Intersil CA3078T 2mhz, micropower operational amplifier Datasheet

®
IC
CA3078, CA3078A
T
O DUC
T
T E PR
E
ODUC 3160
L
R
O
P
S
E
T
A
OB
U
C
,
IT
SUBST 20A, CA3140
E
L
IB
Data
Sheet
S
4
POS
2, CA5
ICL761
L7611,
May 2001
FN535.6
2MHz, Micropower Operational Amplifier
Features
The CA3078 and CA3078A are high gain monolithic
operational amplifiers which can deliver milliamperes of
current yet only consume microwatts of standby power. Their
operating points are externally adjustable and frequency
compensation may be accomplished with one external
capacitor. The CA3078 and CA3078A provide the designer
with the opportunity to tailor the frequency response and
improve the slew rate without sacrificing power. Operation
with a single 1.5V battery is a practical reality with these
devices.
• Low Standby Power . . . . . . . . . . . . . . . As Low As 700nW
• Wide Supply Voltage Range . . . . . . . . . . ±0.75V to ±15V
• High Peak Output Current . . . . . . . . . . . . . . . 6.5mA (Min)
• Adjustable Quiescent Current
• Output Short Circuit Protection
Applications
The CA3078A is a premium device having a supply voltage
range of V± = 0.75V to V± = 15V. The CA3078 has the same
lower supply voltage limit but the upper limit is V+ = +6V and
V- = -6V.
• Portable Electronics
• Intrusion Alarms
• Telemetry
• Instrumentation
• Medical Electronics
Pinouts
CA3078 (PDIP, SOIC)
TOP VIEW
Part Number Information
PART NUMBER
TEMP.
(BRAND)
RANGE (oC)
COMP 1
PKG.
NO.
PACKAGE
CA3078AE
-55 to 125
8 Ld PDIP
E8.3
CA3078AM
(3078A)
-55 to 125
8 Ld SOIC
M8.15
CA3078AM96
(3078A)
-55 to 125
8 Ld SOIC Tape and Reel M8.15
CA3078AT
-55 to 125
8 Pin Metal Can
T8.C
8 COMP
INV. INPUT 2
NON-INV. 3
INPUT
V- 4
7 V+
-
+
6 OUTPUT
5 BIAS
CA3078 (METAL CAN)
TOP VIEW
V+
COMP
TAB
8
7 V+
1
CA3078E
0 to 70
8 Ld PDIP
E8.3
CA3078M
(3078)
0 to 70
8 Ld SOIC
M8.15
INV. 2
INPUT
CA3078T
0 to 70
8 Pin Metal Can
T8.C
NON-INV. 3
INPUT
RSET
6 OUTPUT
+
5
BIAS
4
V-
NOTE: Case Voltage = Floating
Schematic Diagram
7
D2
D3
V+
50Ω
D5
Q10
Q12
Q18
Q6
Q4
NONINVERTING
3
Q1 Q3
INVERTING
2
BIAS
5
Q2
D1
Q7
D9
Q11
Q13
D8
Q15
Q8
D6
Q5
Q17
Q9
Q14
D7
D4
1
1
Q16 OUTPUT
6
COMPENSATION
50Ω
V4
8
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
CA3078, CA3078A
Absolute Maximum Ratings
Thermal Information
Supply Voltage (Between V+ and V- Terminal)
CA3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14V
CA3078A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.1mA
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Thermal Resistance (Typical, Note 2)
θJA (oC/W)
θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . .
130
N/A
SOIC Package . . . . . . . . . . . . . . . . . . .
165
N/A
Metal Can Package . . . . . . . . . . . . . . .
