
GND (Bank 3) GND (Bank 3)
-
-
VCC
-
-
-
VCC
VCC
3
95P
O10
N8
M16
O11
E11
B17
3
96N
O12
N7
M12
O13
—
C16
3
96P
O14
N6
M10
O15
—
B16
3
97N
O16
N5
M8
O17
—
F13
3
97P
O18
N4
M6
O19
—
F15
3
98N
O20
N3
M5
O21
—
D16
3
98P
O22
N2
M4
O23
E10
E16
3
99N
O24
N1
M2
O25
A12
A16
3
99P
O26
N0
M0
O27
A11
A15
-
-
GND (Bank 3)
-
-
-
3
100N
O28
P15
N15
O29
B11
B15
GND (Bank 3) GND (Bank 3)
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
100P
O30
P14
N14
O31
C11
A14
3
101N
P0
P13
N13
P1
B10
D15
3
101P
P2
P12
N12
P3
A10
E15
3
102N
P4
P11
N11
P5
C10
D14
3
102P
P6
P10
N10
P7
D10
F14
3
103N
P8
P9
N9
P9
C9
A13
3
103P
P10
P8
N8
P11
E9
B13
3
104N
P12/VREF3
P29
N29
P13
D9
C14
3
104P
P14
P28
N28
P15
F9
E14
3
105N
P16
P7
N7
P17
A9
E13
3
105P
P18
P6
N6
P19
F8
F12
-
-
GND (Bank 3)
-
-
-
3
106N
P20
P5
N5
P21
E8
D13
GND (Bank 3) GND (Bank 3)
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
106P
P22
P4
N4
P23
A8
C13
3
107N
P24
P3
N3
P25
B9
E12
-
-
GND
-
-
-
GND
GND
3
107P
P26
P2
N2
P27
D8
C12
-
-
VCC
-
-
-
VCC
VCC
3
108N
P28
P1
N1
P29
B8
B12
3
108P
P30
P0
N0
P31
C8
A12
0
109N
Q30
Q31
S31
Q31
B7
E11
72
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
-
-
VCC
-
-
-
VCC
VCC
0
109P
Q28
Q30
S30
Q29
A7
C11
-
-
GND
-
-
-
GND
GND
0
110N
Q26
Q29
S29
Q27
D7
B11
0
110P
Q24
Q28
S28
Q25
C7
A11
0
111N
Q22
Q27
S27
Q23
B6
F11
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
111P
Q20
Q26
S26
Q21
E7
F10
-
-
GND (Bank 0)
-
-
-
0
112N
Q18
Q25
S25
Q19
E6
E10
GND (Bank 0) GND (Bank 0)
0
112P
Q16
Q24
S24
Q17
A6
C10
0
113N
Q14/VREF0
Q3
S3
Q15
A5
D10
0
113P
Q12
Q2
S2
Q13
A4
B10
0
114N
Q10
Q23
S23
Q11
B5
A10
0
114P
Q8
Q22
S22
Q9
A3
A9
0
115N
Q6
Q21
S21
Q7
B4
C9
0
115P
Q4
Q20
S20
Q5
B3
D9
0
116N
Q2
Q19
S19
Q3
C5
F9
0
116P
Q0
Q18
S18
Q1
C6
E9
0
117N
R30
Q1
S1
R31
D5
A8
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
117P
R28
Q0
S0
R29
D6
B8
-
-
GND (Bank 0)
-
-
-
0
118N
R26
S29
-
R27
—
A7
0
118P
R24
S28
-
R25
—
B7
0
119N
R22
S27
-
R23
—
A5
0
119P
R20
S26
-
R21
—
B5
0
120N
R18
S25
-
R19
—
B6
0
120P
R16
S24
-
R17
—
C7
0
121N
R14
S23
-
R15
—
E8
0
121P
R12
S22
-
R13
—
E7
0
122N
R10
S21
-
R11
—
E6
-
-
VCC
-
-
-
VCC
VCC
0
122P
R8
S20
-
R9
—
D6
-
-
GND
-
-
-
GND
GND
0
123N
R6
S19
-
R7
—
D8
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
123P
R4
S18
-
R5
—
F8
-
-
GND (Bank 0)
-
-
-
0
124N
R2
S17
-
R3
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
—
F7
0
124P
R0
S16
-
R1
—
D7
0
125N
S30
S15
-
S31
A2
C6
0
125P
S28
S14
-
S29
B2
C5
73
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5768MX Logic Signal Connections (Continued)
Primary Macrocell/
sysIO Bank LVDS Pair
Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Inputs
256 fpBGA
Ball Number
484 fpBGA
Ball Number
0
126N
S26
S13
-
S27
—
C4
0
126P
S24
S12
-
S25
—
D5
Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to
receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs.
74
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections
Primary
Macrocell/Function
Alternate Outputs
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
sysIO
Bank
LVDS Pair
0
159N
AA22
AA11
AB18
AA23
B4
C2
0
159P
AA20
AA10
AB16
AA21
A4
C1
0
160N
AA18
Y17
AA17
AA19
B3
D4
0
160P
AA16
Y16
AA16
AA17
A3
D3
0
161N
AA14
Y15
AA15
AA15
F5
D2
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
161P
AA12
Y14
AA14
AA13
G6
D1
-
-
GND (Bank 0)
-
-
-
0
162N
AA10
Y13
AA13
AA11
H6
E5
0
162P
AA8
Y12
AA12
AA9
G5
E4
0
163N
AA6
AA9
AB14
AA7
D3
E3
0
163P
AA4
AA8
AB12
AA5
D2
E2
0
164N
AA2
AA7
AB10
AA3
E4
E1
-
-
VCC
-
-
-
VCC
VCC
0
164P
AA0
AA6
AB8
AA1
E3
F2
Macrocell 1
Macrocell 2
GND (Bank 0) GND (Bank 0)
-
-
GND
-
-
-
GND
GND
0
165N
AB30
AA5
AB6
AB31
F4
F5
0
165P
AB28
AA4
AB4
AB29
G4
G6
0
166N
AB26
AA3
AB2
AB27
C2
F4
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
166P
AB24
AA2
AB0
AB25
C1
F3
-
-
GND (Bank 0)
-
-
-
0
167N
AB22
AA1
-
AB23
F3
F1
0
167P
AB20
AA0
-
AB21
G3
G1
0
168N
AB18
AA31
-
AB19
H4
G5
GND (Bank 0) GND (Bank 0)
-
-
VCC
-
-
VCC
VCC
0
168P
AB16
AA30
-
AB17
J4
G4
0
169N
AB14
Y11
AA11
AB15
H5
H7
0
169P
AB12/CLK_OUT0
Y10
AA10
AB13
J5
J7
0
170N
AB10
Y9
AA9
AB11
E2
G3
0
170P
AB8
Y8
AA8
AB9
F2
G2
