OKI MSM6255 Dot matrix lcd controller Datasheet

E2B0039-27-Y2
¡ Semiconductor
MSM6255
¡ Semiconductor
This version: Nov.
1997
MSM6255
Previous version: Mar. 1996
DOT MATRIX LCD CONTROLLER
GENERAL DESCRIPTION
The MSM6255 is a CMOS si-gate LSI designed to display characters and graphics on a DOT
MATRIX LCD panel.
FEATURES
• Display control capacity
– Graphic mode
– Character mode
: 512,000 dots (216 bytes)
Memory address MA0 to MA15
: 65,536 characters (216 bytes)
Display address MA0 to MA15
• Direct interface with 8085 or Z80 CPU
• Duty
: 1/2 to 1/256 selectable
• Attributes
– Screen clear
– Cursor ON/OFF/blink
• Scrolling and paging
• Display system
: AC inversion at each frame
• Data output (upper and lower display outputs)
4-bit parallel output, 2-bit parallel output, 1-bit serial output
• Crystal oscillation/external clock selectable
• Single +5V power supply
• Package options:
80-pin plastic QFP (QFP80-P-1420-0.80-K) (Product name: MSM6255GS-K)
80-pin plastic QFP (QFP80-P-1420-0.80-BK) (Product name: MSM6255GS-BK)
1/39
RD
VSS
VDD
RES
DB0 - DB7
CS
WR
DIV
XT
XT
OSC
R/W control
Instruction
register
T
Output register
Input register
Q
Cursor
position
(lower)
Cursor
position
(upper)
Cursor
address
Cursor
address
Dot counter
PR
Timing generator
circuit for CHφ
PS and Load
CMP
Number of
HNR characters horizontal direction
Number
of Hp
CMP
CMP
CMP
CMP
CMP
CMP
Number
DUR of duty
Number
DPR of Vp
CPR
CPR
CLR
CUP
CHφ
Timing
control
CHφ BUSY LIP
Shift clock suspension counter
Character
counter
Duty counter
Vp counter
Cursor
generation
circuit
SLR
FRP
FRMB
RD0 - RD7
LD0 - LD3
CLP
CEφ
UD0 - UD3
RA0 - RA3
DIEN
A0 - A15
ADF
MA0 - MA15
8-bit parallel/
serial
Raster
address
Start
SUAR address
(upper)
3-state
output
4-bit parallel
output
2-bit parallel
output
MPX
Linear
address
counter
Start
address
(lower)
¡ Semiconductor
MSM6255
BLOCK DIAGRAM
2/39
¡ Semiconductor
MSM6255
65 XT
66 XT
67 VSS
68 TEST1
69 TEST2
70 DIV
71 MA15
72 MA14
73 MA13
74 MA12
75 MA11
76 MA10
77 MA9
2
64 RA3
63 RA2
3
62 RA1
4
61 RA0
5
60 RD7
59 RD6
1
6
7
9
58 RD5
57 RD4
56 RD3
10
55 RD2
11
12
54 RD1
53 RD0
13
52 DB7
14
51 DB6
15
50 DB5
49 DB4
8
16
17
48 DB3
47 DB2
18
19
46 DB1
45 DB0
20
44 RES
43 WR
21
22
42 RD
41 CS
23
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
CEf 25
24
CLP
FRMB
LD0
LD1
LD2
LD3
VDD
UD0
UD1
UD2
UD3
CHf
BUSY
DIEN
ADF
MA5
MA4
MA3
MA2
MA1
MA0
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
FRP
LIP
79 MA7
78 MA8
80 MA6
PIN CONFIGURATION (TOP VIEW)
80-Pin Plastic QFP
3/39
¡ Semiconductor
MSM6255
PIN DESCRIPTIONS
Pin
Symbol
1-6
MA0
Type
O
71 - 80
MA15
7
A0
22
A15
23
FRP
Description
Address output for displaying RAM.
MA0 - MA15 are high impedance when ADF = "L".
I
Memory address input pins
O
Frame signal. Synchronization of display
24
LIP
O
Display data latch signal
25
CEφ
O
Chip enable clock for LCD segment driver
26
CLP
O
Display data shift clock
27
FRMB
O
Alternate signal output pin
28
LD0
O
Display data parallel output for lower side
31
LD3
O
Supply voltage
32
VDD
33
UD0
O
36
UD3
Display data parallel output, Upper display 4-bit output
(OD1, ED1, OD2 and ED2 outputs)
37
CHφ
O
Character clock
38
Busy
O
Ready state signal. This signal is used while serial transmission stops.
39
DIEN
I
Display enable signal. When this signal is "H", display is enabled.
40
ADF
I
41
CS
I
Chip select. CS = "L"
42
RD
I
Read. Reading data is valid when RD = "L"
Address floating input. When this signal is "L", MA0 - MA15, RA0 - RA3 are high impedance,
and when it is "H", A0 - A15 or a refresh address is output to MA0 - MA15.
43
WR
I
Write. Data is written when WR = "H"
44
RES
I
Reset. Resets each counter.