175
100
Maximum Junction Temperature (Metal Can Package) . . . . . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range
CA3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CA3078A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
For Equipment Design
CA3078 LIMITS
CA3078A LIMITS
RSET = 1MΩ
RSET = 5.1MΩ
TEST CONDITIONS
TA = 0oC to
70oC
TA = 25oC
TA = -55oC to
125oC
TA = 25oC
PARAMETER
V+
and V-
RS
(kΩ)
RL
(kΩ)
MIN
TYP
MAX
MIN
MAX
MIN
TYP
MAX
MIN
MAX
UNITS
VIO
±6V
≤10
-
-
1.3
4.5
-
5
-
0.70
3.5
-
4.5
mV
IIO
-
-
-
6
32
-
40
-
0.50
2.5
-
5.0
nA
IIB
-
-
-
60
170
-
200
-
7
12
-
50
nA
AOL
-
≥10
88
92
-
86
-
92
100
-
90
-
dB
IQ
-
-
-
100
130
-
150
-
20
25
-
45
µA
PD
-
-
-
1200
1560
-
1800
-
240
300
-
540
µW
VOM
-
≥10
±5.1
±5.3
-
±5
-
±5.1
±5.3
-
±5
-
V
VICR
≤10
-
-
-5.5 to
+5.8
-
-5 to
+5
-
-
-5.5 to
+5.8
-
-5 to
+5
-
V
CMRR
≤10
-
80
110
-
-
-
80
115
-
-
-
dB
IOM+ or IOM-
-
-
-
12
-
6.5
30
-
12
-
6.5
30
mA
∆VIO/∆V+
≤10
-
76
93
-
-
-
76
105
-
-
-
µV/V
∆VIO/∆V-
≤10
-
76
93
-
-
-
76
105
-
-
-
µV/V
RSET = 13MΩ
≤10
-
-
-
-
-
-
-
1.4
3.5
-
4.5
mV
AOL
-
≥10
-
-
-
-
-
92
100
-
88
-
dB
IQ
-
-
-
-
-
-
-
-
20
30
-
50
µA
PD
-
-
-
-
-
-
-
-
600
750
-
1350
µW
VOM
-
≥10
-
-
-
-
-
±13.7
±14.1
-
±13.5
-
V
CMRR
≤10
-
-
-
-
-
-
80
106
-
-
-
dB
IIB
-
-
-
-
-
-
-
-
7
14
-
55
nA
IIO
-
-
-
-
-
-
-
-
0.50
2.7
-
5.5
nA
VIO
±15V
2
CA3078, CA3078A
TA = 25oC, Typical Values Intended Only for Design Guidance
Electrical Specifications
CA3078
CA3078A
PARAMETER
V+ = +1.3V,
V- = -1.3V
RSET = 2MΩ
V+ = +0.75V,
V- = -0.75V
RSET = 10MΩ
V+ = +1.3V,
V- = -1.3V
RSET = 2MΩ
V+ = +0.75V,
V- = -0.75V
RSET = 10MΩ
UNITS
VIO
1.3
1.5
0.7
0.9
mV
IIO
1.7
0.5
0.3
0.054
nA
IIB
9
1.3
3.7
0.45
nA
AOL
80
60
84
65
dB
IQ
10
1
10
1
µA
PD
26
1.5
26
1.5
µW
VOP-P
1.4
0.3
1.4
0.3
V
VICR
-0.8 to +1.1
-0.2 to +0.5
-0.8 to +1.1
-0.2 to +0.5
V
CMRR
100
90
100
90
dB
IOM±
12
0.5
12
0.5
mA
∆VIO/∆V±
20
50
20
50
µV/V
TA = 25oC and VSUPPLY = ±6V, Typical Values Intended Only for Design Guidance
Electrical Specifications
CA3078
PARAMETER
TEST CONDITIONS
CA3078A
RSET = 1MΩ
RSET = 5.1MΩ
RSET = 1MΩ
UNITS
∆VIO/∆TA
RS ≤10kΩ
6
5
6
µV/oC
∆IIO/∆TA
RS ≤10kΩ
70
6.3
70
pA/oC
AV = 100, C1 = 10pF
2
0.3
2
MHz
0.04
0.027
0.04
V/µs
1.5
0.5
1.5
V/µs
2.5
3
2.5
µs
GBWP
SR
tR
See Figures 23, 24
10% to 90% Rise Time
RI
-
0.87
7.4
1.7
MΩ
RO
-
0.8
1
0.8
kΩ
eN(10Hz)
RS = 0
25
40
-
nV/√Hz
iN(10Hz)
RS = 1MΩ
1
0.25
-
pA/√Hz
3
CA3078, CA3078A
Test Circuits
V+
V+
100kΩ
100kΩ
V+
0V
V+
7
RSET
7
100kΩ
2
VIN
R2
CA3078
CA3078A
C2
3
+
6
8
VOUT
0V
C2
V-
VOUT
8
10kΩ
CL
1
4
4
R1 OPTIONAL
R2 - C2 COMP.