-
-
GND
-
-
-
GND
GND
0
171N
AB6
Y7
AA7
AB7
D1
H6
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
171P
AB4
Y6
AA6
AB5
E1
J6
-
-
GND (Bank 0)
-
-
-
0
172N
AB2
Y5
AA5
AB3
0
172P
AB0/PLL_RST0
Y4
AA4
0
173N
AC30
AC31
AE31
0
173P
AC28/PLL_FBK0
AC30
AE30
AC29
G1
H2
0
174N
AC26
AC29
AE29
AC27
J6
H1
0
174P
AC24
AC28
AE28
AC25
K4
J1
75
GND (Bank 0) GND (Bank 0)
J3
H5
AB1
H2
H4
AC31
G2
H3
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
Primary
Macrocell/Function
Macrocell 1
Macrocell 2
Alternate
Input
175N
AC22
AC27
AE27
AC23
K6
J5
-
VCCO0
-
-
-
VCCO0
VCCO0
175P
AC20
AC26
AE26
AC21
K3
J4
-
GND (Bank 0)
-
-
-
0
176N
AC18
AC25
AE25
AC19
K5
K7
0
176P
AC16
AC24
AE24
AC17
K2
L7
0
177N
AC14
AC23
AE23
AC15
L5
J3
0
177P
AC12
AC22
AE22
AC13
K1
J2
0
178N
AC10
AC21
AE21
AC11
L6
K6
0
178P
AC8
AC20
AE20
AC9
L1
L6
0
179N
AC6
AC19
AE19
AC7
M5
K5
0
179P
AC4
AC18
AE18
AC5
L2
K4
0
180N
AC2
AC17
AE17
AC3
N5
K3
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
180P
AC0
AC16
AE16
AC1
L3
K2
-
-
GND (Bank 0)
-
-
-
0
181N
AE30
AC15
AE15
AE31
M6
K1
0
181P
AE28
AC14
AE14
AE29
M2
L2
0
182N
AE26
AC13
AE13
AE27
P5
L5
-
-
VCC
-
-
-
VCC
VCC
0
182P
AE24
AC12
AE12
AE25
P6
L4
0
183N
AE22
AC11
AE11
AE23
M3
L3
0
183P
AE20
AC10
AE10
AE21
N6
M3
0
184N
AE18
AC9
AE9
AE19
N2
M7
0
184P
AE16
AC8
AE8
AE17
P1
N7
-
-
GND
-
-
-
GND
GND
0
185N
AE14
AC7
AE7
AE15
N3
M5
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
185P
AE12
AC6
AE6
AE13
M8
M4
-
-
GND (Bank 0)
-
-
-
0
186N
AE10
AC5
AE5
AE11
N8
M6
0
186P
AE8
AC4
AE4
AE9
P2
N6
0
187N
AE6
AC3
AE3
AE7
P8
M2
0
187P
AE4
AC2
AE2
AE5
N4
M1
0
188N
AE2
AC1
AE1
AE3
H1
N1
0
188P
AE0
AC0
AE0
AE1
J1
N2
-
GCLK0P
GCLK0
-
-
-
N7
N5
-
See Power Supply and
NC Connections Table
sysIO
Bank
LVDS Pair
0
0
-
-
-
484 fpBGA
Ball Number
672 fpBGA
Ball Number
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
-
-
VCCJ
-
GCLK0N
GCLK1
-
-
-
P7
N3
-
-
GND
-
-
-
GND
GND
-
-
TDI
-
-
-
R1
P4
-
-
TMS
-
-
-
R2
P5
76
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Primary
Macrocell/Function
Alternate Outputs
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
sysIO
Bank
LVDS Pair
-
-
TCK
-
-
-
T1
P3
-
-
TDO
-
-
-
V1
P2
1
0P
A30
A0
C0
A31
—
P1
1
0N
A28
A1
C1
A29
—
R1
1
1P
A26
A2
C2
A27
—
P6
1
1N
A24
A3
C3
A25
—
R6
1
2P
A22
A4
C4
A23
—
P7
1
2N
A20
A5
C5
A21
—
R7
-
-
GND (Bank 1)
-
-
-
1
3P
A18
A6
C6
A19
—
R4
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
3N
A16
A7
C7
A17
—
R5
-
-
GND
-
-
-
GND
GND
1
4P
A14
A8
C8
A15
—
R3
-
-
VCC
-
-
-
VCC
VCC
1
4N
A12
A9
C9
A13
—
R2
1
5P
A10
A10
C10
A11
—
T2
1
5N
A8
A11
C11
A9
—
T3
1
6P
A6
A12
C12
A7
—
T4
1
6N
A4
A13
C13
A5
—
T5
1
7P
A2
A14
C14
A3
—
U2
1
7N
A0
A15
C15
A1
—
U3
-
-
GND (Bank 1)
-
-
-
1
8P
C30
A16
C16
C31
—
U4
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
8N
C28
A17
C17
C29
—
U5
1
9P
C26
A18
C18
C27
—
T6
1
9N
C24
A19
C19
C25
—
U6
1
10P
C22
A20
C20
C23
—
T7
1
10N
C20
A21
C21
C21
—
U7
1
11P
C18
A22
C22
C19
—
U1
1
11N
C16
A23
C23
C17
—
V1
1
12P
C14
A24
C24
C15
—
V2
1
12N
C12
A25
C25
C13
—
V3
-
-
GND (Bank 1)
-
-
-
1
13P
C10
A26
C26
C11
—
V5
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
13N
C8
A27
C27
C9
—
V4
-
-
GND
-
-
-
GND
GND
1
14P
C6
A28
C28
C7
—
W2
Macrocell 1
Macrocell 2
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
-
-
VCC
-
-
-
VCC
VCC
1
14N
C4
A29
C29
C5
—
W3
1
15P
C2
A30
C30
C3
—
W4
77
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
Primary
Macrocell/Function
Macrocell 1
Macrocell 2
15N
C0
A31
C31
16P
E30/DATA0
G0
E0
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
C1
—
W5
E31
W1
W1
sysIO
Bank
LVDS Pair
1
1
1
16N
E28/DATA1
G1
E1
E29
Y1
Y1
1
17P
E26/DATA2
G2
E2
E27
P3
V6
1
17N
E24/DATA3
G3
E3
E25
R3
W6
1
18P
E22/DATA4
G4
E4
E23
T2
Y2
1
18N
E20/DATA5
G5
E5
E21
U2
Y3
-
-
GND (Bank 1)
-
-
-
1
19P
E18/DATA6
G6
E6
E19
V2
Y4
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
19N
E16/DATA7
G7
E7
E17
W2
Y5
-
-
GND
-
-
-
GND
GND
1
20P
E14/INITB
G8
E8
E15
R4
V7
1
20N
E12/CSB
G9
E9
E13
T4
W7
1
21P
E10/READ
G10
E10
E11
R6
AA1
1
21N
E8/CCLK
G11
E11
E9
R5
AA2
1
22P
E6
-
-
E7
U3
AA3
-
-
VCC
-
-
-
VCC
VCC
1
22N
E4
-
-
E5
V3
AA4
1
23P
