AD OP400GS Quad low offset, low power operational amplifier Datasheet

Quad Low Offset, Low Power
Operational Amplifier
OP400
OUTA 1
16
OUT D
15
–IN D
14
+IN D
13
V–
12
+IN C
11
–IN C
OUT B 7
10
OUT C
NC 8
9
NC
OUT A 1
14
OUT D
–IN A 2
–IN A 2
13
–IN D
+IN A 3
12
+IN D
V+ 4
11
V–
+IN B 5
10
+IN C
–IN B 6
9
–IN C
8
OUT C
–
+
–
+
+IN A 3
OP400
V+ 4
+IN B 5
–IN B 6
–
+
+
–
OUT B 7
00304-001
Low input offset voltage: 150 μV maximum
Low offset voltage drift over –55°C to +125°C: 1.2 pV/°C
maximum
Low supply current (per amplifier): 725 μA maximum
High open-loop gain: 5000 V/mV minimum
Input bias current: 3 nA maximum
Low noise voltage density: 11 nV/√Hz at 1 kHz
Stable with large capacitive loads: 10 nF typical
Pin-compatible to LM148, HA4741, RM4156, and LT1014,
with improved performance
Available in die form
–
+
+
–
OP400
–
+
+
–
NC = NO CONNECT
Figure 1. 14-Pin Ceramic DIP (Y-Suffix)
and 14-Pin Plastic DIP (P-Suffix)
00304-002
FUNCTIONAL BLOCK DIAGRAMS
FEATURES
Figure 2. 16-Pin SOIC (S-Suffix)
GENERAL DESCRIPTION
The OP400 is the first monolithic quad operational amplifier
that features OP77-type performance. Precision performance is
not sacrificed with the OP400 to obtain the space and cost
savings offered by quad amplifiers.
The OP400 features an extremely low input offset voltage of less
than 150 μV with a drift of less than 1.2 μV/°C, guaranteed over
the full military temperature range. Open-loop gain of the
OP400 is more than 5 million into a 10 kΩ load, input bias
current is less than 3 nA, CMR is more than 120 dB, and PSRR
is less than 1.8 μV/V. On-chip Zener zap trimming is used to
achieve the low input offset voltage of the OP400 and eliminates
the need for offset nulling. The OP400 conforms to the industrystandard quad pinout, which does not have null terminals.
The OP400 features low power consumption, drawing less than
725 μA per amplifier. The total current drawn by this quad
amplifier is less than that of a single OP07, yet the OP400 offers
significant improvements over this industry-standard op amp.
Voltage noise density of the OP400 is a low 11 nV/√Hz at
10 Hz, half that of most competitive devices.
The OP400 is pin-compatible with the LM148, HA4741,
RM4156, and LT1014 operational amplifiers and can be used to
upgrade systems having these devices. The OP400 is an ideal
choice for applications requiring multiple precision operational
amplifiers and where low power consumption is critical.
V+
BIAS
VOLTAGE
LIMITING
NETWORK
+IN
OUT
–IN
00304-003
V–
Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown)
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2007 Analog Devices, Inc. All rights reserved.
OP400
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................6
Functional Block Diagrams............................................................. 1
Applications..................................................................................... 11
General Description ......................................................................... 1
Dual Low Power Instrumentation Amplifier ......................... 11
Revision History ............................................................................... 2
Bipolar Current Transmitter ..................................................... 12
Specifications..................................................................................... 3
Differential Output Instrumentation Amplifier .................... 12
Electrical Characteristics............................................................. 3
Multiple Output Tracking Voltage Reference......................... 13
Absolute Maximum Ratings............................................................ 5
Outline Dimensions ....................................................................... 14
Thermal Resistance ...................................................................... 5
Ordering Guide .......................................................................... 15
ESD Caution.................................................................................. 5
SMD Parts and Equivalents ...................................................... 15
REVISION HISTORY
1/07—Rev. D to Rev. E
Updated Format..................................................................Universal
Changes to Figure 1 and Figure 2................................................... 1
Removed Figure 4............................................................................. 4
Changes to Table 3............................................................................ 4
Changes to Figure 16 through Figure 19, Figure 21..................... 8
Changes to Figure 27........................................................................ 9
Changes to Figure 28...................................................................... 10
Changes to Figure 33...................................................................... 13