6
+
3
100kΩ
CL
0V
CA3078
CA3078A
VIN
10kΩ
5
-
R2
1
51kΩ
2
0V
5
-
RSET
VC1
R1
R1 OPTIONAL
R2 - C2 COMP.
FIGURE 1. TRANSIENT RESPONSE AND SLEW RATE, UNITY
GAIN (INVERTING) TEST CIRCUIT
R1
C1
FIGURE 2. SLEW RATE, UNITY GAIN (NON-INVERTING)
TEST CIRCUIT
INVERTING
NON-INVERTING
V+
INPUT
RI
3
V+
RB
INPUT
+
CA3078
CA3078A
OUTPUT
RI
2
-
6
CA3078
CA3078A
RB
4
3
1M
V-
V+
7
V+
-
2
1M
RF
7
+
4
V-
RF
V-
V-
Value of RB required to have a
null adjustment range of ±7.5mV
RI RF V+
RB ≈
(RI + RF) 7.5 x 10-3
RI
assuming RB > >
OUTPUT
6
Value of RB required to have a
null adjustment range of ±7.5mV
RI V+
RB ≈
7.5 x 10-3
RI RF
RI + RF
assuming RB > > RI
FIGURE 3. OFFSET VOLTAGE NULL CIRCUITS
5.1MΩ
5.1MΩ
RSET =
30MΩ
10MΩ
7
VP-P
510kΩ
2
1µF
CA3078
CA3078A
7
1.5V
“AA” CELL
5
-
+
8
1
10MΩ
4
2
VP-P
+
3
+
8
1
1µF
FIGURE 4. INVERTING 20dB AMPLIFIER CIRCUIT
6
1µF
5µF
7pF
1.5V
“AA” CELL
5
CA3078
CA3078A
510kΩ
RL
4
+
6
+
3
RSET =
30MΩ
10MΩ
10MΩ
4
5µF
RL
7pF
FIGURE 5. NON-INVERTING 20dB AMPLIFIER CIRCUIT
+
-
CA3078, CA3078A
TABLE 1. UNITY GAIN SLEW RATE vs COMPENSATION - CA3078 AND CA3078A
VSUPPLY = ±6V, Output Voltage (VO) = ±5V, Load Resistance (RL) = 10kΩ, Transient Response: 10% overshoot for an output voltage of 100mV,
Ambient Temperature (TA) = 25oC
UNITY GAIN (INVERTING)
FIGURE 1
UNITY GAIN (NON-INVERTING)
FIGURE 2
R1
C1
R2
C2
SLEW RATE
R1
C1
R2
C2
SLEW RATE
kΩ
pF
kΩ
µF
V/µs
kΩ
pF
kΩ
µF
V/µs
0
750
∞
0
0.0085
0
1500
∞
0
0.0095
3.5
350
∞
0
0.04
5.3
500
∞
0
0.024
∞
0
0.25
0.306
0.67
∞
0
0.311
0.45
0.67
Single Capacitor
0
300
∞
0
0.0095
0
800
∞
0
0.003
Resistor and Capacitor
14
100
∞
0
0.027
34
125
∞
0
0.02
Input
∞
0
0.644
0.156
0.29
∞
0
0.77
0.4
0.4
COMPENSATION
TECHNIQUE
CA3078 - IQ = 100µA
Single Capacitor
Resistor and Capacitor
Input
CA3078A - IQ = 20µA
Application Information
Compensation Techniques
The CA3078A and CA3078 can be phase compensated with
one or two external components depending upon the closed
loop gain, power consumption, and speed desired. The
recommended compensation is a resistor in series with a
capacitor connected from Terminal 1 to Terminal 8. Values of
the resistor and capacitor required for compensation as a
function of closed loop gain are shown in Figures 25 and 26.