E2
-
-
E3
Y2
Y6
1
23N
E0
-
-
E1
W3
AA5
1
24P
F30
H0
-
F31
U5
AB2
1
24N
F28
H2
-
F29
T5
AB3
-
-
GND (Bank 1)
-
-
-
1
25P
F26
H4
-
-
VCCO1
-
1
25N
F24
H6
-
F25
V4
AB5
1
26P
F22
H8
-
F23
AA3
AB1
1
26N
F20
H10
-
F21
AB3
AC2
1
-
F18
H12
-
F19
Y4
AC3
-
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
F27
U4
AB4
-
VCCO1
VCCO1
-
-
DONE
-
-
-
AA4
AC4
1
27P
F14
-
-
F15
AB2
AC1
1
27N
F12
-
-
F13
U6
AD1
-
-
GND (Bank 1)
-
-
-
1
28P
F10
-
-
VCCO1
-
-
1
28N
F8
1
29P
F6
G12
E12
1
29N
F4
G13
1
30P
F2
G14
1
30N
F0
G15
E15
-
-
PROGRAMB
-
-
1
-
G28
H14
-
78
GND (Bank 1) GND (Bank 1)
F11
V5
AD2
-
VCCO1
VCCO1
F9
W6
AD3
F7
AB4
Y8
E13
F5
AB5
Y9
E14
F3
T6
AA8
F1
U7
AA9
-
W5
AB8
G29
U8
AB9
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
sysIO
Bank
Alternate Outputs
LVDS Pair
Primary
Macrocell/Function
-
-
1
31P
-
-
VCCO1
-
1
31N
G24
H18
-
-
GND
-
1
32P
G22
H20
-
-
VCC
-
1
32N
G20
H22
1
33P
G18
1
33N
G16
1
34P
1
34N
1
1
1
1
-
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
Macrocell 1
Macrocell 2
GND (Bank 1)
-
-
-
G26
H16
-
G27
V6
AB7
-
-
VCCO1
VCCO1
-
G25
V7
AC7
-
-
GND
GND
-
G23
Y5
AB6
-
-
VCC
VCC
-
G21
AA5
AC6
-
-
G19
Y6
AC8
-
-
G17
Y7
AC9
G14
-
-
G15
AA6
AC5
G12
-
-
G13
AA7
AD4
35P
G10
-
-
G11
W7
AD5
35N
G8
-
-
G9
V8
AD6
36P
G6
-
-
G7
W8
AD7
36N
G4
-
-
G5
U9
AD8
-
GND (Bank 1)
-
-
-
-
CFG0
-
-
-
U10
AE3
-
VCCO1
-
-
-
VCCO1
VCCO1
GND (Bank 1) GND (Bank 1)
GND (Bank 1) GND (Bank 1)
1
37P
G0
G16
E16
G1
AB7
AD9
1
37N
H30
G17
E17
H31
AA8
AD10
1
38P
H28
G18
E18
H29
AB8
AE4
1
38N
H26
G19
E19
H27
AB9
AE5
1
39P
H24
G20
E20
H25
W9
AE6
1
39N
H22
G21
E21
H23
Y9
AE7
1
40P
H20
G22
E22
H21
AB10
AE8
1
40N
H18
G23
E23
H19
AA10
AE9
1
-
H16/VREF1
-
-
H17
W10
AE10
1
41P
H14
G24
E24
H15
Y10
AF3
1
41N
H12
G25
E25
H13
Y11
AF4
-
-
GND (Bank 1)
-
-
-
1
42P
H10
G26
E26
H11
V9
AF5
GND (Bank 1) GND (Bank 1)
-
-
VCCO1
-
-
-
VCCO1
VCCO1
1
42N
H8
G27
E27
H9
V10
AF6
1
43P
H6
G28
E28
H7
AA11
AF7
-
-
GND
-
-
-
GND
GND
1
43N
H4
G29
E29
H5
AB11
AF8
-
-
VCC
-
-
-
VCC
VCC
1
44P
H2
G30
E30
H3
U11
AF9
1
44N
H0
G31
E31
H1
V11
AF10
2
45P
I0
J0
L0
I1
AB12
AF17
-
-
VCC
-
-
-
VCC
VCC
2
45N
I2
J1
L1
I3
AA12
AF18
79
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
sysIO
Bank
LVDS Pair
Primary
Macrocell/Function
Alternate Outputs
Macrocell 1
Macrocell 2
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
-
-
GND
-
-
-
GND
GND
2
46P
I4
J2
L2
I5
Y12
AF19
2
46N
I6
J3
L3
I7
AA13
AF20
2
47P
I8
J4
L4
I9
V12
AF21
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
47N
I10
J5
L5
I11
U12
AF22
-
-
GND (Bank 2)
-
-
-
2
48P
I12
J6
L6
I13
GND (Bank 2) GND (Bank 2)
2
48N
I14
J7
L7
I15
Y13
AF24
2
49P
I16
L0
-
I17
V13
AE17
2
49N
I18/VREF2
L1
-
I19
W13
AE18
2
50P
I20
J8
L8
I21
V14
AE19
2
50N
I22
J9
L9
I23
W14
AE20
2
51P
I24
J10
L10
I25
Y14
AE21
2
51N
I26
J11
L11
I27
AB14
AE22
2
52P
I28
J12
L12
I29
AB15
AE23
2
52N
I30
J13
L13
I31
AA15
AE24
2
53P
J0
J14
L14
J1
U13
AD17
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
53N
J2
J15
L15
J3
U14
AD18
AB13
AF23
-
-
GND (Bank 2)
-
-
-
2
54P
J4
L2
I0
J5
GND (Bank 2) GND (Bank 2)
W15
2
54N
J6
L3
I2
J7
W16
AD20
2
55P
J8
L4
I4
J9
Y16
AD21
2
55N
J10
L5
I6
J11
AA16
AD22
2
56P
J12
L6
I8
J13
AB16
AD23
2
56N
J14
L7
I10
J15
AA17
AD24
2
57P
J16
L8
I12
J17
Y17
AC22
2
57N
J18
L9
I16
J19
AA18
AC21
2
58P
J20
L10
I20
J21
W17
AC18
-
-
VCC
-
-
-
VCC
VCC
2
58N
J22
L11
I22
J23
W18
AC19
-
-
GND
-
-
-
GND
GND
2
59P
J24
L12
-
J25
V15
AC20
-
-
VCCO2
-
-
VCCO2
VCCO2
2
59N
J26
L13
-
J27
U15
AB21
AD19
-
-
GND (Bank 2)
-
-
-
2
60P
J28
L14
-
J29
2
60N
J30
L15
-
J31
V17
AB19
2
61P
K0
L16
-
K1
V16
AB20
2
61N
K2
L17
-
K3
U16
AA20
2
62P
K4
L18
-
K5
AB18
AA19
2
62N
K6
L19
-
K7
AB19
Y19
80
GND (Bank 2) GND (Bank 2)
Y18
AB18
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
Primary
Macrocell/Function
Macrocell 1
Macrocell 2
Alternate
Input
63P
K8
L20
-
K9
AA19
AA18
-
VCCO2
-
-
-
VCCO2
VCCO2
63N
K10
L21
-
K11
U17
Y18
-
GND (Bank 2)
-
-
-
2
64P
K12
L22
-
K13
V18
AD25
2
64N
K14
L23
-
K15
AB21
AD26
2
65P
K16
L24
-
K17
U18
AC23
2
65N
K18
L25
-
K19
T17
AC24
2
66P
K20
L26
-
K21
AB20
AC25
2
66N
K22
L27
-
K23
AA20
AC26
2
67P
K24
L28
-
K25
Y19
AB22