45
DB0
I/O
52
DB7
53
RD0
60
RD7
61
RA0
I
RA3
65
XT
ROM/RAM data input. Dot pattern data for the character generator
Raster address output.
O
64
8-bit data bus. Common pins for 3-state I/O.
*This output is not used in the graphic mode.
RA0 - RA3 are high impedance when ADF = "L".
I
X’tal osc. When an external clock is used by setting DIV to "H", feeds it to XT.
66
XT
O
67
VSS
—
70
DIV
I
Ground pin.
"H" : EXT clock
"L" : Self oscillation
4/39
¡ Semiconductor
MSM6255
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Condition
VDD
VI
TSTG
Supply Voltage
Input Voltage
Storage Temperature
Rating
Unit
Ta = 25°C
–0.3 to +6
V
Ta = 25°C
–0.3 to VDD
V
—
–50 to +150
°C
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Condition
Range
Unit
VDD
VSS = 0V
4.5 to 5.5
V
Supply Voltage
Operating Temperature
Top
—
–20 to +85
°C
Operating Frequency
fosc
VDD = 5V ±10%
0 to 11
MHz
ELECTRICAL CHARACTERISTICS
Input Characteristics
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Symbol
Min.
Typ. Max.
Unit
Applicable pin
"H" Input Voltage
VIH
2.4
—
"L" Input Voltage
VIL
—
—
—
V
DB0 - DB7, CS, RD, WR, A0 - A15,
0.7
V
DIEN, ADF, RD0 - RD7
"H" Input Voltage
VIH
4.5
—
—
V
"L" Input Voltage
VIL
—
—
1.0
V
RES, DIV, XT
"H" Input Current
IIH
—
—
1
mA
DB0 - DB7, CS, RD, WA, A0 - A15,
"L" Input Current
IIL
—
—
–1
mA
DIEN, ADF, RD0 - RD7, RES, DIV
"H" Input Current
IIH
25
—
100
mA
"L" Input Current
IIL
—
—
–1
mA
TEST1, TEST2
Output Characteristics
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Symbol
Condition
Min.
Typ. Max.
Unit
Applicable pin
LD0 - LD3
"H" Output Current
IOH
VOH = 2.8V
–500
—
—
mA
UD0 - UD3
MA0 - MA15
RA0 - RA3
CHφ, CEφ, LIP, FRP
"L" Output Current
IOL
VOL = 0.4V
2.4
—
—
mA
FRMB, BUSY, CLP
DB0 - DB7
5/39
¡ Semiconductor
MSM6255
Supply Current
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Symbol
VDD
Condition
Min.
Typ.
Max.
Unit
Static Current
IDDS
5
fosc = 0 Hz, no load
—
—
50
mA
Dynamic Current
IDD
5
fosc = 10 MHz, no load
—
—
15
mA
Note: TEST 1 and TEST2 are open, and other inputs are either VDD or GND.
Switching Characteristics
0.8 VDD
0.8 VDD
0.2 VDD
0.2 VDD
tr
tf
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Symbol
Condition
Min.
Rise Time
tr
CL = 60 pF
—
—
100
ns
Fall Time
tf
CL = 60 pF
—
—
100
ns
Symbol
Condition
Min.
Oscillating Frequency
fosc
DIV = "L"
—
—
Basic Clock Frequency
fs
DIV = "H"
—
—
Parameter
Typ. Max.
Unit
Applicable pin
All output pins
Operating Frequency
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Typ. Max.
Unit
Notes
11
MHz
Crystal oscillator
5.5
MHz
External clock
6/39
¡ Semiconductor
MSM6255
TIMING DIAGRAM
LCDC Control Signal Timing Characteristics
(CL = 30pF, VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Clock Cycle Time
tCP
180
—
—
ns
Clock "H" Level Pulse Width
PWH
80
—
—
ns
Clock "L" Level Pulse Width
PWL
80
—
—
ns
Clock Rise/Fall Time
tcr/tcf
—
—
20
ns
tCH
—
—
200
ns
Memory Address Clock Delay Time
tMA
—
—
100
ns
Memory Address Disable Delay Time
tAD1
—
—
40
ns
Memory Address Enable Delay Time
tAD2
—
—
40
ns
CPU Address Delay Time
tAD3
—
—
100
ns
Refresh Address Delay Time
tAD4
—
—
100
ns
Reset "H" Level Pulse Width
tRES
1
—
—
ms
CPU Address Delay Time
tAD5
—
—
100
ns
Character Clock Delay Time
tCP
PWL
XT
(External clock)
PWH
tcr
tcf
CHφ
tCH
MA0 - MA15
Upper Side Address
Lower Side Address
tMA
tMA
ADF
MA0 - MA15
RA0 - RA3
Floating
VALID
tAD1
VALID
tAD2
DIEN
MA0 - MA15
Refresh Address
CPU Address
tAD3
Refresh Address
tAD4
RES
tRES
A0 - A15
tAD5
tAD5
MA0 - MA15
7/39
¡ Semiconductor
MSM6255
Bus Timing Characteristics
(CL = 50pF, VDD = 5V ± 5%, Ta = –20 to +85°C)
Symbol
Min.