These curves represent the compensation necessary at
quiescent currents of 100µA and 20µA, respectively, for a
transient response with 10% overshoot. Figures 23 and 24
show the slew rates that can be obtained with the two different
compensation techniques. Higher speeds can be achieved
with input compensation, but this increases noise output.
Compensation can also be accomplished with a single
capacitor connected from Terminal 1 to Terminal 8, with speed
being sacrificed for simplicity. Table 1 gives an indication of
slew rates that can be obtained with various compensation
techniques at quiescent currents of 100µA and 20µA.
Single Supply Operation
The CA3078A and CA3078 can operate from a single supply
with a minimum total supply voltage of 1.5V. Figures 4 and 5
show the CA3078A or CA3078 in inverting and non-inverting
20dB amplifier configurations utilizing a 1.5V type “AA” cell
for a supply. The total consumption for either circuit is
approximately 675nW. The output voltage swing in this
configuration is 300mVP-P with a 20kΩ load.
Typical Performance Curves
INPUT OFFSET CURRENT (nA)
INPUT OFFSET VOLTAGE (mV)
VS = ±6
TA = 25oC
RS ≤ 10kΩ
3.0
2.4
1.8
CA3078
1.2
CA3078A
VS = ±6
TA = 25oC
10
CA3078
1
CA3078A
0.1
0.6
0
1
10
100
1000
TOTAL QUIESCENT CURRENT (µA)
FIGURE 6. INPUT OFFSET VOLTAGE vs TOTAL QUIESCENT
CURRENT
5
0.01
1
100
10
1000
TOTAL QUIESCENT CURRENT (µA)
10000
FIGURE 7. INPUT OFFSET CURRENT vs TOTAL QUIESCENT
CURRENT
CA3078, CA3078A
Typical Performance Curves
(Continued)
VS = ±6
TA = 25oC
CA3078
CA3078A
1
10
100
1000
90
90
54
36
18
0
18
0
10000
1
FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TOTAL
QUIESCENT CURRENT
MAXIMUM OUTPUT CURRENT (mA)
BIAS SETTING RESISTANCE (MΩ)
VS = ±15
100
+6
-6
+3
-3
+1
-1
TA = 25oC
0.1
RSET CONNECTED BETWEEN
TERMINAL 5 AND V+
0.01
1000
10
1
0.1
0.01
TOTAL QUIESCENT CURRENT (µA)
0.001
1
120
RL = 50kΩ
1.0
10kΩ
5kΩ
2kΩ
1kΩ
500Ω
0.5
0
0.5
1.0
1.5
2.0
TOTAL QUIESCENT CURRENT (µA)
FIGURE 12. OUTPUT VOLTAGE SWING vs TOTAL QUIESCENT
CURRENT
6
10
100
1000
TOTAL QUIESCENT CURRENT (µA)
FIGURE 11. MAXIMUM OUTPUT CURRENT vs TOTAL
QUIESCENT CURRENT
OPEN LOOP VOLTAGE GAIN (dB)
OUTPUT VOLTAGE SWING (V)
10
1
VS = ±1.3V
TA = 25oC
0
VS = ±6 TO VS = ±15
TA = 25oC
0.1
100
FIGURE 10. BIAS SETTING RESISTANCE vs TOTAL
QUIESCENT CURRENT
1.5
1000
10
100
TOTAL QUIESCENT CURRENT (µA)
100
1
54
36
1000
10
72
10kΩ
2kΩ
72
TOTAL QUIESCENT CURRENT (µA)
FIGURE 8. INPUT BIAS CURRENT vs TOTAL QUIESCENT
CURRENT
108
RL = 1MΩ
108
0.1
1
126
126
VS = ±6
IQ = 100µA
C1 = 0pF
100
C1 = 10pF
C1 = 30pF
80
60
0
100
φ
100
300
1000
200
40
300
20
400
0 RL = 10kΩ, TA = 25oC
C1- BETWEEN TERMINALS 1 AND 8
-20
0.1
1
101
102
103
104
105
106
FREQUENCY (Hz)
FIGURE 13. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