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
67N
K26
L29
-
K27
V19
AB23
-
-
GND (Bank 2)
-
-
-
2
68P
K28
J16
L16
K29
T18
AB24
2
68N
K30
J17
L17
K31
R17
AB25
2
69P
L0
J18
L18
L1
U19
AB26
2
69N
L2
J19
L19
L3
T19
AA26
2
70P
L4
L30
I24
L5
V20
AA22
-
-
VCC
-
-
-
VCC
VCC
2
70N
L6
L31
I26
L7
U20
Y21
2
71P
L8
J20
L20
L9
W20
AA23
2
71N
L10
J21
L21
L11
Y21
AA24
2
72P
L12
J22
L22
L13
R18
AA25
2
72N
L14
J23
L23
L15
R19
Y26
-
-
GND
-
-
-
GND
GND
2
73P
L16
J24
L24
L17
W21
Y22
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
73N
L18
J25
L25
L19
Y22
Y23
-
-
GND (Bank 2)
-
-
-
2
74P
L20
J26
L26
L21
R20
W20
2
74N
L22
J27
L27
L23
P20
V20
2
75P
L24
J28
L28
L25
T21
W21
2
75N
L26
J29
L29
L27
R21
V21
2
76P
L28
J30
L30
L29
U21
Y24
2
76N
L30
J31
L31
L31
V21
Y25
2
77P
N0
P0
N0
N1
—
W22
2
77N
N2
P1
N1
N3
—
W23
2
78P
N4
P2
N2
N5
—
W24
-
-
VCC
-
-
-
VCC
VCC
2
78N
N6
P3
N3
N7
—
W25
-
-
GND
-
-
-
GND
GND
2
79P
N8
P4
N4
N9
—
W26
sysIO
Bank
LVDS Pair
2
2
-
81
484 fpBGA
Ball Number
672 fpBGA
Ball Number
GND (Bank 2) GND (Bank 2)
GND (Bank 2) GND (Bank 2)
GND (Bank 2) GND (Bank 2)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
sysIO
Bank
Alternate Outputs
LVDS Pair
Primary
Macrocell/Function
-
-
VCCO2
-
2
79N
N10
P5
Macrocell 1
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
-
-
VCCO2
VCCO2
N5
N11
—
V26
Macrocell 2
-
-
GND (Bank 2)
-
-
-
2
80P
N12
P6
N6
N13
GND (Bank 2) GND (Bank 2)
2
80N
N14
P7
N7
N15
—
V23
2
81P
N16
P8
N8
N17
—
V24
2
81N
N18
P9
N9
N19
—
V25
2
82P
N20
P10
N10
N21
—
U20
2
82N
N22
P11
N11
N23
—
T20
2
83P
N24
P12
N12
N25
—
U26
2
83N
N26
P13
N13
N27
—
U25
2
84P
N28
P14
N14
N29
—
U21
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
84N
N30
P15
N15
N31
—
T21
—
V22
-
-
GND (Bank 2)
-
-
-
2
85P
P0
P16
N16
P1
GND (Bank 2) GND (Bank 2)
2
85N
P2
P17
N17
P3
—
U23
2
86P
P4
P18
N18
P5
—
U24
2
86N
P6
P19
N19
P7
—
T24
2
87P
P8
P20
N20
P9
—
T23
2
87N
P10
P21
N21
P11
—
T22
2
88P
P12
P22
N22
P13
—
T25
-
-
VCC
-
-
-
VCC
VCC
2
88N
P14
P23
N23
P15
—
R26
-
-
GND
-
-
-
GND
GND
2
89P
P16
P24
N24
P17
—
R25
-
-
VCCO2
-
-
-
VCCO2
VCCO2
2
89N
P18
P25
N25
P19
—
R24
—
U22
-
-
GND (Bank 2)
-
-
-
2
90P
P20
P26
N26
P21
2
90N
P22
P27
N27
P23
—
P21
2
91P
P24
P28
N28
P25
—
R22
2
91N
P26
P29
N29
P27
—
R23
2
92P
P28
P30
N30
P29
—
R20
2
92N
P30
P31
N31
P31
—
P20
-
-
TOE
-
-
-
W22
P25
-
-
RESET
-
-
-
V22
P24
-
-
GOE0
-
-
-
T22
P23
-
-
GOE1
-
-
-
R22
P22
-
-
GNDP
-
-
-
-
GCLK3N
GCLK2
-
-
-
-
-
VCCP
-
-
82
-
GND (Bank 2) GND (Bank 2)
—
R21
See Power Supply and
NC Connections Table
P16
N26
See Power Supply and
NC Connections Table
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
-
-
N16
N24
R31
R1
J22
N23
R30
R3
H22
N22
R29
R5
N19
M26
T28
R28
R7
P15
M25
T27
R27
R9
P21
M23
R10
T26
R26
R11
N15
M22
GND (Bank 3)
-
-
-
R12
T25
R25
R13
M15
N20
VCCO3
-
-
-
VCCO3
VCCO3
R14
T24
R24
R15
N20
M20
GND
-
-
-
GND
GND
sysIO
Bank
LVDS Pair
Primary
Macrocell/Function
-
GCLK3P
GCLK3
-
3
93N
R0
T31
3
93P
R2
T30
3
94N
R4
T29
3
94P
R6
3
95N
R8
3
95P
-
-
3
96N
-
-
3
96P
-
-
3
97N
R16
T23
R23
R17
P22
N21
3
97P
R18
T22
R22
R19
N21
M21
3
98N
R20
T21
R21
R21
N17
M24
3
98P
R22
T20
R20
R23
M20
L24
3
99N
R24
T19
R19
R25
P17
L23
-
-
VCC
-
-
-
VCC
VCC
3
99P
R26
T18
R18
R27
P18
L22
3
100N
R28
T17
R17
R29
M21
L25
3
100P
R30
T16
R16
R31
M17
K26
-
-
GND (Bank 3)
-
-
-
3
101N
T0
T15
R15
T1
L20
K25
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
101P
T2
T14
R14
T3
N18
K24
3
102N
T4
T13
R13
T5
L21
K23
3
102P
T6
T12
R12
T7
M18
K22
3
103N
T8
T11
R11
T9
L22
J25
3
103P
T10
T10
R10
T11
L17
J24
3
104N
T12
T9
R9
T13
K22
L21
3
104P
T14
T8
R8
T15
L18
K21
3
105N
T16
T7
R7
T17
K21
L20
3
105P
T18
T6
R6
T19
K18
K20
-
-
GND (Bank 3)
-
-
-
3
106N
T20
T5
R5
T21
K20
J23
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
106P
T22
T4
R4
T23
K17
J22
3
107N
T24
T3
R3
T25
K19
J26
3
107P
T26
T2
R2
T27
J17
H26
3
108N
T28
T1
R1
T29
E22
H25
3
108P
T30/PLL_FBK1
T0
R0
T31
E21
H24
3
109N
U0/PLL_RST1
X27
V27
U1
G22
H23
3
109P
U2
X26
V26
U3
F21
H22
Macrocell 1
83
Macrocell 2
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
sysIO
Bank
Alternate Outputs
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
