MUSES8920 High Quality Audio J-FET Input Dual Operational Amplifier ■ GENERAL DESCRIPTION The MUSES8920 is a high quality Audio J-FET input dual operational amplifier. This is a mass production model of MUSES Series. By inheriting MUSES Technology we pursued in the "MUSES series", the MUSES8920 is compatible in high-quality sound and productivity. The MUSES8920 has improved the chip layout and the material, and is developing by thoroughly repeating the listening sound. The characteristics Low noise (8nV/√Hz), high-SR (25V/µs) and low distortion (0.00004%, Av=1) suitable for audio preamplifiers, active filters, and line amplifiers. In addition, taking advantage of the low input bias current that J-FET has, it is suitable for transimpedance amplifier (I/V converter). ■ FEATURES ●Operating Voltage ●Low Noise ●THD ●Slew Rate ●Channel Separation ●High Output Current ●Phase Margin ●Input Offset Voltage ●Input Bias Current ●Voltage Gain ●J-FET technology ●Package Outline ■ PACKAGE OUTLINE MUSES8920D (DIP8) MUSES8920E (SOP8) ■ PIN CONFIGLATION ±3.5V to ±16V 8nV/√Hz typ. 0.00004% typ. (Av=1) 25V/µs typ. 150dB typ. 100mA typ.(short-circuit current) 70 deg typ. 0.8mV typ. 5mV max. 5pA typ. 250pA max 135dB typ. Top View 1 2 8 7 A 3 B 4 6 5 PIN FUNCTION 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+ DIP8, SOP8 JEDEC 150mil ■ APPLICATIONS ●Current to Voltage (I/V) Converters ●Hi-end Audio ●Active Filters ●Integrators I/V Digital Input DA Converter Analog Output I/V LPF Buff DAC Output I/V converter + LPF circuit MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.2013-11-25 -1- MUSES8920 ■ ABSOLUTE MAXIMUM RATING (Ta=25ºC unless otherwise specified) PARAMETER Supply Voltage Differential Input Voltage Range Common Mode Input Voltage Range SYMBOL V+/VVID VICM RATING UNIT ±18 V ±30(Note1) V ±15(Note1) V DIP8:870 Power Dissipation PD mW SOP8:900(Note2) Operating Temperature Range Topr -40~+85 ºC Storage Temperature Range Tstg -50~+150 ºC (Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage. (Note2) Mounted on the EIA/JEDEC standard board (114.3×76.2×1.6mm, two layer, FR-4). (Note3) NJM8920 is ESD (electrostatic discharge) sensitive device. Therefore, proper ESD precautions are recommended to avoid permanent damage or loss of functionality. ■ RECOMMENDED OPERATING VOLTAGE (Ta=25ºC) PARAMETER Supply Voltage SYMBOL V+/V- TEST CONDITION MIN. ±3.5 TYP. - MAX. ±16 UNIT V TYP. 9 0.8 5 2 135 133 130 110 110 ±14 ±13.8 ±13.5 ±14 MAX. 12 5 250 220 - UNIT mA mV pA pA dB dB dB dB dB V V V V TYP. 11 10 70 8 1.1 0.0004 150 25 MAX. 3.5 - UNIT MHz MHz Deg nV/√Hz µVrms % dB V/us ■ ELECTRICAL CHARACTERISTICS ● DC CHARACTERISTICS (V+/V-=±15V, Ta=25ºC, Vcm=0V unless otherwise specified) PARAMETER SYMBOL TEST CONDITION Supply Current Icc RL=∞, No Signal Input Offset Voltage VIO RS=50Ω ( Input Bias Current IB (Note4) Input Offset Current IIO (Note4) Voltage Gain1 AV1 RL=10kΩ, Vo=±13V Voltage Gain2 AV2 RL=2kΩ, Vo=±12.8V Voltage Gain3 AV3 RL=600Ω, Vo=12.5V Common Mode Rejection Ratio CMR VICM=±12.5V (Note5) Supply Voltage Rejection Ratio SVR V+/V-=±3.5 to ±16V Maximum Output Voltage1 VOM1 RL=10kΩ Maximum Output