PHASE ANGLE (DEGREES)
10
CA3078
OPEN LOOP VOLTAGE GAIN (dB)
INPUT BIAS CURRENT (nA)
100
CA3078A
TA = 25oC
CA3078, CA3078A
(Continued)
100
OPEN LOOP VOLTAGE GAIN (dB)
IQ = 20µA
TA = 25oC
10
PEAK OUTPUT VOLTAGE (V), COMMON MODE VOLTAGE RANGE (V)
VICR
VOM
1
VS = ±6
IQ = 20µA
120
100
C1 = 0pF
80
φ
60
300
20
400
0 RL = 10kΩ
TA = 25oC
-20 C1- BETWEEN TERMINALS 1 AND 8
0.1
+0.1
-0.1
+10
+100
-1
-10
-100
200
100
40 300
1000
1
101
0.1
+1
0
C1 = 10pF
C1 = 30pF 100
PHASE ANGLE (DEGREES)
Typical Performance Curves
102
103
104
105
106
FREQUENCY (Hz)
FIGURE 15. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
SUPPLY VOLTS (V+, V-)
-0.1
INPUT OFFSET VOLTAGE (mV)
1.75
-1
-VICR
-VOM
-10
VS = ±6
1.50
CA3078
IQ = 100µA
1.25
1.00
CA3078A
IQ = 20µA
0.75
0.50
0.25
0
-75
-50
-25
0
25
50
75
100
125
TEMPERATURE (oC)
2.0
8
CA3078
IQ = 100µA
6
1.5
CA3078A
IQ = 20µA
1.0
4
2
0.5
0
-75
-50
-25
0
25
50
TEMPERATURE (oC)
75
100
0
125
FIGURE 17. INPUT OFFSET CURRENT vs TEMPERATURE
7
15.0
CA3078A
IQ = 20µA
12.5
10.0
100
7.5
75
5.0
50
CA3078
IQ = 100µA
25
2.5
0
-75
-50
-25
0
25
50
TEMPERATURE (oC)
75
100
0
125
FIGURE 18. INPUT BIAS CURRENT vs TEMPERATURE
INPUT BIAS CURRENT (nA) - CA3078T
10
2.5
VS = ±6
INPUT BIAS CURRENT (nA) - CA3078AT
VS = ±6
FIGURE 16. INPUT OFFSET VOLTAGE vs TEMPERATURE
INPUT OFFSET CURRENT (nA) - CA3078T
INPUT OFFSET CURRENT (nA) - CA3078AT
FIGURE 14. OUTPUT AND COMMON MODE VOLTAGE vs
SUPPLY VOLTAGE
CA3078, CA3078A
Typical Performance Curves
VS = ±6
OPEN LOOP VOLTAGE GAIN (dB)
110
105
100
CA3078A
IQ = 20µA
95
CA3078
IQ = 100µA
90
85
80
-75
-50
-25
0
25
50
75
100
125
VS = ±6
50
40
200
150
30
CA3078
100
10
50
0
-75
TEMPERATURE (oC)
100
VS = ±6
TA = 25oC
CA3078AT
IQ = 20µA
IQ = 100µA
10
0
101
102
103
104
FREQUENCY (Hz)
FIGURE 21. EQUIVALENT INPUT NOISE VOLTAGE vs
FREQUENCY
8
105
-50
-25
0
25
50
TEMPERATURE (oC)
75
100
0
125
FIGURE 20. TOTAL QUIESCENT CURRENT vs TEMPERATURE
EQUIVALENT INPUT NOISE CURRENT (pA/√Hz)
EQUIVALENT INPUT NOISE VOLTAGE (nV/√Hz)
FIGURE 19. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE
CA3078A
20
TOTAL QUIESCENT CURRENT (µA) - CA3078T
TOTAL QUIESCENT CURRENT (µA) - CA3078AT
(Continued)
1
VS = ±6
TA = 25oC
CA3078AT
IQ = 100µA
0.1
IQ = 20µA
0.01
101
102
103
104
FREQUENCY (Hz)
FIGURE 22. EQUIVALENT INPUT NOISE CURRENT vs
FREQUENCY
105
CA3078, CA3078A
(Continued)
1.5 RESISTOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
1.25
TERMINALS 1 AND 8)
0.6
1
SLEW RATE (V/µs)
SLEW RATE (V/µs)
Typical Performance Curves
CAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)
0.75
0.5
0.25
0
RESISTOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
TERMINALS 1 AND 8)
0.5
0.4
CAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)
0.3
0.2
0.1
0
0
10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6