Typ.
Max.
Unit
Ao, CS Setup Time
Parameter
tCS
30
—
—
ns
RD, WR Pulse Width
tCW
200
—
—
ns
Address Hold Time
tAH
10
—
—
ns
Data Setup Time
tDS
60
—
—
ns
Data Hold Time
tDH
20
—
—
ns
Output Disable Time
tOH
0
—
40
ns
Access Time
tACC
—
—
200
ns
tAH
A0, CS
tcs
tcw
WR, RD
tDS
DB0 - DB7
(WRITE)
tDH
VALID
DB0 - DB7
(READ)
VALID
tACC
tOH
8/39
¡ Semiconductor
MSM6255
LCDC Driver Interface Timing Characteristics
(CL = 30pF, VDD = 5V ± 5%, Ta = –20 to +85°C)
Symbol
Min.
Typ.
Max.
Unit
Data Delay Time
Parameter
tDA
—
—
100
ns
1 Character Cycle Time
tCHφ
730
—
—
ns
Latch Signal Delay Time
tR
—
—
200
ns
Latch Signal "H" Time
tLIP
1.46
—
—
ms
Chip Enable Clock Delay Time
tCE
—
—
200
ns
Chip Enable Clock "H" Time
tCEφ
730
—
—
ns
tB
—
—
200
ns
Ready Signal Delay Time
Ready Signal "H" Time
tBUSY
5.11
—
—
ms
Frame Signal Delay Time
tFRP
2tCHφ
—
2tCHφ +200
ns
Alternating Frame Signal Delay Time
tFR
—
—
200
ns
CLP
UD0 - UD3
LD0 - LD3
tDA
tCHφ
CHφ
LIP
tLIP
t
t
CEφ
tCEφ
tCE
tCE
BUSY
tBUSY
tB
tB
LIP
FRP
tFRP
tFRP
FRMB
tFR
tFR
9/39
¡ Semiconductor
MSM6255
Timing for Fetching Pattern Data
(VDD = 5V ± 5%, Ta = –20 to +85°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Upper Side Data Setup Time
tUDS
120
—
—
ns
Upper Side Data Hold Time
tUDH
0
—
—
ns
Lower Side Data Setup Time
tLDS
120
—
—
ns
Lower Side Data Hold Time
tLDH
0
—
—
ns
CHφ
q
MA0 - MA15
RD0 - RD7
w
Upper
side
Lower
side
Upper
side data
of q
tUDS
Upper
side
Lower
side data
of q
tLDS
tUDH
Lower
side
Upper
side data
of w
Lower
side data
of w
tLDH
10/39
¡ Semiconductor
MSM6255
FUNCTIONAL DESCRIPTION
LCDC Internal Registers
The internal registers include one instruction register (IR) and nine data registers. (See Table
1.)
Table 1 MSM6255 Internal Registers
CS A0
Instruction
register
Register
Register name
Data bit
READ WRITE
3 2 1 0
7 6 5 4 3 2 1 0
H
X
X X X X
–
Invalid
L
H
X X X X
IR
Instruction register
L
L
L L L L
MOR
L
L
L L L H
PR
L
L
L L H L
HNR
Horizontal character number
register
L
L
L L H H
DVR
Duty number register
L
L
L H L L
CPR
Cursor form register
L
L
L H L H
SLR
Start address (lower) register
L
L
L H H L
SUR
Start address (upper) register
L
L
L H H H
CLR
Cursor address (lower)
register
L
L
H L L L
CUR
Cursor address (upper)
register
Mode control register
–
–
X X X X
X
X
X
Character pitch register
X
X
Note: "L" is read if the data of the registers marked X is read.
– Instruction register
The instruction register is a register for specifying the address of the data register which is
accessed.
This register is cleared when RES input is "L".
11/39
¡ Semiconductor
MSM6255
– Mode control register
The mode control register is specified by writing "00H" in the instruction register.
Register
D6
D5
D4
D3
D2
D1
D0
L
L
L
L
L
L
L
L
Mode control register
L
L
D1
L
L
H
L
X
H
X
H
L
L
H
L
X
H
X
H
D0
MODE DATA
Output mode
1-bit serial
L
2-bit parallel
Character display
4-bit parallel
1-bit serial
H
2-bit parallel
Graphics
4-bit parallel
Mode
H/L
D2
4-bit parallel/
1-bit serial
H/L
D3
2-bit parallel
H/L
D4
Display
ON/OFF
D5
Cursor blink
Blink time
H/L
D7
H
Cursor
ON/OFF
D6
A0
Instruction register
H: Display ON
L: Display OFF
D5 D4
L
L
Cursor OFF
L
H
Cursor OFF
H
L
Cursor ON
H
H
Cursor blink
H: 16 frames
L: 32 frames
Half of blinking cycle
12/39
¡ Semiconductor
MSM6255
– Character pitch register
Register
A0
D7
D6
D5
D4
D3
D2
Instruction register
H
L
L
L
L
L
L
Character pitch register
L
(Vp – 1)
L
D1
D0
L
H
(Hp – 1)
Hp represents the number of bits to be displayed among one byte display data sent from RAM.