LVDS Pair
Primary
Macrocell/Function
-
-
GND (Bank 3)
-
-
-
3
110N
U4
X25
V25
U5
H21
J21
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
110P
U6
X24
V24
U7
G21
H21
-
-
GND
-
-
-
GND
GND
3
111N
U8
X23
V23
U9
D22
G25
3
111P
U10
X22
V22
U11
D21
G24
3
112N
U12
X21
V21
U13
J20
G23
3
112P
U14/CLK_OUT1
X20
V20
U15
J19
G22
3
113N
U16
V31
-
U17
E20
J20
-
-
VCC
-
-
-
VCC
VCC
3
113P
U18
V30
U30
U19
F20
H20
3
114N
U20
V29
U28
U21
H17
G26
3
114P
U22
V28
U26
U23
H18
F25
-
-
GND (Bank 3)
-
-
-
3
115N
U24
V27
-
U25
J18
F24
VCCO3
Macrocell 1
Macrocell 2
GND (Bank 3) GND (Bank 3)
GND (Bank 3) GND (Bank 3)
-
-
VCCO3
-
-
-
VCCO3
3
115P
U26
V26
-
U27
H19
F23
3
116N
U28
V25
-
U29
G20
G21
3
116P
U30
V24
-
U31
G19
F22
-
-
GND
-
-
-
GND
GND
3
117N
V0
V23
-
V1
C22
F26
-
-
VCC
-
-
-
VCC
VCC
3
117P
V2
V22
-
V3
C21
E26
3
118N
V4
V21
-
V5
D20
E25
3
118P
V6
V20
-
V7
C19
E24
3
119N
V8
V19
-
V9
F19
E23
3
119P
V10
V18
-
V11
E19
E22
-
-
GND (Bank 3)
-
-
-
3
120N
V12
V17
-
V13
G18
D26
GND (Bank 3) GND (Bank 3)
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
120P
V14
V16
-
V15
F18
D25
3
121N
V16
V15
-
V17
B20
D24
3
121P
V18
V14
-
V19
B19
D23
3
122N
V20
V13
-
V21
A20
C26
3
122P
V22
V12
-
V23
A19
C25
3
123N
V24
X19
V19
V25
D18
G19
3
123P
V26
X18
V18
V27
C18
F19
3
124N
V28
X17
V17
V29
G17
G18
3
124P
V30
X16
V16
V31
F16
F18
3
125N
W0
X31
V31
W1
E17
F20
3
125P
W2
X30
V30
W3
D17
E20
-
-
GND (Bank 3)
-
-
-
84
GND (Bank 3) GND (Bank 3)
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
Primary
Macrocell/Function
Macrocell 1
Macrocell 2
Alternate
Input
126N
W4
V11
U21
W5
B18
E19
-
VCCO3
-
-
-
VCCO3
VCCO3
126P
W6
V10
U20
W7
A18
E18
-
GND
-
-
-
GND
GND
127N
W8
V9
U18
W9
C17
C24
-
VCC
-
-
-
VCC
VCC
3
127P
W10
V8
U16
W11
B17
C23
3
128N
W12
V7
U12
W13
C16
D22
3
128P
W14
V6
U10
W15
B16
D21
3
129N
W16
V5
U8
W17
F13
E21
3
129P
W18
V4
U6
W19
F15
D20
3
130N
W20
V3
U5
W21
D16
D19
3
130P
W22
V2
U4
W23
E16
D18
3
131N
W24
V1
U2
W25
A16
C22
3
131P
W26
V0
U0
W27
A15
C21
-
-
GND (Bank 3)
-
-
-
3
132N
W28
X15
V15
W29
B15
C20
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
132P
W30
X14
V14
W31
A14
C19
3
133N
X0
X13
V13
X1
D15
C18
3
133P
X2
X12
V12
X3
E15
C17
3
134N
X4
X11
V11
X5
D14
B24
3
134P
X6
X10
V10
X7
F14
B23
3
135N
X8
X9
V9
X9
A13
B22
sysIO
Bank
LVDS Pair
3
3
3
-
484 fpBGA
Ball Number
672 fpBGA
Ball Number
GND (Bank 3) GND (Bank 3)
3
135P
X10
X8
V8
X11
B13
B21
3
136N
X12/VREF3
X29
V29
X13
C14
B20
3
136P
X14
X28
V28
X15
E14
B19
3
137N
X16
X7
V7
X17
E13
B18
3
137P
X18
X6
V6
X19
F12
B17
-
-
GND (Bank 3)
-
-
-
3
138N
X20
X5
V5
X21
D13
A24
-
-
VCCO3
-
-
-
VCCO3
VCCO3
3
138P
X22
X4
V4
X23
C13
A23
3
139N
X24
X3
V3
X25
E12
A22
-
-
GND
-
-
-
GND
GND
3
139P
X26
X2
V2
X27
C12
A21
-
-
VCC
-
-
-
VCC
VCC
3
140N
X28
X1
V1
X29
B12
A20
3
140P
X30
X0
V0
X31
A12
A19
0
141N
Y30
Y31
AA31
Y31
E11
A18
GND (Bank 3) GND (Bank 3)
-
-
VCC
-
-
-
VCC
VCC
0
141P
Y28
Y30
AA30
Y29
C11
A17
-
-
GND
-
-
-
GND
GND
85
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 51024MX Logic Signal Connections (Continued)
Alternate Outputs
LVDS Pair
Primary
Macrocell/Function
Macrocell 1
Macrocell 2
Alternate
Input
484 fpBGA
Ball Number
672 fpBGA
Ball Number
0
142N
Y26
Y29
AA29
Y27
B11
A10
0
142P
Y24
Y28
AA28
Y25
A11
A9
0
143N
Y22
Y27
AA27
Y23
F11
A8
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
143P
Y20
Y26
AA26
Y21
F10
A7
-
-
GND (Bank 0)
-
-
-
0
144N
Y18
Y25
AA25
Y19
E10
A6
0
144P
Y16
Y24
AA24
Y17
C10
A5
0
145N
Y14/VREF0
Y3
AA3
Y15
D10
A4
0
145P
Y12
Y2
AA2
Y13
B10
A3
0
146N
Y10
Y23
AA23
Y11
A10
B10
0
146P
Y8
Y22
AA22
Y9
A9
B9
0
147N
Y6
Y21
AA21
Y7
C9
B8
0
147P
Y4
Y20
AA20
Y5
D9
B7
0
148N
Y2
Y19
AA19
Y3
F9
B6
0
148P
Y0
Y18
AA18
Y1
E9
B5
0
149N
Z30
Y1
AA1
Z31
A8
B4
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
149P
Z28
Y0
AA0
Z29
B8
B3
-
-
GND (Bank 0)
-
-
-
0
150N
Z26
AA29
-
Z27
A7
C10
0
150P
Z24
AA28
-
Z25
B7
C9
0
151N
Z22
AA27
-
Z23
A5
C8
0
151P
Z20
AA26
-
Z21
B5
C7
0
152N
Z18
AA25
-
Z19
B6
C6
0
152P
Z16
AA24
-
Z17
C7
C5
0
153N
Z14
AA23
-
Z15
E8
C4
0
153P
Z12
AA22
-
Z13
E7
D5
0
154N
Z10
AA21
-
Z11
E6
D9
-
-
VCC
-
-
-
VCC
VCC
0
154P
Z8
AA20
-
Z9
