APT36GA60BD15 APT36GA60SD15 600V High Speed PT IGBT TO APT36GA60SD15 POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is -2 47 achieved through leading technology silicon design and lifetime control processes. A D3PAK reduced Eoff - VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during APT36GA60BD15 switching, resulting in low EMI, even when switching at high frequency. Combi (IGBT and Diode) ® FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25°C 65 IC2 Continuous Collector Current @ TC = 100°C 36 ICM Pulsed Collector Current 1 109 VGE Gate-Emitter Voltage ±30 V PD Total Power Dissipation @ TC = 25°C 290 W Vces Parameter 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol 109A @ 600V -55 to 150 Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A °C 300 TJ = 25°C unless otherwise specified Parameter Test Conditions Min VBR(CES) Collector-Emitter Breakdown Voltage VGE = 0V, IC = 1.0mA 600 VCE(on) Collector-Emitter On Voltage VGE(th) Gate Emitter Threshold Voltage Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 20A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 TJ = 25°C 275 VGE = 0V TJ = 125°C 3000 Microsemi Website - http://www.microsemi.com V 6 VCE = 600V, VGS = ±30V Unit ±100 μA nA 052-6336 Rev C 6- 2009 Symbol Dynamic Characteristics Symbol Parameter Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf 3 226 f = 1MHz 328 Gate Charge 102 VGE = 15V 18 16 VCC = 400V 14 VGE = 15V 122 td(on) Turn-On Delay Time 6 IC = 20A 77 RG = 10Ω4 307 TJ = +25°C 254 Inductive Switching (125°C) 14 Current Rise Time VCC = 400V 15 Turn-Off Delay Time VGE = 15V 149 Current Fall Time Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 nC A Turn-Off Delay Time Turn-Off Switching Energy Unit pF 109 L= 100uH, VCE = 600V Inductive Switching (25°C) Current Fall Time Max 36 Current Rise Time Eoff tf VGE = 0V, VCE = 25V TJ = 150°C, RG = 10Ω4, VGE = 15V, Turn-On Delay Time Typ 2880 IC = 20A Switching Safe Operating Area Turn-On Switching Energy tr Min Capacitance VCE= 300V Gate- Collector Charge Eon2 td(off) APT36GA60B_SD15 TJ = 25°C unless otherwise specified IC = 20A 113 RG = 10Ω4 508 TJ = +125°C 439 ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic RθJC Junction to Case Thermal Resistance (IGBT) RθJC Junction to Case Thermal Resistance (Diode) WT Torque Package Weight Mounting Torque (TO-247 Package), 4-40 or M3 screw Min Typ Max - - .43 1.35 - 5.9 Unit °C/W - g 10 in·lbf 052-6336 Rev C 6 - 2009 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471. 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves TJ= 125°C TJ= 55°C 40 TJ= 150°C TJ= 25°C 30 20 10 0 200 150 100 TJ= 25°C 50 TJ= -55°C TJ= 125°C 11V 120 0 2 4 6 8 10 12 4 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 3 IC = 40A IC = 20A 2 IC = 10A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature VCE = 120V VCE = 300V VCE = 480V 6 4 2 0 10 20 30 40 50 60 70 80 GATE CHARGE (nC) FIGURE 4, Gate charge 90 100 5 4 3 IC = 40A IC = 20A 2 IC = 10A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.90 J 8 1.10 0.95 I = 20A C T = 25°C 10 80 1.00 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 12 1.15 1.05 8V 6V 14 0 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 9V 40 16 14 10V 80 0 IC, DC COLLECTOR CURRENT (A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 12V 160 VGE, GATE-TO-EMITTER VOLTAGE (V) 250 13V 200 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 250μs PULSE TEST<0.5 % DUTY CYCLE 15V 240 0 300 IC, COLLECTOR CURRENT (A) 280 = 15V 0 25 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6336 Rev C 6- 2009 50 GE IC, COLLECTOR CURRENT (A) V VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 60 APT36GA60BD_S15 Typical Performance Curves APT36GA60BD_S15 200 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 18 16 VGE = 15V 14 VCE = 400V TJ = 25°C, or 125°C RG = 10Ω L = 100μH 12 10 160 VGE =15V,TJ=125°C 120 40 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 150 RG = 10Ω, L = 100μH, VCE = 400V 35 VCE = 400V RG = 10Ω L = 100μH 0 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 40 VGE =15V,TJ=25°C 80 RG = 10Ω, L = 100μH, VCE = 400V 125 25 tr, FALL TIME (ns) tr, RISE TIME (ns) 30 20 15 10 TJ = 25 or 125°C,VGE = 15V 0 TJ = 25°C, VGE = 15V 50 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1200 V = 400V CE V = +15V GE R =10Ω G 1250 1000 TJ = 125°C 750 500 TJ = 25°C 250 EOFF, TURN OFF ENERGY LOSS (μJ) FIGURE 11, Current Rise Time vs Collector Current 1500 Eon2, TURN ON ENERGY LOSS (μJ) 75 0 0ICE, COLLECTOR-TO-EMITTER 5 10 15 20 25 30 35 40 CURRENT (A) 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current J 1600 Eon2,40A 1400 Eoff,40A 1200 1000 800 Eon2,20A 600 Eoff,20A 400 0 Eon2,10A Eoff,10A 200 0 800 TJ = 125°C 600 400 200 TJ = 25°C 1600 V = 400V CE V = +15V GE T = 125°C 1800 G 1000 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) 2000 V = 400V CE V = +15V GE R = 10Ω 0 0 SWITCHING ENERGY LOSSES (μJ) TJ = 125°C, VGE = 15V 25 5 052-6336 Rev C 6 - 2009 100 V = 400V CE V = +15V GE R = 10Ω 1400 G Eon2,40A 1200 1000 Eoff,40A 800 600 Eon2,20A 400 Eoff,20A Eon2,10A 200 0 Eoff,10A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT36GA60B_SD15 200 10000 100 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 10 1 0.1 1 10 100 800 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.45 D = 0.9 0.40 0.35 0.7 0.30 0.25 0.5 Note: 0.20 PDM 0.3 0.15 t2 0.10 t 0.1 0.05 0 t1 0.05 10 SINGLE PULSE 10 -3 10 -2 10 -1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -5 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC -4 1.0 052-6336 Rev C 6- 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 APT36GA60BD_S15 10% Gate Voltage TJ = 125°C td(on) 90% APT15DQ60 tr IC V CC V CE 5% 10% Collector Current 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C 90% td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy 052-6336 Rev C 6 - 2009 Figure 22, Turn-off Switching Waveforms and Definitions ULTRAFAST SOFT RECOVERY RECTIFIER DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol Characteristic / Test Conditions IF(AV) IF(RMS) IFSM APT36GA60B_SD15 Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 30 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms) 110 Unit Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Min IF = 15A 2.0 IF = 30A 2.5 IF = 15A, TJ = 125°C 1.56 Forward Voltage VF Type Max Unit Volts DYNAMIC CHARACTERISTICS Symbol Characteristic trr Reverse Recovery Time trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current Test Conditions Min Typ Max IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C - 15 - IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 25°C IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 125°C IF = 15A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Unit ns - 19 - - 21 - nC - 2 - Amps - 105 - ns - 250 - nC - 5 - Amps - 55 - ns - 420 - nC - 15 - Amps D = 0.9 1.20 1.00 0.7 0.80 0.5 Note: 0.60 PDM 0.3 0.40 t1 t2 t 0.20 0.1 SINGLE PULSE 0.05 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION 052-6336 Rev C 6- 2009 ZθJC, THERMAL IMPEDANCE (°C/W) 1.40 Dynamic Characteristics TJ = 25°C unless otherwise specified 60 APT36GA60B_SD15 140 trr, REVERSE RECOVERY TIME (ns) T =125°C J V =400V IF, FORWARD CURRENT (A) 50 TJ = 175°C 40 TJ = 125°C 30 20 10 0 0 7.5A 60 40 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change R 600 30A 500 400 15A 300 7.5A 200 100 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change 1.2 IRRM, REVERSE RECOVERY CURRENT (A) Qrr, REVERSE RECOVERY CHARGE (nC) 15A 80 25 T =125°C J V =400V 0 R 20 30A 15 10 15A 7.5A 5 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change 35 Qrr Duty cycle = 0.5 T =175°C J trr 1.0 T =125°C J V =400V 0 30 25 0.8 IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 100 0 700 IRRM 0.6 trr 20 15 0.4 10 Qrr 0.2 0.0 5 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature 0 90 CJ, JUNCTION CAPACITANCE (pF) 30A 20 TJ = 25°C TJ = -55°C 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage 052-6336 Rev C 6 - 2009 R 120 80 70 60 50 40 30 20 10 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature Dynamic Characteristics TJ = 25°C unless otherwise specified APT36GA60B_SD15 Vr diF /dt Adjust +18V 0V D.U.T. 30μH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 9. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 0.25 IRRM 3 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 10, Diode Reverse Recovery Waveform and Definitions D3PAK Package Outline TO-247 (B) Package Outline 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) (Heat Sink) e3 100% Sn Plated 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 Collector (Cathode) 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) 13.41 (.528) 13.51(.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) 1.27 (.050) 1.40 (.055) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) 5.45 (.215) BSC {2 Plcs.} and Leads are Plated Emitter (Anode) 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter (Anode) Collector (Cathode) Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved. 052-6336 Rev C 6- 2009 4.50 (.177) Max.