The value of Hp is the following five types.
Hp
D2
D1
D0
4
L
H
H
5
H
L
L
6
H
L
H
7
H
H
L
8
H
H
H
– Horizontal character number register
Register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
H
L
L
L
L
L
L
H
L
Character number register
L
L
(HN – 1)
Assuming that the total horizontal dot number of the display is nH,
nH = Hp x HN,
where HN = 2 to 128.
The maximum value of nH = 8 x 128 = 128 bytes = 1,024 dots.
– Duty number register
Register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
H
L
L
L
L
L
L
H
H
Time division register
L
(NX – 1)
Nx = 2 to 256
– Cursor form register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
Register
H
L
L
L
L
L
H
L
L
Cursor position register
L
(Cpu – 1)
(Cpd – 1)
The cursor is displayed on the lines from Cpu to Cpd in the character display mode. The length
of the cursor in the horizontal direction is equal to the character pitch in the horizontal direction,
Hp. The cursor is not displayed in graphic mode. The relation between the cursor and Vp is as
follows.
13/39
¡ Semiconductor
MSM6255
Font configuration of Hp = 7 and Vp = 8
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Cpu = 8, Cpd = 8
0
1
2
3
4
5
6
7
Cpu = 7, Cpd = 8
Cpu = 2, Cpd = 6
Notes: (1) Setting of Cpu, Cpd > Vp is not available.
(2) The cursor signal and pattern data are displayed subject to EX-OR.
– Start address (lower) register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
H
L
L
L
L
L
H
L
H
Display start address register (lower byte)
L
Register
Start address (lower)
– Start address (upper) register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
H
L
L
L
L
L
H
H
L
Display start address register (upper byte)
L
Register
Start address (upper)
The display start address shows an address of the RAM which stores data displayed at the left
end and the most upper position. The start address is composed of upper and lower 8 bits (16
bits in total).
– Cursor address (lower) register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
H
L
L
L
L
L
H
H
H
Cursor address register (lower byte)
L
Register
Cursor address (lower)
– Cursor address (upper) register
A0
D7
D6
D5
D4
D3
D2
D1
D0
Instruction register
Register
H
L
L
L
L
H
L
L
L
Cursor address register (upper byte)
L
Cursor address (upper)
By this instruction, the value of the cursor address is written in the cursor address register. The
cursor is displayed at the position specified by the cursor address register.
14/39
¡ Semiconductor
MSM6255
HN
Hp
RD0
Vp
RD7
V
(Lower)
V
(Upper)
Cpu
Cpd
Fig. 1 Cursor Address (Upper) Register
Table 2 Legend
Symbol
Name
Meaning
Value
Hp
Horizontal pitch
Pitch of characters in horizontal
direction
4 - 8 dots
Vp
Vertical pitch
Pitch of characters in vertical
direction
1 - 16 dots
HN
Number of characters in one line
Number of characters per line or
number of words per line
V
Number of rows
Display duty
Cpu
Cursor start position
A position where the cursor starts
display
Line 1 - 16
Cpd
Cursor end position
A position where the cursor stops
display
Line 1 - 16
2 - 128 characters
2 - 256
15/39
¡ Semiconductor
MSM6255
– Built-in Bus Averter
The bus averter which switches the address buses A0 - A15 of the CPU with the memory
address buses of the refresh. The refresh memory addresses are output to MA0 - MA15 when
the DIEN pin is set at high level and A0 - A15 are output to MA0 - MA15 when the DIEN pin
is set at low level.
– External Clock Operation
An external clock enables the MSM6255 to operate when the DIV pin is set at high level. Input
the external clock to XT.(Leave XT open.)
When the DIV pin is set at low level, the IC enters the crystal oscillation mode.
– Address Output Floating
MA0 - MA15 and RA0 - RA3 become high impedance when the ADF pin is set at low level.
MA0 - MA15 and RA0 - RA3 become normal impedance when the ADF pin is set at high level.
– Power Down Function
The chip select function becomes enabled for the segment driver by connecting the CEf pin
to the ECLK input of the MSM5279. The power down function is valid only in 4-bit parallel
output mode.
– Refresh Memory Address (MA0 - MA15) Operation
In the horizontal direction, MAxx is counted up at the falling edge of CHf. Upper side is
addressed while CHf is set at low level and lower side is addressed while CHf is set at high
level.
MAxx is counted up even if it exceeds the number of horizontal display characters, but this
does not affect the display since no data is being transferred at the time.
The period in which the data transfer is suspended corresponds to eight characters. When the
period passes, one horizontal cycle is completed and the next cycle is commenced.
Memory address operation in the graphic mode is shown in Fig. 2 and that in the character
mode is shown in Fig. 3.