Voltage2 VOM2 RL=2kΩ Maximum Output Voltage3 VOM3 RL=600Ω Common Mode Input Voltage Range VICM CMR≥80dB MIN. 106 105 105 80 80 ±13 ±12.8 ±12.5 ±12.5 (Note4) Written by absolute ratio. (Note5) CMR is calculated by specified change in offset voltage. (VICM=0V to +12.5V, VICM=0V to -12.5V) ● AC CHARACTERISTICS (V+/V-=±15V, Ta=25ºC, Vcm=0V unless otherwise specified) PARAMETER Gain Bandwidth Product Unity Gain Frequency Phase Margin Equivalent Input Noise Voltage1 Equivalent Input Noise Voltage2 Total Harmonic Distortion Channel Separation Slew Rate -2- SYMBOL TEST CONDITION GB f=10kHz fT AV=+100, RS=100Ω, RL=2kΩ, CL=10pF ΦM AV=+100, RS=100Ω, RL=2kΩ, CL=10pF VNI1 f=1kHz VNI2 RIAA, RS=2.2kΩ, 30kHz, LPF THD f=1kHz , AV=+10, Vo=5Vrms, RL=2kΩ CS f=1kHz , AV=-100, RL=2kΩ SR AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF MIN. - Ver.2013-11-25 MUSES8920 ■ Application Notes ●Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES8920 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25ºC, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25ºC to it on 25ºC. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power PD = Tjmax - Ta [W] (Ta=25ºC to Ta=150ºC) θja Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES8920 is obtained using following equation. (Actual Dissipation Power) = (Supply Current Icc) X (Supply Voltage V+– V-) – (Output Power Po) The MUSES8920 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. PD [mW] SOP8 900 870 DIP8 -40 25 Ta [deg] 85 (Topr max.) 150 (Tstg max.) Fig.1 Power Dissipations vs. Ambient Temperature on the MUSE8920 Ver.2013-11-25 -3- MUSES8920 TYPICAL CARACTERISTICS THD+N vs. Output Voltage (Frequency) THD+N vs. Output Voltage (Frequency) V+/V-=±15V, AV=+10, RL=2k, Ta=25ºC 10 V+/V-=±3.5V, AV=+10, RL=2k, Ta=25ºC 10 1 1 THD+N [%] THD+N [%] f=20Hz 0.1 f=20kHz 0.01 0.1 f=1kHz 0.01 f=1kHz f=20kHz 0.001 f=20kHz 0.001 0.0001 0.01 0.1 1 10 Output Voltage [Vrms] 0.0001 0.01 100 Voltage Noise vs. Frequency Channel Separation [dB] 60 40 20 -130 -135 -140 -145 -150 -155 -160 10 60 10k 100 1k 10k Frequency [Hz] 100k Phase Margin vs. Temperature (Supply Voltage) V+/V-=±15V, AV=+100, RS=100Ω, RL=2kΩ, CL=10pF, VIN=-30dBm 90 Ta=+85ºC Phase Ta=-40ºC 0 -45 -90 Ta=+85ºC Ta=+25ºC Ta=-40ºC -40 Phase [deg] Ta=+25ºC 0 -60 10k 10 V+/V-=±15V, AV=+100, RL=2kΩ, CL=10pF 40 -20 100k Gain vs. Frequency (Temperature) Gain 20 100 1k Frequency [Hz] Phase Margin [deg] Equivalent Input Noise Voltage [nV/√Hz] -125 80 1 Voltage Gain [dB] V+/V-=±15V, AV=-100, RL=2kΩ, Ta=25ºC -120 0 -4- 100 Channel Separation vs. Frequency V+/V-=±15V, AV=+100, RS=100Ω, RL=∞, Ta=25ºC 100 0.1 1 10 Output Voltage [Vrms] V+/V-=±15V 80 70 V+/V-=±3.5V -135 100k 1M 10M Frequency [Hz] -180 100M 60 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Ver.2013-11-25 MUSES8920 ■ TYPICAL CARACTERISTICS Pulse Response Slew Rate vs. Temperature V+/V-=±15V, Gv=0dB, CL=10pF, RL=2kΩ, Ta=25ºC V+/V-=±15V, VIN=2VP-P, f=100kHz, Gv=0dB, CL=10pF, RL=2kΩ 80 Input 70 Voltage [1V/div] Slew Rate [V/µs] 60 Fall 50 40 30 20 Rise 10 Output 0 Time [1µs/div] -50 Supply Current vs. Supply Voltage (Temperature) -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Supply