19.1 29.7
40
50
60
70
80
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
0
90
10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6
19.1 29.7
40
50
60
70
80
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
Supply Volts: V+ = +6, V- = -6
Supply Volts: V+ = +6, V- = -6
Quiescent Current (IQ) = 100µA
Quiescent Current (IQ) = 20µA
Ambient Temperature (TA) = 25oC
Ambient Temperature (TA) = 25oC
Load Impedance: RL = 10kΩ, CL = 100pF
Load Impedance: RL = 10kΩ, CL = 100pF
90
Feedback Resistance (RF) = 0.1MΩ
Feedback Resistance (RF) = 0.1MΩ
Output Voltage (VOP-P) = 10V
Output Voltage (VOP-P) = 10V
R1 determined for transient response with 10% overshoot on a
100mV output signal (R1 x C1 = 2.5 x 10-6)
R1 determined for transient response with 10% overshoot on a
100mV output signal (R1 x C1 = 2 x 10-6)
CAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)
1000
RESISTOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
TERMINALS 1 AND 8)
100
10
1
0
10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6
19.1 29.7 40
50
60
70
80
90
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
FIGURE 24. SLEW RATE vs CLOSED LOOP GAIN FOR
IQ = 20mA - CA3078A
PHASE COMPENSATION CAPACITOR (pF)
PHASE COMPENSATION CAPACITOR (pF)
FIGURE 23. SLEW RATE vs CLOSED LOOP GAIN FOR
IQ = 100mA - CA3078
CAPACITOR
COMPENSATION
(BETWEEN
TERMINALS 1 AND 8)
1000
RESISTOR-CAPACITOR
COMPENSATION
(R1 - C1 BETWEEN
TERMINALS 1 AND 8)
100
10
1
0
10
20
30
40
50
60
70
80
90
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6
19.1 29.7 40
50
60
70
80
90
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
Supply Volts: V+ = +6, V- = -6
Supply Volts: V+ = +6, V- = -6
Quiescent Current (IQ) = 100µA
Quiescent Current (IQ) = 20µA
Ambient Temperature (TA) = 25oC
Ambient Temperature (TA) = 25oC
Load Impedance: RL = 10kΩ, CL = 100pF
Feedback Resistance (RF) = 0.1MΩ
Load Impedance: RL = 10kΩ, CL = 100pF
Feedback Resistance (RF) = 0.1MΩ
Output Voltage (VOP-P) = 100mV
Output Voltage (VOP-P) = 100mV
R1 determined for transient response with 10% overshoot on a
100mV output signal (R1 x C1 = 2.5 x 10-6)
R1 determined for transient response with 10% overshoot on a
100mV output signal (R1 x C1 = 2 x 10-6)
FIGURE 25. PHASE COMPENSATION CAPACITANCE vs
CLOSED LOOP GAIN - CA3078
9
FIGURE 26. PHASE COMPENSATION CAPACITANCE vs
CLOSED LOOP GAIN - CA3078A
CA3078, CA3078A
Dual-In-Line Plastic Packages (PDIP)
E8.3 (JEDEC MS-001-BA ISSUE D)
N
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE
E1
INDEX
AREA
1 2 3
INCHES
N/2
-B-
-AD
E
BASE
PLANE
A2
-C-
SEATING
PLANE
A
L
D1
e
B1
D1
eA
A1
eC
B
0.010 (0.25) M
C
L
C A B S
C
eB
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between
English and Metric dimensions, the inch dimensions control.
