NJRC MUSES8920 High quality audio j-fet input dual operational amplifier Datasheet

MUSES8920
High Quality Audio J-FET Input
Dual Operational Amplifier
■ GENERAL DESCRIPTION
The MUSES8920 is a high quality Audio J-FET input dual operational
amplifier. This is a mass production model of MUSES Series. By
inheriting MUSES Technology we pursued in the "MUSES series", the
MUSES8920 is compatible in high-quality sound and productivity. The
MUSES8920 has improved the chip layout and the material, and is
developing by thoroughly repeating the listening sound.
The characteristics Low noise (8nV/√Hz), high-SR (25V/µs) and low
distortion (0.00004%, Av=1) suitable for audio preamplifiers, active
filters, and line amplifiers. In addition, taking advantage of the low input
bias current that J-FET has, it is suitable for transimpedance amplifier
(I/V converter).
■ FEATURES
●Operating Voltage
●Low Noise
●THD
●Slew Rate
●Channel Separation
●High Output Current
●Phase Margin
●Input Offset Voltage
●Input Bias Current
●Voltage Gain
●J-FET technology
●Package Outline
■ PACKAGE OUTLINE
MUSES8920D
(DIP8)
MUSES8920E
(SOP8)
■ PIN CONFIGLATION
±3.5V to ±16V
8nV/√Hz typ.
0.00004% typ. (Av=1)
25V/µs typ.
150dB typ.
100mA typ.(short-circuit current)
70 deg typ.
0.8mV typ. 5mV max.
5pA typ. 250pA max
135dB typ.
Top View
1
2
8
7
A
3
B
4
6
5
PIN FUNCTION
1. A OUTPUT
2. A -INPUT
3. A +INPUT
4. V5. B +INPUT
6. B -INPUT
7. B OUTPUT
8.V+
DIP8, SOP8 JEDEC 150mil
■ APPLICATIONS
●Current to Voltage (I/V) Converters
●Hi-end Audio
●Active Filters
●Integrators
I/V
Digital
Input
DA
Converter
Analog
Output
I/V
LPF
Buff
DAC Output I/V converter + LPF circuit
MUSES and this logo are trademarks of New Japan Radio Co., Ltd.
Ver.2013-11-25
-1-
MUSES8920
■ ABSOLUTE MAXIMUM RATING (Ta=25ºC unless otherwise specified)
PARAMETER
Supply Voltage
Differential Input Voltage Range
Common Mode Input Voltage Range
SYMBOL
V+/VVID
VICM
RATING
UNIT
±18
V
±30(Note1)
V
±15(Note1)
V
DIP8:870
Power Dissipation
PD
mW
SOP8:900(Note2)
Operating Temperature Range
Topr
-40~+85
ºC
Storage Temperature Range
Tstg
-50~+150
ºC
(Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage.
(Note2) Mounted on the EIA/JEDEC standard board (114.3×76.2×1.6mm, two layer, FR-4).
(Note3) NJM8920 is ESD (electrostatic discharge) sensitive device.
Therefore, proper ESD precautions are recommended to avoid permanent damage or loss of functionality.
■ RECOMMENDED OPERATING VOLTAGE (Ta=25ºC)
PARAMETER
Supply Voltage
SYMBOL
V+/V-
TEST CONDITION
MIN.
±3.5
TYP.
-
MAX.
±16
UNIT
V
TYP.
9
0.8
5
2
135
133
130
110
110
±14
±13.8
±13.5
±14
MAX.
12
5
250
220
-
UNIT
mA
mV
pA
pA
dB
dB
dB
dB
dB
V
V
V
V
TYP.
11
10
70
8
1.1
0.0004
150
25
MAX.
3.5
-
UNIT
MHz
MHz
Deg
nV/√Hz
µVrms
%
dB
V/us
■ ELECTRICAL CHARACTERISTICS
● DC CHARACTERISTICS (V+/V-=±15V, Ta=25ºC, Vcm=0V unless otherwise specified)
PARAMETER
SYMBOL
TEST CONDITION
Supply Current
Icc RL=∞, No Signal
Input Offset Voltage
VIO RS=50Ω
(
Input Bias Current
IB
(Note4)
Input Offset Current
IIO
(Note4)
Voltage Gain1
AV1 RL=10kΩ, Vo=±13V
Voltage Gain2
AV2 RL=2kΩ, Vo=±12.8V
Voltage Gain3
AV3 RL=600Ω, Vo=12.5V
Common Mode Rejection Ratio
CMR VICM=±12.5V
(Note5)
Supply Voltage Rejection Ratio
SVR V+/V-=±3.5 to ±16V
Maximum Output Voltage1
VOM1 RL=10kΩ
Maximum Output Voltage2
VOM2 RL=2kΩ
Maximum Output Voltage3
VOM3 RL=600Ω
Common Mode Input Voltage Range
VICM CMR≥80dB
MIN.
106
105
105
80
80
±13
±12.8
±12.5
±12.5
(Note4) Written by absolute ratio.