16/39
¡ Semiconductor
MSM6255
Address configuration of display RAM
MSB
LSB
MA15 MA14 MA13 MA12 MA11 MA10 MA9
MA8
MA7
MA6
MA5
MA4
MA3
MA2
HN
MA1
MA0
Suspension of
data transfer
1 word
0000
0001
004E
004F
0050
0051
009E
009F
Upper
1EF0
1EF1
1F3E
1F3F
1F40
1F41
1F8E
1F8F
1F90
1F91
1FDE 1FDF
Lower
3E30
3E31
3E7E
3E7F
Fig. 2 Memory Address in Graphic Mode (640 x 200)
Note: "L" is output for RA0 - RA3.
17/39
¡ Semiconductor
MSM6255
HN (Number of characters in horizontal display line)
Raster
address
Line 1
000
001
010
011
100
101
110
111
000
Suspension of
data transfer
1 character
0000
0000
0001
0001
004E
004E
004F
004F
0000
0050
0001
0051
004E
009E
004F
009F
Line 2
Upper
111
0050
0051
009E
009F
000
0370
0371
03BE
03BF
111
000
0370
03C0
0371
03C1
03BE
040E
03BF
040F
111
03C0
03C1
040E
040F
Line 12
Line 13
Lower
000
0730
0731
077E
077F
111
0730
0731
077E
077F
Line 24
Note : Start address is 0000, 80 characters x 24 lines and Vp = 8
Fig. 3 Memory Address in Character Mode (80 characters x 24 lines)
18/39
¡ Semiconductor
MSM6255
– Output Mode
Three kinds of modes, 1-bit serial, 2-bit parallel and 4-bit parallel, are available as output
modes. Data flows of each mode are shown below.
Segment
driver
Data shift
UD0
Upper
LCD panel
Lower
Segment
driver
UD1
Data shift
Fig. 4 1-Bit Serial Data Transfer
UD1
UD0
Data shift
Upper
LCD panel
Lower
Data shift
UD2
UD3
Fig. 5 2-Bit Parallel Data Transfer
19/39
¡ Semiconductor
UD0 - UD3
MSM6255
4
CEφ
Upper
LCD panel
Lower
LD0 - LD3
4
Fig. 6 4-bit Parallel Data Transfer
Time charts corresponding to data transfers shown in Fig. 4 - Fig. 6 are shown in Fig. 7 - Fig. 9.
fs, the dot clock, shown in Figs.7-9, is a signal inside the IC. For more information see "Relation
between Reference Clock (fs) and External Clock" on page 601.
20/39
STAN:
STAM:
ENDN:
ENDM:
ENDM data
STAN
STAM
STAM+1
STAN+1 data
STAM data
STAM+1 data
D7 6 5 4 3 2 1 D0 D7 6 5 4 3 2 1 D0
STAN data
D7 6 5 4 3 2 1 D0 D7 6 5 4 3 2 1 D0
STAN+1
Fig. 7 1-bit Serial Data Transfer
First memory address of one horizontal line in the upper side
First memory address of one horizontal line in the lower side
Last memory address of one horizontal line in the upper side
Last memory address of one horizontal line in the lower side
D7 6 5 4 3 2 1 D0
ENDN data
Suspension of data transfer
UD1
ENDM
D7 6 5 4 3 2 1 D0
ENDN
UD0
CLP
MA0 - MA15
CHφ
fs
¡ Semiconductor
MSM6255
21/39
D5
D7
D6
UD2
UD3
STAN:
STAM:
ENDN:
ENDM:
D4
D4
D6
D5
D2
D3
D2
D3
ENDM data
ENDN data
STAN
STAM
D6
D7
D6
D7
STAN+1
D2
D3
D2
D3
STAM data
D4
D5
STAN data
D4
D5
STAM+1
D0
D1
D0
D1
D6
D7
D6
D7
D2
D3
D2
D3
STAM+1 data
D4
D5
STAN+1 data
D4
D5
Fig. 8 2-bit Parallel Data Transfer
First memory address of one horizontal line in the upper side
First memory address of one horizontal line in the lower side
Last memory address of one horizontal line in the upper side
Last memory address of one horizontal line in the lower side
D0
D1
D0
D1
Suspension of data transfer
UD1
ENDM
D7
ENDN
UD0
CLP
MA0 - MA15
CHφ
fs
D0
D1
D0
D1
¡ Semiconductor
MSM6255
22/39
D2
D6
D5
D4
UD2
UD1
UD0
D2
D6
D5
D4
UD2
UD1
UD0
ENDM-1 data
D0
D1
D3
D7
UD3
ENDN-1 data
D0
D1
D3
ENDM
D7
ENDN
UD3
CLP
MA0 - MA15
CHφ
fs
D4
D5
D6
D7
D0
D1
D2
D3
ENDM data
D4
D5
D6
D7
D0
D1
D2
D3
ENDM+1
ENDN data
ENDN+1
Fig. 9 4-bit Parallel Data Transfer
Suspension of data transfer
STAN
STAM
STAN+1
D0
D1
D2
D3
D0
D1
D2
D3
STAM data
D4
D5
D6
D7
STAN data
D4
D5
D6
D7
STAM+1
D0
D1
D2
D3
D0
D1
D2
D3
STAM+1 data
D4
D5
D6
D7
STAN+1 data
D4
D5
D6
D7
¡ Semiconductor
MSM6255
23/39
¡ Semiconductor
MSM6255
– Relation Between Duty and Number of Lines
Number of lines is determined by Vr, number of lines in vertical direction(display duty).