Current vs. Temperature (Supply Voltage) AV=0dB AV=0dB 12 12 Ta=+25ºC 8 Ta=+85ºC 6 Ta=-40ºC 4 2 8 V+/V-=±3.5V 6 4 2 0 0 ±0 ±4 ±8 ±12 + Supply Voltage V /V [V] ±16 -50 Input Offset Voltage vs. Supply Voltage (Temperature) -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Input Offset Voltage vs. Temperature (Supply Voltage) VICM=0V, VIN=0V VICM=0V, VIN=0V 2.0 2.0 1.5 1.0 Input Offset Voltage [mV] Input Offset Voltage [mV] V+/V-=±15V 10 Supply Current [mA] Supply Current [mA] 10 Ta=-40ºC 0.5 0.0 Ta=+85ºC Ta=+25ºC -0.5 -1.0 1.5 1.0 V+/V-=±15V 0.5 0.0 V+/V-=±3.5V -0.5 -1.0 0 Ver.2013-11-25 ±4 ±8 ±12 Supply Voltage V+/V- [V] ±16 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -5- MUSES8920 ■ TYPICAL CARACTERISTICS Input Offset Voltage vs. Common Mode Input Voltage Input Offset Voltage vs. Common Mode Input Voltage (Temperature) V+/V-=±15V (Temperature) V+/V-=±3.5V 1.5 1.0 Ta=-40ºC 0.5 0.0 Ta=+25ºC Ta=+85ºC -0.5 -1.0 -15 2.0 Input Offset Voltage [mV] Input Offset Voltage [mV] 2.0 1.5 1.0 Ta=-40ºC 0.5 0.0 -1.0 -10 -5 0 5 10 15 Common Mode Input Voltage [V] + -4 -3 -2 -1 0 1 2 3 Common Mode Input Voltage [V] (Temperature) V+/V-=±15V, Ta=25ºC 10 9 Input Bias Current [pA] 100n 10n 1n 100p 10p 8 7 6 5 4 1p 3 -50 -25 -15 0 25 50 75 100 125 150 Ambient Temperature [ºC] -10 -5 0 5 10 Common Mode Input Voltage [V] V+/V-=±15V 130 VICM=0V→+12.5V 120 110 100 VICM=-12.5V→0V 90 80 VICM=0V, V+/V-=±3.5V→±16V 140 Supply Voltage Rejection Ratio [dB] 140 15 SVR vs. Temperature CMR vs. Temperature Common Mode Rejection Ratio [dB] 4 Input Bias Current vs. Common Mode Input Voltage - VICM=0V, V /V =±15V 1000n 130 120 110 100 90 80 -50 -6- Ta=+25ºC -0.5 Input Bias Current vs. Temperature (Supply Voltage) Input Bias Current [A] Ta=+85ºC -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Ver.2013-11-25 MUSES8920 ■ TYPICAL CARACTERISTICS Output Voltage vs. Output Current (Temperature) Output Voltage vs. Output Current (Temperature) V+/V-=±15V 15 V+/V-=±3.5V 4 Isource Output Voltage [V] 10 Ta=+85ºC 3 Ta=-40ºC Output Voltage [V] Isource Ta=+25ºC 5 0 Ta=+85ºC -5 Ta=+25ºC Ta=-40ºC -10 2 Ta=+25ºC 1 Ta=-40ºC 0 -1 -2 -3 Isink -15 Isink -4 1 10 100 Output Current [mA] 1k 1 10 100 Output Current [mA] 1k Maximum Output Voltage vs. Load Resistance Maximum Output Voltage vs. Load Resistance (Temperature) V /V =±15V, Gv=open, RL to 0V (Temperature) V+/V-=±3.5V, Gv=open, RL to 0V 15 10 - 4 Maximum Output Voltage [V] + Maximum Output Voltage [V] Ta=+125ºC Ta=-40ºC Ta=+25ºC 5 Ta=+85ºC 0 -5 -10 -15 3 2 1 0 Ta=+85ºC -1 Ta=+25ºC Ta=-40ºC -2 -3 -4 10 Ver.2013-11-25 100 1k 10k Load Resistance [Ω] 100k 10 100 1k 10k Load Resistance [Ω] 100k -7- MUSES8920 ■ APPLICATION CIRCUIT Gain Stage Analog Input I/V Att AD Converter Buff Digital Output Digital Input DA Converter (Fig.1: ADC Input) L-ch. Analog Intput Analog Output I/V LPF Buff (Fig.2:DAC Output) L-ch. Analog Output HPF DAC R-ch. Analog Intput Vcc R-ch. Analog Output 1/2Vcc (Fig.4:DAC LPF Circuit ) 1/2Vcc (Fig.3: Half Vcc Buffer on Single Supply Application) <CAUTION> The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. -8- Ver.2013-11-25