(Note5) CMR is calculated by specified change in offset voltage. (VICM=0V to +12.5V, VICM=0V to -12.5V)
● AC CHARACTERISTICS (V+/V-=±15V, Ta=25ºC, Vcm=0V unless otherwise specified)
PARAMETER
Gain Bandwidth Product
Unity Gain Frequency
Phase Margin
Equivalent Input Noise Voltage1
Equivalent Input Noise Voltage2
Total Harmonic Distortion
Channel Separation
Slew Rate
-2-
SYMBOL
TEST CONDITION
GB f=10kHz
fT
AV=+100, RS=100Ω, RL=2kΩ, CL=10pF
ΦM AV=+100, RS=100Ω, RL=2kΩ, CL=10pF
VNI1 f=1kHz
VNI2 RIAA, RS=2.2kΩ, 30kHz, LPF
THD f=1kHz , AV=+10, Vo=5Vrms, RL=2kΩ
CS f=1kHz , AV=-100, RL=2kΩ
SR AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF
MIN.
-
Ver.2013-11-25
MUSES8920
■ Application Notes
●Package Power, Power Dissipation and Output Power
IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called
Power Dissipation PD. The dependence of the MUSES8920 PD on ambient temperature is shown in Fig 1. The plots are
depended on following two points. The first is PD on ambient temperature 25ºC, which is the maximum power dissipation.
The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature
Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD
lower than 25ºC to it on 25ºC. The PD is shown following formula as a function of the ambient temperature between those
points.
Dissipation Power PD =
Tjmax - Ta
[W] (Ta=25ºC to Ta=150ºC)
θja
Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on.
Therefore, PD is different in each package.
While, the actual measurement of dissipation power on MUSES8920 is obtained using following equation.
(Actual Dissipation Power) = (Supply Current Icc) X (Supply Voltage V+– V-) – (Output Power Po)
The MUSES8920 should be operated in lower than PD of the actual dissipation power.
To sustain the steady state operation, take account of the Dissipation Power and thermal design.
PD [mW]
SOP8
900
870
DIP8
-40
25
Ta [deg]
85
(Topr max.)
150
(Tstg max.)
Fig.1 Power Dissipations vs. Ambient Temperature on the MUSE8920
Ver.2013-11-25
-3-
MUSES8920
TYPICAL CARACTERISTICS
THD+N vs. Output Voltage (Frequency)
THD+N vs. Output Voltage (Frequency)
V+/V-=±15V, AV=+10, RL=2k, Ta=25ºC
10
V+/V-=±3.5V, AV=+10, RL=2k, Ta=25ºC
10
1
1
THD+N [%]
THD+N [%]
f=20Hz
0.1
f=20kHz
0.01
0.1
f=1kHz
0.01
f=1kHz
f=20kHz
0.001
f=20kHz
0.001
0.0001
0.01
0.1
1
10
Output Voltage [Vrms]
0.0001
0.01
100
Voltage Noise vs. Frequency
Channel Separation [dB]
60
40
20
-130
-135
-140
-145
-150
-155
-160
10
60
10k
100
1k
10k
Frequency [Hz]
100k
Phase Margin vs. Temperature (Supply Voltage)
V+/V-=±15V, AV=+100, RS=100Ω, RL=2kΩ, CL=10pF, VIN=-30dBm
90
Ta=+85ºC
Phase
Ta=-40ºC
0
-45
-90
Ta=+85ºC
Ta=+25ºC Ta=-40ºC
-40
Phase [deg]
Ta=+25ºC
0
-60
10k
10
V+/V-=±15V, AV=+100, RL=2kΩ, CL=10pF
40
-20
100k
Gain vs. Frequency (Temperature)
Gain
20
100
1k
Frequency [Hz]
Phase Margin [deg]
Equivalent Input Noise Voltage
[nV/√Hz]
-125
80
1
Voltage Gain [dB]
V+/V-=±15V, AV=-100, RL=2kΩ, Ta=25ºC
-120
0
-4-
100
Channel Separation vs. Frequency
V+/V-=±15V, AV=+100, RS=100Ω, RL=∞, Ta=25ºC
100
0.1
1
10
Output Voltage [Vrms]
V+/V-=±15V
80
70
V+/V-=±3.5V
-135
100k
1M
10M
Frequency [Hz]
-180
100M
60
-50
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
Ver.2013-11-25
MUSES8920
■ TYPICAL CARACTERISTICS
Pulse Response
Slew Rate vs. Temperature
V+/V-=±15V, Gv=0dB, CL=10pF, RL=2kΩ, Ta=25ºC
V+/V-=±15V, VIN=2VP-P, f=100kHz, Gv=0dB, CL=10pF, RL=2kΩ
80
Input
70
Voltage [1V/div]
Slew Rate [V/µs]
60
Fall
50
40
30
20
Rise
10
Output
0
Time [1µs/div]
-50
Supply Current vs. Supply Voltage (Temperature)