D6
D8
-
-
GND
-
-
-
GND
GND
0
155N
Z6
AA19
-
Z7
D8
D7
-
-
VCCO0
-
-
-
VCCO0
VCCO0
0
155P
Z4
AA18
-
Z5
F8
D6
-
-
GND (Bank 0)
-
-
-
0
156N
Z2
AA17
-
Z3
F7
F9
0
156P
Z0
AA16
-
Z1
D7
E9
0
157N
AA30
AA15
-
AA31
C6
F7
0
157P
AA28
AA14
-
AA29
C5
F8
0
158N
AA26
AA13
-
AA27
C4
G8
0
158P
AA24
AA12
-
AA25
D5
G9
sysIO
Bank
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
GND (Bank 0) GND (Bank 0)
Global Clock LVDS pair options: GCLK0 and GCLK1, as well as GCLK2 and GCLK3, can be paired together to receive differential clocks; where GCLK0 and GCLK3 are the positive LVDS inputs.
86
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Part Number Description
LC XXXXX X X – XX XX XXX X
Grade
C = Commercial
I = Industrial
Device Family
LC
Device Number
5256 = 256 Macrocells
5512 = 512 Macrocells
5768 = 768 Macrocells
51024 = 1,024 Macrocells
Pin/Ball Count
208
256
484
672
Memory
M
Package
F = fpBGA
FN = Lead-Free fpBGA
Q = PQFP
Supply Voltage
V = 3.3V
B = 2.5V
C = 1.8V
Speed
4 = 4.0ns
45 = 4.5ns
5 = 5.0ns
52 = 5.2ns
75 = 7.5ns
Ordering Information
Note: For voltage families offered in industrial temperature grades and for all but the slowest commercial speed
grade, the speed grades on these devices are dual marked. For example, the commercial speed grade -45XXXXC
is also marked with the industrial grade -75I. The commercial grade is always one speed grade faster than the
associated dual mark industrial grade. The slowest commercial speed grade is marked as commercial grade only.
Conventional Packaging
ispXPLD 5000MC (1.8V) Commercial Devices
Device
LC5256MC
LC5512MC
LC5768MC
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MC-4F256C
256
1.8
4.0
fpBGA
256
141
C
LC5256MC-5F256C
256
1.8
5.0
fpBGA
256
141
C
LC5256MC-75F256C
256
1.8
7.5
fpBGA
256
141
C
LC5512MC-45Q208C
512
1.8
4.5
PQFP
208
149
C
LC5512MC-75Q208C
512
1.8
7.5
PQFP
208
149
C
LC5512MC-45F256C
512
1.8
4.5
fpBGA
256
193
C
LC5512MC-75F256C
512
1.8
7.5
fpBGA
256
193
C
LC5512MC-45F484C
512
1.8
4.5
fpBGA
484
253
C
LC5512MC-75F484C
512
1.8
7.5
fpBGA
484
253
C
LC5768MC-5F256C
768
1.8
5.0
fpBGA
256
193
C
LC5768MC-75F256C
768
1.8
7.5
fpBGA
256
193
C
LC5768MC-5F484C
768
1.8
5.0
fpBGA
484
317
C
LC5768MC-75F484C
768
1.8
7.5
fpBGA
484
317
C
87
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MC (1.8V) Commercial Devices (Continued)
Device
LC51024MC
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC51024MC-52F484C
1024
1.8
5.2
fpBGA
484
317
C
LC51024MC-75F484C
1024
1.8
7.5
fpBGA
484
317
C
LC51024MC-52F672C
1024
1.8
5.2
fpBGA
672
381
C
LC51024MC-75F672C
1024
1.8
7.5
fpBGA
672
381
C
ispXPLD 5000MC (1.8V) Industrial Devices
Device
LC5256MC
LC5512MC
LC5768MC
LC51024MC
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
256
141
I
LC5256MC-5F256I
256
1.8
5.0
fpBGA
LC5256MC-75F256I
256
1.8
7.5
fpBGA
256
141
I
LC5512MC-75Q208I
512
1.8
7.5
PQFP
208
149
I
LC5512MC-75F256I
512
1.8
7.5
fpBGA
256
193
I
LC5512MC-75F484I
512
1.8
7.5
fpBGA
484
253
I
LC5768MC-75F256I
768
1.8
7.5
fpBGA
256
193
I
LC5768MC-75F484I
768
1.8
7.5
fpBGA
484
317
I
LC51024MC-75F484I
1024
1.8
7.5
fpBGA
484
317
I
LC51024MC-75F672I
1024
1.8
7.5
fpBGA
672
381
I
ispXPLD 5000MB (2.5V) Commercial Devices
Device
LC5256MB
LC5512MB
LC5768MB
LC51024MB
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MB-4F256C
256
2.5
4.0
fpBGA
256
141
C
LC5256MB-5F256C
256
2.5
5.0
fpBGA
256
141
C
LC5256MB-75F256C
256
2.5
7.5
fpBGA
256
141
C
LC5512MB-45Q208C
512
2.5
4.5
PQFP
208
149
C
LC5512MB-75Q208C
512
2.5
7.5
PQFP
208
149
C
LC5512MB-45F256C
512
2.5
4.5
fpBGA
256
193
C
LC5512MB-75F256C
512
2.5
7.5
fpBGA
256
193
C
LC5512MB-45F484C
512
2.5
4.5
fpBGA
484
253
C
LC5512MB-75F484C
512
2.5
7.5
fpBGA
484
253
C
LC5768MB-5F256C
768
2.5
5.0
fpBGA
256
193
C
LC5768MB-75F256C
768
2.5
7.5
fpBGA
256
193
C
LC5768MB-5F484C
768
2.5
5.0
fpBGA
484
317
C
LC5768MB-75F484C
768
2.5
7.5
fpBGA
484
317
C
LC51024MB-52F484C
1024
2.5
5.2
fpBGA
484
317
C
LC51024MB-75F484C
1024
2.5
7.5
fpBGA
484
317
C
LC51024MB-52F672C
1024
2.5
5.2
fpBGA
672
381
C
LC51024MB-75F672C
1024
2.5
7.5
fpBGA
672
381
C
ispXPLD 5000MB (2.5V) Industrial Devices
Device
LC5256MB