Number of lines = Vr x 2
Note: In the character display mode, number of lines should not be odd number.
– Calculation of Crystal Oscillation Frequency (fosc)
Table 3 Calculation Formula of fosc
DIV
Output mode
Calculation formula of fosc
q
FRP x (HN + 8) x Hp x Vr x 2
9.856
w
FRP x (HN + 8) x Vr x 4
2.464
q
FRP x (HN + 8) x Hp x Vr
4.928
w
FRP x (HN + 8) x Vr x 2
1.232
L
H
Calculation exmaple (MHz)
Note: (1) Table 3 shows a calculation example assuming that FRP = 70 Hz, HN = 80, Hp = 8 and
Vr = 100. However, the example of Hp = 4 to 7 in 4-bit parallel is not included.
(2) Output mode q : Hp = 4 to 7 in 1-bit serial, 2-bit parallel and 4-bit parallel
Output mode w : Hp = 8 in 4-bit parallel
– Calculation of Character Clock (CHf) Frequency
CHφ = FRP x (HN + 8) x Vr
Example: Assuming FRP = 70 Hz, HN = 80 and Vr= 100, CHf = 1.62 (ms)
– Calculation of Shift Clock (CLP) Frequency
Table 4 Calculation Formula of CLP
Output mode
Calculation formula of CLP
Calculation exmaple (MHz)
1-bit serial
RP x (HN + 8) x Hp x Vr
4.928
2-bit parallel
FRP x (HN + 8) x Hp x Vr x 1/2
2.464
4-bit parallel
FRP x (HN + 8) x Hp x Vr x 1/4
1.232
Note: Table 4 shows a calculation example assuming that FRP = 70 Hz, HN = 80, Hp = 8 and
Vr= 100.
24/39
¡ Semiconductor
MSM6255
– Relation Between Reference Clock (fs) and External Clock
DIV
XT
fs
Q
XT
T
XT
fs
(DIV = 1)
fs functions as a dot clock in LCDC and the dot counter inside the IC is counted up at the trailing
edge of fs.
The dot counter operates as a N-ary counter on a basis of HP and generates the character clocks
(CHf).
(Refer to the time charts Fig. 7 - 9 and Fig. 14.)
– Access to the Display RAM
In writing/reading the data to/from the display RAM, DIEN should be low level. By setting
DIEN signal at low level, the address from the CPU are output from MA0 - MA15, and this
enables the access to the display RAM.
There are three methods of accessing display RAM from the CPU.
(1) Direct access from CPU
Display RAM is accessed directly from the CPU, irrespective of the condition of MSM6255
(refresh cycle or not).
In this method, the RAM address changes to the CPU address when the display is on the
screen. So, frequent access to the RAM causes flickering on the screen.
(2) Access while BUSY signal is high
BUSY signal indicates the period when the data transfer stops, and BUSY signal is set high
when the data transfer stops. The period when BUSY signal is high corresponds to that of
seven characters’. If display RAM is accesed during this period (when BUSY is high), the
display on the screen does not flicker.
Note: This method is effective when the size of screen is small. In the case of big size
screen, 640 x 200 dots, 1character needs approx. 1.6ms. So, in this case, the period
when BUSY is at high level is 11.2ms, which is impossible to write or read a lot of
data.
(3) Synchronized access (only for operating the IC by external clock)
Refresh cycle and CPU cycle are alternately performed. So, there is not flickering on the
screen and there is no need to sense the BUSY signal.
When using this method, however, some external circuitry is necessary. The timing chart
of this method is described in the Figure 10 below.
25/39
¡ Semiconductor
MSM6255
CHφ
TC
TL
CPU
LCDC
DIEN
CPU
LCDC
CPU
LCDC
CPU
LCDC
fetching the
pattern data
display
RAM
OUT
N
tRAM
tUDS
M
N+1
M+1
tUDH
Fig. 10 Basic Timing of Synchronized Access to Display RAM
Legend
TC
TL
tRAM
tUDS
tUDH
:
:
:
:
:
Period when the address bus is occupied by CPU
Period when the LCDC fetches the refreshed data
Refresh address delay time + memory access time
Upper side data set-up time
Upper side data hold time
When DIEN is high, MA0 - MA15 output address to the upper side when CHf is low and to the
lower side when CHf is high.
To perform synchronized access method, the timing between DIEN and CHf should be as
described in Figure 10.
WR
VDD
M-WR
M-RD
V-RAM
SELECT
D
PR
Q
D
CL Q
PR
Q
CL Q
D
PR
Q
CL Q
D
PR
Q
CL Q
DIEN
READY
DATA LATCH
Fig. 11 Wait Function Controlling Circuit
Display RAM must meet the following condition:
TL > tRAM + tUDS
In writing data into the display RAM, LCDC should be synchronized so that the write pulse
occurs during the period of TC. In reading the pattern data from the CPU, the data of display RAM
should be latched first.