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
Supply Current vs. Temperature (Supply Voltage)
AV=0dB
AV=0dB
12
12
Ta=+25ºC
8
Ta=+85ºC
6
Ta=-40ºC
4
2
8
V+/V-=±3.5V
6
4
2
0
0
±0
±4
±8
±12
+ Supply Voltage V /V [V]
±16
-50
Input Offset Voltage vs. Supply Voltage (Temperature)
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
Input Offset Voltage vs. Temperature (Supply Voltage)
VICM=0V, VIN=0V
VICM=0V, VIN=0V
2.0
2.0
1.5
1.0
Input Offset Voltage [mV]
Input Offset Voltage [mV]
V+/V-=±15V
10
Supply Current [mA]
Supply Current [mA]
10
Ta=-40ºC
0.5
0.0
Ta=+85ºC
Ta=+25ºC
-0.5
-1.0
1.5
1.0
V+/V-=±15V
0.5
0.0
V+/V-=±3.5V
-0.5
-1.0
0
Ver.2013-11-25
±4
±8
±12
Supply Voltage V+/V- [V]
±16
-50
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
-5-
MUSES8920
■ TYPICAL CARACTERISTICS
Input Offset Voltage
vs. Common Mode Input Voltage
Input Offset Voltage
vs. Common Mode Input Voltage
(Temperature)
V+/V-=±15V
(Temperature)
V+/V-=±3.5V
1.5
1.0
Ta=-40ºC
0.5
0.0
Ta=+25ºC
Ta=+85ºC
-0.5
-1.0
-15
2.0
Input Offset Voltage [mV]
Input Offset Voltage [mV]
2.0
1.5
1.0
Ta=-40ºC
0.5
0.0
-1.0
-10
-5
0
5
10
15
Common Mode Input Voltage [V]
+
-4
-3
-2
-1
0
1
2
3
Common Mode Input Voltage [V]
(Temperature)
V+/V-=±15V, Ta=25ºC
10
9
Input Bias Current [pA]
100n
10n
1n
100p
10p
8
7
6
5
4
1p
3
-50
-25
-15
0
25 50 75 100 125 150
Ambient Temperature [ºC]
-10
-5
0
5
10
Common Mode Input Voltage [V]
V+/V-=±15V
130
VICM=0V→+12.5V
120
110
100
VICM=-12.5V→0V
90
80
VICM=0V, V+/V-=±3.5V→±16V
140
Supply Voltage Rejection Ratio [dB]
140
15
SVR vs. Temperature
CMR vs. Temperature
Common Mode Rejection Ratio [dB]
4
Input Bias Current vs. Common Mode Input Voltage
-
VICM=0V, V /V =±15V
1000n
130
120
110
100
90
80
-50
-6-
Ta=+25ºC
-0.5
Input Bias Current vs. Temperature (Supply Voltage)
Input Bias Current [A]
Ta=+85ºC
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
-50
-25
0
25 50 75 100 125 150
Ambient Temperature [ºC]
Ver.2013-11-25
MUSES8920
■ TYPICAL CARACTERISTICS
Output Voltage vs. Output Current (Temperature)
Output Voltage vs. Output Current (Temperature)
V+/V-=±15V
15
V+/V-=±3.5V
4
Isource
Output Voltage [V]
10
Ta=+85ºC
3
Ta=-40ºC
Output Voltage [V]
Isource
Ta=+25ºC
5
0
Ta=+85ºC
-5
Ta=+25ºC
Ta=-40ºC
-10
2
Ta=+25ºC
1
Ta=-40ºC
0
-1
-2
-3
Isink
-15
Isink
-4
1
10
100
Output Current [mA]
1k
1
10
100
Output Current [mA]
1k
Maximum Output Voltage vs. Load Resistance
Maximum Output Voltage vs. Load Resistance
(Temperature)
V /V =±15V, Gv=open, RL to 0V
(Temperature)
V+/V-=±3.5V, Gv=open, RL to 0V
15
10
-
4
Maximum Output Voltage [V]
+
Maximum Output Voltage [V]
Ta=+125ºC
Ta=-40ºC
Ta=+25ºC
5
Ta=+85ºC
0
-5
-10
-15
3
2
1
0
Ta=+85ºC
-1
Ta=+25ºC
Ta=-40ºC
-2
-3
-4
10
Ver.2013-11-25
100
1k
10k
Load Resistance [Ω]
100k
10
100
1k
10k
Load Resistance [Ω]
100k
-7-
MUSES8920
■ APPLICATION CIRCUIT
Gain Stage
Analog
Input
I/V
Att
AD
Converter
Buff
Digital
Output
Digital
Input
DA
Converter
(Fig.1: ADC Input)
L-ch.
Analog
Intput
Analog
Output
I/V
LPF
Buff
(Fig.2:DAC Output)
L-ch.
Analog
Output
HPF
DAC
R-ch.
Analog
Intput
Vcc
R-ch.
Analog
Output
1/2Vcc
(Fig.4:DAC LPF Circuit )
1/2Vcc
(Fig.3: Half Vcc Buffer on Single Supply Application)
<CAUTION>
The specifications on this data book are only given for information,
without any guarantee as regards either mistakes or omissions. The
application circuits in this data book are described only to show
representative usages of the product and not intended for the
guarantee or permission of any right including the industrial rights.
-8-
Ver.2013-11-25
Similar pages