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MB-5F256I
256
2.5
5.0
fpBGA
256
141
I
LC5256MB-75F256I
256
2.5
7.5
fpBGA
256
141
I
88
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MB (2.5V) Industrial Devices (Continued)
Device
LC5512MB
LC5768MB
LC51024MB
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5512MB-75Q208I
512
2.5
7.5
PQFP
208
149
I
LC5512MB-75F256I
512
2.5
7.5
fpBGA
256
193
I
LC5512MB-75F484I
512
2.5
7.5
fpBGA
484
253
I
LC5768MB-75F256I
768
2.5
7.5
fpBGA
256
193
I
LC5768MB-75F484I
768
2.5
7.5
fpBGA
484
317
I
LC51024MB-75F484I
1024
2.5
7.5
fpBGA
484
317
I
LC51024MB-75F672I
1024
2.5
7.5
fpBGA
672
381
I
ispXPLD 5000MV (3.3V) Commercial Devices
Device
LC5256MV
LC5512MV
LC5768MV
LC51024MV
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MV-4F256C
256
3.3
4.0
fpBGA
256
141
C
LC5256MV-5F256C
256
3.3
5.0
fpBGA
256
141
C
LC5256MV-75F256C
256
3.3
7.5
fpBGA
256
141
C
LC5512MV-45Q208C
512
3.3
4.5
PQFP
208
149
C
LC5512MV-75Q208C
512
3.3
7.5
PQFP
208
149
C
LC5512MV-45F256C
512
3.3
4.5
fpBGA
256
193
C
LC5512MV-75F256C
512
3.3
7.5
fpBGA
256
193
C
LC5512MV-45F484C
512
3.3
4.5
fpBGA
484
253
C
LC5512MV-75F484C
512
3.3
7.5
fpBGA
484
253
C
LC5768MV-5F256C
768
3.3
5.0
fpBGA
256
193
C
LC5768MV-75F256C
768
3.3
7.5
fpBGA
256
193
C
LC5768MV-5F484C
768
3.3
5.0
fpBGA
484
317
C
LC5768MV-75F484C
768
3.3
7.5
fpBGA
484
317
C
LC51024MV-52F484C
1024
3.3
5.2
fpBGA
484
317
C
LC51024MV-75F484C
1024
3.3
7.5
fpBGA
484
317
C
LC51024MV-52F672C
1024
3.3
5.2
fpBGA
672
381
C
LC51024MV-75F672C
1024
3.3
7.5
fpBGA
672
381
C
ispXPLD 5000MV (3.3V) Industrial Devices
Device
LC5256MV
LC5512MV
LC5768MV
LC51024MV
Part Number
Macrocells Voltage (V)
tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
256
141
I
LC5256MV-5F256I
256
3.3
5.0
fpBGA
LC5256MV-75F256I
256
3.3
7.5
fpBGA
256
141
I
LC5512MV-75Q208I
512
3.3
7.5
PQFP
208
149
I
LC5512MV-75F256I
512
3.3
7.5
fpBGA
256
193
I
LC5512MV-75F484I
512
3.3
7.5
fpBGA
484
253
I
LC5768MV-75F256I
768
3.3
7.5
fpBGA
256
193
I
LC5768MV-75F484I
768
3.3
7.5
fpBGA
484
317
I
LC51024MV-75F484I
1024
3.3
7.5
fpBGA
484
317
I
LC51024MV-75F672I
1024
3.3
7.5
fpBGA
672
381
I
89
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
Lead-Free Packaging
ispXPLD 5000MC (1.8V) Lead-Free Commercial Devices
Device
LC5256MC
LC5512MC
LC5768MC
LC51024MC
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MC-4FN256C
256
1.8
4.0
Lead-free fpBGA
256
141
C
LC5256MC-5FN256C
256
1.8
5.0
Lead-free fpBGA
256
141
C
LC5256MC-75FN256C
256
1.8
7.5
Lead-free fpBGA
256
141
C
LC5512MC-45QN208C
512
1.8
4.5
Lead-free PQFP
208
149
C
LC5512MC-75QN208C
512
1.8
7.5
Lead-free PQFP
208
149
C
LC5512MC-45FN256C
512
1.8
4.5
Lead-free fpBGA
256
193
C
LC5512MC-75FN256C
512
1.8
7.5
Lead-free fpBGA
256
193
C
LC5512MC-45FN484C
512
1.8
4.5
Lead-free fpBGA
484
253
C
LC5512MC-75FN484C
512
1.8
7.5
Lead-free fpBGA
484
253
C
LC5768MC-5FN256C
768
1.8
5.0
Lead-free fpBGA
256
193
C
LC5768MC-75FN256C
768
1.8
7.5
Lead-free fpBGA
256
193
C
LC5768MC-5FN484C
768
1.8
5.0
Lead-free fpBGA
484
317
C
LC5768MC-75FN484C
768
1.8
7.5
Lead-free fpBGA
484
317
C
LC51024MC-52FN484C
1024
1.8
5.2
Lead-free fpBGA
484
317
C
LC51024MC-75FN484C
1024
1.8
7.5
Lead-free fpBGA
484
317
C
LC51024MC-52FN672C
1024
1.8
5.2
Lead-free fpBGA
672
381
C
LC51024MC-75FN672C
1024
1.8
7.5
Lead-free fpBGA
672
381
C
ispXPLD 5000MC (1.8V) Lead-Free Industrial Devices
Device
LC5256MC
LC5512MC
LC5768MC
LC51024MC
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
256
141
I
LC5256MC-5FN256I
256
1.8
5.0
Lead-free fpBGA
LC5256MC-75FN256I
256
1.8
7.5
Lead-free fpBGA
256
141
I
LC5512MC-75QN208I
512
1.8
7.5
Lead-free PQFP
208
149
I
LC5512MC-75FN256I
512
1.8
7.5
Lead-free fpBGA
256
193
I
LC5512MC-75FN484I
512
1.8
7.5
Lead-free fpBGA
484
253
I
LC5768MC-75FN256I
768
1.8
7.5
Lead-free fpBGA
256
193
I
LC5768MC-75FN484I
768
1.8
7.5
Lead-free fpBGA
484
317
I
LC51024MC-75FN484I
1024
1.8
7.5
Lead-free fpBGA
484
317
I
LC51024MC-75FN672I
1024
1.8
7.5
Lead-free fpBGA
672
381
I
90
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MB (2.5V) Lead-Free Commercial Devices
Device
LC5256MB
LC5512MB
LC5768MB
