Infineon IHW30N60T Soft switching sery Datasheet

Soft Switching Series
IHW30N60T
q
Low Loss DuoPack : IGBT in TrenchStop® technology with optimised diode
Features:
• Very low VCE(sat) 1.5 V (typ.)
• Maximum Junction Temperature 175 °C
• Short circuit withstand time – 5µs
• TrenchStop® and Fieldstop technology for 600 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- low VCE(sat)
• Positive temperature coefficient in VCE(sat)
• Low EMI
• Low Gate Charge
• Qualified according to JEDEC1 for target applications
• Pb-free lead plating; RoHS compliant
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
C
G
E
PG-TO-247-3
Applications:
• Inductive Cooking
• Soft Switching Applications
Type
IHW30N60T
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking
Package
600V
30A
1.5V
175°C
H30T60
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current, limited by Tjmax
IC
Value
600
Unit
V
A
TC = 25°C
60
TC = 100°C
30
Pulsed collector current, tp limited by Tjmax
ICpuls
90
Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C)
-
90
Diode forward current
IF
23
13
TC = 25°C
TC = 100°C
Diode pulsed current, tp limited by Tjmax
IFpuls
30
Gate-emitter voltage
VGE
±20
Transient Gate-emitter voltage (tp < 5 ms)
V
±25
2)
tSC
5
µs
Power dissipation TC = 25°C
Ptot
187
W
Operating junction temperature
Tj
-40...+175
°C
Storage temperature
Tstg
-55...+175
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
Short circuit withstand time
VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C
1
2)
260
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
K/W
Characteristic
IGBT thermal resistance,
junction – case
RthJC
0.8
Diode thermal resistance,
junction – case
RthJCD
1.1
Thermal resistance,
junction – ambient
RthJA
40
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
T j = 25°C
-
1.5
2
T j = 175 °C
-
1.9
-
T j = 25°C
-
1.1
1.3
T j = 150 °C
-
1.0
-
T j = 175 °C
-
1.0
-
4.1
4.9
5.7
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =0.5mA
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
VF
V
V G E = 15 V, I C =30A
VGE=0V, IF=10A
Gate-emitter threshold voltage
VGE(th)
I C =0 .43mA,
V C E =V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V ,
VGE=0V
T j = 25°C
T j = 175 °C
-
-
40
1000
µA
Gate-emitter leakage current
IGES
V C E = 0 V , V G E =20V
-
-
100
nA
Transconductance
gfs
V C E =20V, I C =30A
-
16.7
-
S
Integrated gate resistor
RGint
-
Ω
Dynamic Characteristic
Input capacitance
Ciss
V C E =25V,
-
1630
-
Output capacitance
Coss
VGE=0V,
-
108
-
Reverse transfer capacitance
Crss
f=1MHz
-
50
-
Gate charge
QGate
V C C = 48 0 V, I C =30A
-
167
-
nC
-
13
-
nH
-
275
-
A
pF
V G E =15V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
IC(SC)
V G E =15V,t S C ≤5 µs
V C C = 400 V,
T j = 1 50° C
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
-
23
-
-
21
-
-
254
-
-
46
-
-
-
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
-
0.77
-
Total switching energy
Ets
-
0.77
-
T j = 25°C ,
V C C = 40 0 V, I C =30A,
V G E = 0 /1 5 V,
R G = 1 0 .6 Ω ,
L σ 1 ) =1 36nH,
C σ 1 ) =39pF
ns
mJ
Switching Characteristic, Inductive Load, at Tj=175 °C
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
-
24
-
-
26
-
-
292
-
-
90
-
-
-
-
Unit
IGBT Characteristic
T j = 175 °C ,
V C C = 40 0 V, I C =30A,
V G E = 0 /1 5 V,
R G = 1 0 .6 Ω
L σ 1 ) =1 36nH,
C σ 1 ) =39pF
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
-
1.1
-
Total switching energy
Ets
-
1.1
-
1)
ns
mJ
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
3
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
tp=2µs
90A
10µs
70A
60A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
80A
TC=80°C
TC=110°C
50A
40A
30A
Ic
20A
10A
50µs
1A
1ms
DC
10ms
10A
0A
100Hz
1kHz
10kHz
0.1A
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency for triangular
current (Eon = 0, hard turn-off)
(Tj ≤ 175°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 10Ω)
1000V
50A
IC, COLLECTOR CURRENT
120W
80W
Ptot,
POWER DISSIPATION
100V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤175°C;
VGE=15V)
160W
40W
0W
25°C
10V
40A
30A
20A
10A
50°C
75°C
0A
25°C
100°C 125°C 150°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 175°C)
Power Semiconductors
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 175°C)
Rev. 2.2 Sep. 08
Soft Switching Series
IHW30N60T
q
80A
50A
60A
V G E =20V
V G E =20V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
70A
15V
50A
13V
11V
40A
9V
30A
7V
20A
40A
15V
13V
30A
11V
20A
7V
9V
10A
10A
0A
0A
0V
1V
2V
3V
0V
IC, COLLECTOR CURRENT
50A
40A
30A
20A
T J = 1 7 5 °C
10A
2 5 °C
0A
0V
2V
4V
6V
8V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=10V)
Power Semiconductors
2V
3V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 175°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
1V
2.5V
IC =60A
2.0V
IC =30A
1.5V
IC =15A
1.0V
0.5V
0.0V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
5
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
t d(off)
tf
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
t d(on)
10ns
tf
100ns
t d(on)
tr
tr
1ns
0A
10A
20A
10ns
30A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG = 10Ω,
Dynamic test circuit in Figure E)
10Ω
20Ω
30Ω
40Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C,
VCE= 400V, VGE = 0/15V, IC = 30A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
t d(off)
100ns
tf
t d(on)
tr
10ns
25°C
50°C
75°C
6V
m ax.