Figure 11 shows the controlling circuit.
26/39
¡ Semiconductor
MSM6255
– DIEN
DIEN has to be generated when the display RAM is accessed by Synchronized access method.
(1) When the LCD screen is not split into upper and lower ones
If, for example, an LCD panel with a total of 64 dots in vertical direction is displayed at
1/64 duty, either the upper side data or the lower side data becomes unnecessary, and
then the CHf signal can be used as a DIEN signal.
(2) When the LCD screen is split into upper and lower ones
If 4-bit parallel output mode is set and HP=8, the timing diagram of the dot clock and the
character clock is as shown below.
XT
(dot clock)
CHφ
tCH
DIEN signal is generated by XT and CHφ.
DIEN signal generating circuit is shown below.
DIEN
CHφ
XT(dot clock)
D Q
Q
When Hp π 8 in the 1-bit serial, 2-bit parallel and 4-bit parallel mode, the relation between
XT and CHφ should be referred to Figures 7 and 8.
– Scroll◊Paging
Scroll◊paging is enabled by setting the display start address to the scroll address register.
(1) Memory address of vertical scroll◊paging
Figure 2 shows the memory address when the start address is 0000. When the start address
is set at 0050, the display will be vertically shifted by +1.
By setting the starting address one by one, the screen will scroll vertically.
paging will be performed by setting the start address as 3E80.
(2) Memory address of horizontal scroll
When the starting address is set at 0001 in Figure 2, the display on the screen will be shifted
by +1 byte horizontally. The data shown as 004F in Figure 2 corresponds to the memory
data in the 2nd line shown as 0050.
27/39
¡ Semiconductor
MSM6255
APPLICATION CIRCUITS
Interface With CPU
MSM6255
WR
RD
8085
WR
RD
IO/M
A1 - A 7
Decoder
CS
AD0 - AD7
ALE
HLDA
DB0 - DB7
OC
A8 - A15
A0 - A15
MSM6255
WR
RD
Z80
WR
RD
IORQ
A1 - A 7
Decoder
CS
D 0 - D7
DB0 - DB7
A0 - A15
A0 - A15
28/39
¡ Semiconductor
MSM6255
MSM6255
8086
WR
RD
M/IO
A1 - A15
Decoder
CS
DT/R
DEN
AD0 - AD15
A16 - A19
Transceiver
Latch
BHE
ALE
D1 - D7
D0 - D15
A0 - A19
BHE
DB0 - DB7
A0 - A15
*Minimum mode
MSM6255
6800
φ2
VMA
RD/WR
RD
WR
A1 - A15
Decoder
CS
D0 - D 7
DB0 - DB7
A0 - A15
A0 - A15
29/39
CPU
Decoder
WR
A
A0 - A15
Display
RAM
I/O
40H245
LD0 - LD3
FRP
FRMB
LIP
CEφ
CLP
UD3
4 bit
MSM
6698
Fig. 12 System Configuration in Graphic Mode
A0 - A15
MA0 - MA15
MSM6255
RD0 - RD7
DIEN
UD0
RD WR
~
B
DB0 - DB7
CS
MSM
5299C
¡ Semiconductor
MSM6255
System Configuration
30/39
CPU
Decoder
DIEN
WR
Display
RAM
Character
generator
FRMB
FRP
LIP
CEφ
CLP
UD3
4 bit
MSM
6698
Fig. 13 System Configuration in Character Mode
A0 - A15
MA0 - MA15
DB0 - DB7
DIEN
MSM6255
RA0 - RA3
UD0
RD WR
~
RD0 - DB7
CS
MSM
5299C
¡ Semiconductor
MSM6255
31/39
fs
Memory
address
N
N+1
N+2
STA
STA
STA
STA
STA
STA
STA
STA + 1
STA + 2
Start address
STA + 3
¡ Semiconductor
Ts
LIP
TLIP
CEφ
TCEφ
BUSY
TBUSY
FRP
CHφ
CH
Fig. 14 Timing Chart During Suspension of Shift Clock
CH = Ts x Hp
32/39
TLIP = 2CH
TCEφ = CH
TBUSY = 7CH
MSM6255
Condition : 4-bit parallel output mode
HP = 5
Memory
address
• • • • • • • •
Suspension of
shift clock
Line 2
• • • • • • • •
• • • • • • ••
• • • • • • ••
¡ Semiconductor
Line 1
LIP
FRP
FRMB
X driver
Line N
Line 1
Line 2
Y1
Y driver
Y2
– – –
33/39
Fig. 15 Timing Chart of LIP, FRP and FRMB
MSM6255
YN
¡ Semiconductor
MSM6255
LIP
CLP
Counter
(Inside the IC)
0
1
2
19
0
CEf
Carry output
of segment driver
Valid
Fig.16 Timing Chart of CLP and CEf
34/39
RESET
SW
6.144 MHz
2.2µF
X2
X1
RST-IN
51 kW
+5V
50 pF
50 pF
80C85A
CLK
RSTOUT
READY
IO/M
WR
RD
ALE
0
1
2
3
4
5
6
D7
8
9
11
12
13
14
A15
READY
DIR
OE
A
Q
B
HCT245
OE
D
HCT373
Fig. 17-1
HC04
D.BUS-7
D.BUS-6
D.BUS-5
D.BUS-4
D.BUS-3
D.BUS-2
D.BUS-1
D.BUS-0
ADR-7
ADR-6
ADR-5
ADR-4
ADR-3
ADR-2
ADR-1
ADR-0
ADR- 5
ADR-14
ADR-13
ADR-12
ADR-11
ADR-10
ADR- 9
ADR- 8
7
6
5
4
3
2
1
Y0
HC138
G2A
G2B
G1
A
B
C
PR
D
Q
HC74
CL Q
+5V
+5V
+5V
1Y
2Y
3Y
4Y
HC257
RES
CLK-OUT
CLK
G
1A
3B
2A
4B
1B
2B
3A
4A
SEL(A)
D
CL
PR
+5V
Q
LCDC-CS
M .RD
M .WR
IO.RD
IO.WR
VRAMSEL
¡ Semiconductor
MSM6255
Figures 17-1, 17-2, and 18 show application circuits.