LC51024MB
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MB-4FN256C
256
2.5
4.0
Lead-free fpBGA
256
141
C
LC5256MB-5FN256C
256
2.5
5.0
Lead-free fpBGA
256
141
C
LC5256MB-75FN256C
256
2.5
7.5
Lead-free fpBGA
256
141
C
LC5512MB-45QN208C
512
2.5
4.5
Lead-free PQFP
208
149
C
LC5512MB-75QN208C
512
2.5
7.5
Lead-free PQFP
208
149
C
LC5512MB-45FN256C
512
2.5
4.5
Lead-free fpBGA
256
193
C
LC5512MB-75FN256C
512
2.5
7.5
Lead-free fpBGA
256
193
C
LC5512MB-45FN484C
512
2.5
4.5
Lead-free fpBGA
484
253
C
LC5512MB-75FN484C
512
2.5
7.5
Lead-free fpBGA
484
253
C
LC5768MB-5FN256C
768
2.5
5.0
Lead-free fpBGA
256
193
C
LC5768MB-75FN256C
768
2.5
7.5
Lead-free fpBGA
256
193
C
LC5768MB-5FN484C
768
2.5
5.0
Lead-free fpBGA
484
317
C
LC5768MB-75FN484C
768
2.5
7.5
Lead-free fpBGA
484
317
C
LC51024MB-52FN484C
1024
2.5
5.2
Lead-free fpBGA
484
317
C
LC51024MB-75FN484C
1024
2.5
7.5
Lead-free fpBGA
484
317
C
LC51024MB-52FN672C
1024
2.5
5.2
Lead-free fpBGA
672
381
C
LC51024MB-75FN672C
1024
2.5
7.5
Lead-free fpBGA
672
381
C
ispXPLD 5000MB (2.5V) Lead-Free Industrial Devices
Device
LC5256MB
LC5512MB
LC5768MB
LC51024MB
Pin/Ball
Count
I/O
Grade
256
2.5
5.0
Lead-free fpBGA
256
141
I
LC5256MB-75FN256I
256
2.5
7.5
Lead-free fpBGA
256
141
I
Macrocells
Voltage (V) tPD (ns)
Package
LC5256MB-5FN256I
Part Number
LC5512MB-75QN208I
512
2.5
7.5
Lead-free PQFP
208
149
I
LC5512MB-75FN256I
512
2.5
7.5
Lead-free fpBGA
256
193
I
LC5512MB-75FN484I
512
2.5
7.5
Lead-free fpBGA
484
253
I
LC5768MB-75FN256I
768
2.5
7.5
Lead-free fpBGA
256
193
I
LC5768MB-75FN484I
768
2.5
7.5
Lead-free fpBGA
484
317
I
LC51024MB-75FN484I
1024
2.5
7.5
Lead-free fpBGA
484
317
I
LC51024MB-75FN672I
1024
2.5
7.5
Lead-free fpBGA
672
381
I
ispXPLD 5000MV (3.3V) Lead-Free Commercial Devices
Device
LC5256MV
LC5512MV
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5256MV-4FN256C
256
3.3
4.0
Lead-free fpBGA
256
141
C
LC5256MV-5FN256C
256
3.3
5.0
Lead-free fpBGA
256
141
C
LC5256MV-75FN256C
256
3.3
7.5
Lead-free fpBGA
256
141
C
LC5512MV-45QN208C
512
3.3
4.5
Lead-free PQFP
208
149
C
LC5512MV-75QN208C
512
3.3
7.5
Lead-free PQFP
208
149
C
LC5512MV-45FN256C
512
3.3
4.5
Lead-free fpBGA
256
193
C
LC5512MV-75FN256C
512
3.3
7.5
Lead-free fpBGA
256
193
C
LC5512MV-45FN484C
512
3.3
4.5
Lead-free fpBGA
484
253
C
LC5512MV-75FN484C
512
3.3
7.5
Lead-free fpBGA
484
253
C
91
Lattice Semiconductor
ispXPLD 5000MX Family Data Sheet
ispXPLD 5000MV (3.3V) Lead-Free Commercial Devices (Continued)
Device
LC5768MV
LC51024MV
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
LC5768MV-5FN256C
768
3.3
5.0
Lead-free fpBGA
256
193
C
LC5768MV-75FN256C
768
3.3
7.5
Lead-free fpBGA
256
193
C
LC5768MV-5FN484C
768
3.3
5.0
Lead-free fpBGA
484
317
C
LC5768MV-75FN484C
768
3.3
7.5
Lead-free fpBGA
484
317
C
LC51024MV-52FN484C
1024
3.3
5.2
Lead-free fpBGA
484
317
C
LC51024MV-75FN484C
1024
3.3
7.5
Lead-free fpBGA
484
317
C
LC51024MV-52FN672C
1024
3.3
5.2
Lead-free fpBGA
672
381
C
LC51024MV-75FN672C
1024
3.3
7.5
Lead-free fpBGA
672
381
C
ispXPLD 5000MV (3.3V) Lead-Free Industrial Devices
Device
LC5256MV
LC5512MV
LC5768MV
LC51024MV
Part Number
Macrocells
Voltage (V) tPD (ns)
Package
Pin/Ball
Count
I/O
Grade
256
141
I
LC5256MV-5FN256I
256
3.3
5.0
Lead-free fpBGA
LC5256MV-75FN256I
256
3.3
7.5
Lead-free fpBGA
256
141
I
LC5512MV-75QN208I
512
3.3
7.5
Lead-free PQFP
208
149
I
LC5512MV-75FN256I
512
3.3
7.5
Lead-free fpBGA
256
193
I
LC5512MV-75FN484I
512
3.3
7.5
Lead-free fpBGA
484
253
I
LC5768MV-75FN256I
768
3.3
7.5
Lead-free fpBGA
256
193
I
LC5768MV-75FN484I
768
3.3
7.5
Lead-free fpBGA
484
317
I
LC51024MV-75FN484I
1024
3.3
7.5
Lead-free fpBGA
484
317
I
LC51024MV-75FN672I
1024
3.3
7.5
Lead-free fpBGA
672
381
I
For Further Information
In addition to this data sheet, the following technical notes may be helpful when designing with the ispXPLD
5000MX family:
• sysIO Usage Guidelines for Lattice Devices (TN1000)
• Lattice sysCLOCK PLL Design and Usage Guidelines (TN1003)
• Power Estimation in ispXPLD 5000MX Devices (TN1031)
• Using Memory in ispXPLD 5000MX Devices (TN1030)
• ispXP Configuration Usage Guidelines (TN1026)
92
Similar pages