typ.
5V
4V
m in.
3V
2V
1V
0V
-50°C
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 30A, RG=10Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
7V
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.43mA)
6
Rev. 2.2 Sep. 08
2.0mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
Soft Switching Series
Eoff
1.5mJ
1.0mJ
0.5mJ
0.0mJ
Eoff
1,5mJ
1,0mJ
0,5mJ
0,0mJ
0A
10A
20A
30A
40A
0Ω
50A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, RG = 10Ω,
Dynamic test circuit in Figure E)
20Ω
30Ω
40Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, IC = 30A,
Dynamic test circuit in Figure E)
50°C
75°C
1,50mJ
Eoff
1,25mJ
1,00mJ
0,75mJ
0,50mJ
0,25mJ
0,00mJ
300V
100°C 125°C 150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 30A, RG = 10Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
E, SWITCHING ENERGY LOSSES
Eoff
0.5mJ
0.0mJ
25°C
10Ω
1,75mJ
1.0mJ
E, SWITCHING ENERGY LOSSES
IHW30N60T
q
350V
400V
450V
500V
550V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 30A, RG = 10Ω,
Dynamic test circuit in Figure E)
7
Rev. 2.2 Sep. 08
C iss
1nF
1 5V
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
Soft Switching Series
IHW30N60T
q
12 0V
48 0V
1 0V
C oss
100pF
5V
C rss
0V
0 nC
30 nC
60 nC
0V
90 nC 12 0n C 15 0n C 18 0n
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=30 A)
10V
20V
30V
40V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
SHORT CIRCUIT WITHSTAND TIME
400A
300A
200A
100A
0A
12V
tSC,
IC(sc), short circuit COLLECTOR CURRENT
12µs
14V
16V
8µs
6µs
4µs
2µs
0µs
10V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 400V, Tj ≤ 150°C)
Power Semiconductors
10µs
11V
12V
13V
14V
VGE, GATE-EMITETR VOLTAGE
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C,
TJmax<150°C)
8
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
0.2
0.1
-1
10 K/W
R,(K/W)
0.29566
0.25779
0.19382
0.05279
0.05
0.02
τ, (s)
-2
6.478*10
-3
6.12*10
-4
4.679*10
-5
6.45*10
R1
R2
0.01
-2
10 K/W
C1=τ1/R1
C2=τ2/R2
single pulse
1µs
10µs
100µs
1ms
ZthJC, TRANSIENT THERMAL RESISTANCE
ZthJC, TRANSIENT THERMAL RESISTANCE
D=0.5
0
10 K/W
D=0.5
0.2
0.1
-1
10 K/W
0.05
R1
0.02
R2
0.01
single pulse
10ms 100ms
10µs
tP, PULSE WIDTH
Figure 21. IGBT transient thermal resistance
(D = tp / T)
τ, (s)
-2
9.45*10
-2
2.55*10
-3
3.6*10
-4
5.1*10
-4
1.09*10
R,(K/W)
0.0715
0.2222
0.4265
0.364
0.0181
100µs
1ms
C1= τ1/R1
C2= τ2/R2
10ms
tP, PULSE WIDTH
Figure 22. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
IF=20A
TJ=25°C
175°C
10A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
30A
20A
10A
0A
0.0V
0.5V
1.0V
1.0V
3A
0.5V
0.0V
-50°C
1.5V
VF, FORWARD VOLTAGE
Figure 23. Typical diode forward current as
a function of forward voltage
Power Semiconductors
100ms
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 24. Typical diode forward voltage as a
function of junction temperature
9
Rev. 2.2 Sep. 08
Soft Switching Series
IHW30N60T
q
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
Power Semiconductors
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
0.780
0.164
0.138
0.216
0.238
20.31
4.47
3.70
6.00
6.30
10
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2.2 Sep. 08
IHW30N60T
q
Soft Switching Series
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
τn
r2
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Figure B. Definition of switching losses
Power Semiconductors
11
Rev. 2.2 Sep. 08
Soft Switching Series
IHW30N60T
q
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
Power Semiconductors
12
Rev. 2.2 Sep. 08
Similar pages