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.210
-
5.33
4
A1
0.015
-
0.39
-
4
A2
0.115
0.195
2.93
4.95
-
B
0.014
0.022
0.356
0.558
-
B1
0.045
0.070
1.15
1.77
8, 10
C
0.008
0.014
0.204
D
0.355
0.400
9.01
D1
0.005
-
0.13
-
5
E
0.300
0.325
7.62
8.25
6
E1
0.240
0.280
6.10
7.11
5
e
0.100 BSC
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
eA
0.300 BSC
3. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication No. 95.
eB
-
L
0.115
4. Dimensions A, A1 and L are measured with the package seated
in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch
(0.25mm).
6. E and eA are measured with the leads constrained to be perpendicular to datum -C- .
7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions.
Dambar protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch
(0.76 - 1.14mm).
10
N
8
0.355
10.16
5
2.54 BSC
-
7.62 BSC
6
0.430
-
0.150
2.93
8
10.92
7
3.81
4
9
Rev. 0 12/93
CA3078, CA3078A
Small Outline Plastic Packages (SOIC)
M8.15 (JEDEC MS-012-AA ISSUE C)
N
INDEX
AREA
H
0.25(0.010) M
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC
PACKAGE
B M
E
INCHES
-B1
2
SYMBOL
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
µα
A1
B
0.25(0.010) M
C A M
MAX
MIN
MAX
A
0.0532
0.0688
1.35
1.75
-
A1
0.0040
0.0098
0.10
0.25
-
C
B S
B
0.013
0.020
0.33
0.51
9
0.0075
0.0098
0.19
0.25
-
D
0.1890
0.1968
4.80
5.00
3
E
0.1497
0.1574
3.80
4.00
4
5.80
6.20
-
h
0.0099
0.0196
0.25
0.50
5
L
0.016
0.050
0.40
1.27
6
8o
0o
α
15. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
16. “L” is the length of terminal for soldering to a substrate.
17. “N” is the number of terminal positions.
18. Terminal numbers are shown for reference only.
19. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch).
20. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
11
-
0.2440
N
14. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per
side.
1.27 BSC
0.2284
11. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
13. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
0.050 BSC
H
NOTES:
12. Dimensioning and tolerancing per ANSI Y14.5M-1982.
NOTES
C
e
0.10(0.004)
MILLIMETERS
MIN
8
0o
8
7
8o
Rev. 0 12/93
CA3078, CA3078A
Metal Can Packages (Can)
T8.C MIL-STD-1835 MACY1-X8 (A1)
REFERENCE PLANE
A
8 LEAD METAL CAN PACKAGE
e1
L
INCHES
L2
L1
ØD2
β
4.19
4.70
-
0.019
0.41
0.48
1
Øb1
0.016
0.021
0.41
0.53
1
N
Øb2
0.016
0.024
0.41
0.61
-
ØD
0.335
0.375
8.51
9.40
-
α
ØD1
0.305
0.335
7.75
8.51
-
ØD2
0.110
0.160
2.79
4.06
k
C
L
e
BASE AND
SEATING PLANE
Q
BASE METAL
Øb1
e1
LEAD FINISH
Øb2
SECTION A-A
NOTES:
1. (All leads) Øb applies between L1 and L2. Øb1 applies between
L2 and 0.500 from the reference plane. Diameter is uncontrolled
in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. α is the basic spacing from the centerline of the tab to terminal 1
and β is the basic spacing of each lead or lead position (N -1
places) from α, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH.
12
NOTES
0.185
1
Øb
MAX
0.016
k1
Øb1
MIN
0.165
Øe
F
MAX
A
A
2
MIN
Øb
A
ØD ØD1
MILLIMETERS
SYMBOL
0.200 BSC
0.100 BSC
-
5.08 BSC
-
2.54 BSC
-
F
-
0.040
-
1.02
-
k
0.027
0.034
0.69
0.86
-
k1
0.027
0.045
0.69
1.14
2
12.70
19.05
1
1.27
1
L
0.500
0.750
L1
-
0.050
-
L2
0.250
-
6.35
-
1
Q
0.010
0.045
0.25
1.14
-
α
45o BSC
45o BSC
3
β
45o BSC
45o BSC
3
N
8
8
4
Rev. 0 5/18/94
Similar pages