In these examples, the size of LCD module is 640 x 200 dots.
4-bit data transfer is applied and Hp = 8.
The synchronized access method is used as a method of access to the display VRAM.
35/39
IO-WR
IO-RD
LCDC-CS
CLK
D.BUS-0
D.BUS-1
D..BUS-2
D.BUS-3
D.BUS-4
D BUS-5
D..BUS-6
D BUS-7
CLK-OUT
VRAMSEL
READY
M-RD
RES
M-WR
ADR-15
ADR-14
HC00
HC04
D
HC04
HC32
HC32
+5V
CL
HC74
PR
+5V
HC08
HC08
Q
Q
HC32
HC32
HC86
HC08
+5V
D
HC32
CL
HC74
RP
Q
Q
D
CL
HC74
RP
Q
Q
D
HC08
+5V
CL
HC74
RP
OE
Q
HCT374
G1
G2
A
HCT244
Q
Q
D
Y
Fig. 17-2
HC04
1
2
3
4
5
6
7
D0
OE
OE
HC04
WE
MSM5165
WE
CE1
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
CE1
WR
RD
CS
XT
DIEN
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
RD0
RD1
RD2
RD3
RD4
RD5
RD6
RD7
MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
RES
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
ADF
DIV
CIP
CEφ
LIP
FRMB
FRP
LD0
LD1
LD2
LD3
UD0
UD1
UD2
UD3
CHφ
ADR-0
ADR-1
ADR-2
ADR-3
ADR-4
ADR-5
ADR-6
ADR-7
ADR-8
ADR-9
ADR-10
ADR-11
ADR-12
ADR-13
ADR-14
ADR-15
+5V
LCD
¡ Semiconductor
MSM6255
MSM6255
MSM5165
36/39
RES
A0 - A15
A0 - A12
5V
A0 - A12
LS125
A
B
A0 - A12
A11 - A15
“H” =
RD
LS13B
5V
5V
A0 - A12
WE
MA13 - MA
Fig. 18
Y
1G 2G
A
LS244
CE1
OE
CE2
I/O1 - I/O8
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 LS13B
G1
G2A G2B A~B
CE1
CE2
OE
A0 - A12
WE
I/O1 - I/O8
CE1
5V
A
B
OE
CE2
LS245
DIR
I/O1 - I/O8
WE
G
Y0 Y5
Y7
G1
G2A G2B A~B
OE
DO0 ~ DO7
CE
2764
for software
D Q
CK
LS74
DB1
5V
A0 - A7
OE
A0 - A12
WE
CE1
OE
CE2
I/O1 - I/O8
CE
A11
A8
DO0 - DO7
A12
~
Z80
RD
WR
MREQ
DB0 - DB7
→
5V
4
MA12 - MA15
MA0 - MA12
MAM5165RS
(8K x 8 bit)
for CGROM
RES
A0 - A15
ADF
MA0 - MA15
MSM6255
RA0 - RA3
RD0 - RD7
DIEN
RD
WR
BUSY
DB0 - DB7
CS
DIV
XT
XT
30pF
2.5 MHz
¡ Semiconductor
MSM6255
37/39
¡ Semiconductor
MSM6255
PACKAGE DIMENSIONS
(Unit : mm)
QFP80-P-1420-0.80-K
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Package weight (g)
Epoxy resin
42 alloy
Solder plating
5 mm or more
1.27 TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which
are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
38/39
¡ Semiconductor
MSM6255
(Unit : mm)
QFP80-P-1420-0.80-BK
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Epoxy resin
42 alloy
Solder plating
5 mm or more
Package weight (g)
1.27 TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which
are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
39/39
Similar pages