Updated Outline Dimensions ....................................................... 14
3/06—Rev. C to Rev. D
Updated Format..................................................................Universal
Deleted Wafer Test Limits Table ..................................................... 4
New Package Drawing: R-14 ......................................................... 15
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
6/03—Rev. B to Rev. C
Edits to Specifications .......................................................................2
10/02—Rev. A to Rev. B
Addition of Absolute Maximum Ratings .......................................5
Edits to Outline Dimensions......................................................... 12
4/02—Rev. 0 to Rev. A
Edits to Features.................................................................................1
Edits to Ordering Information ........................................................1
Edits to Pin Connections..................................................................1
Edits to General Descriptions..................................................... 1, 2
Edits to Package Type .......................................................................2
Rev. E | Page 2 of 16
OP400
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = ±15 V, TA = +25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Input Offset Voltage
Long-Term Input
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Resistance
Differential Mode
Input Resistance
Common Mode
Large Signal Voltage
Gain
Symbol
Conditions
VOS
IOS
IB
en p-p
RIN
VCM = 0 V
VCM = 0 V
0.1 Hz to 10 Hz
AVO
Capacitive Load
Stability
NOISE PERFORMANCE
Input Noise Voltage
Density 3
Input Noise Current
Input Noise Current
Density
IVR
CMR
OP400A/E
Typ
Max
Min
OP400F
Typ
Max
Min
OP400G/H
Typ
Max
Unit
40
0.1
150
60
0.1
230
80
0.1
300
μV
μV/mo
0.1
0.75
0.5
10
1.0
3.0
0.1
0.75
0.5
10
2.0
6.0
0.1
0.75
0.5
10
3.5
7.0
nA
nA
μV p-p
MΩ
200
RINCM
200
200
GΩ
7000
3000
±13
135
V/mV
V/mV
V
dB
3.2
pF
±12.6
V
VO = ±10 V
RL = 10 kΩ
RL = 2 kΩ
Input Voltage Range 1
Common-Mode
Rejection
Input Capacitance
OUTPUT
CHARACTERISTICS
Output Voltage Swing
POWER SUPPLY
Power Supply Rejection
Ratio
Supply Current per
Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth
Product
Channel Separation
Min
VCM = 12 V
5000 12,000
2000 3500
±12
±13
120
140
CIN
3000
1500
±12
115
3.2
3000
1500
±12
110
3.2
VO
RL = 10 kΩ
PSRR
VS = 3 V to 18 V
0.1
1.8
0.1
3.2
0.2
5.6
μV/V
ISY
No load
600
725
600
725
600
725
μA
SR
GBWP
AV = 1
CS
en
in p-p
in
VO = 20 V p-p,
fO = 10 Hz 2
AV = 1,
no oscillations
fO = 10 Hz3
fO = 1000 Hz3
0.1 Hz to 10 Hz
fO = 10 Hz
±12
7000
3000
±13
140
±12.6
±12
±12.6
±12
0.1
0.15
500
0.1
0.15
500
0.1
0.15
500
V/μs
kHz
123
135
123
135
123
135
dB
10
nF
22
11
15
0.6
nV/√Hz
nV/√Hz
pA p-p
pA/√Hz
10
22
11
15
0.6
10
36
18
1
Guaranteed by CMR test.
Guaranteed but not 100% tested.
3
Sample tested.
2
Rev. E | Page 3 of 16
22
11
15
0.6
36
18
OP400
@ VS = ±15 V, −55°C ≤ TA ≤ +125°C for OP400A, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Input Offset Voltage
Average Input Offset Voltage Drift
Input Offset Current
Input Bias Current
Large Signal Voltage Gain
Symbol
Input Voltage Range 1
Common-Mode Rejection
OUTPUT CHARACTERISTICS
Output Voltage Swing
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Capacitive Load Stability
IVR
CMR
VCM = ±12 V
VO
RL = 10 kΩ
PSRR
ISY
VO = 3 V to 18 V
No load
0.2
600
AV = 1, no oscillations
8
1
VOS
TCVOS
IOS
IB
AVO
Conditions
Min
VCM = 0 V
VCM = 0 V
VO = ±10 V, RL = 10 kΩ
RL = 2 kΩ
3000
1000
±12
±12
Typ
Max
Unit
70
0.3
0.1
1.3
9000
2300
±12.5
115
270
1.2
2.5
5.0
μV
μV/°C
nA
nA
V/mV
130
V
dB
3.2
775
μV/V
μA
±12.4
nF
Guaranteed by CMR test.
@ VS = ±15 V, −25°C ≤ TA ≤ +85°C for OP400E/F, 0°C ≤ TA ≤ 70°C for OP400G, −40°C ≤ TA ≤ +85°C for OP400H, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Input Offset Voltage
Average Input Offset
Voltage Drift
Input Offset Current
Input Bias Current
Large-Signal Voltage Gain
Input Voltage Range 1
Common-Mode Rejection
OUTPUT CHARACTERISTICS
Output Voltage Swing
POWER SUPPLY
Power Supply Rejection
Ratio
Supply Current per
Amplifier
DYNAMIC PERFORMANCE
Capacitive Load Stability
1
Symbol
Conditions
Min
VOS
TCVOS
IOS
IB
AVO
VCM = 0 V
E, F, G grades
H grade
VCM = 0 V
E, F, G grades
H grade
VCM = 0 V
RL = 10 kΩ
RL = 2 kΩ
OP400E
Typ
Max
Min
OP400F
Typ
Max
Min
OP400G/H
Typ
Max
Unit
60
0.3
220
1.2
80
0.3
350
2.0
110
0.6
400
2.5
μV
μV/°C
0.1
2.5
0.1
3.5
0.2
0.2
6.0
12.0
nA
nA
0.9
5.0
0.9
10.0
1.0
1.0
12.0
20.0
nA
nA
VCM = ±12 V
3000
1500
±12
115
10,000
2700
±12.5
135
2000
1000
±12
110
5000
2000
±12.5
135
2000
1000
±12
105
5000
2000
±12.5
130
V/mV
V/mV
V
dB
VO
RL = 10 kΩ
RL = 2 kΩ
±12
±11
±12.4
±12
±12
±11
±12.4
±12
±12
±11
±12.6
±12.2
V
V
PSRR
VS = ±3 V to
±18 V
No load
0.15
3.2
0.15
5.6
0.3
10.0
μV/V
600
775
600
775
600
775
μA
No oscillations
10
IVR
CMR
ISY
Guaranteed by CMR test.
Rev. E | Page 4 of 16
10
10
nF
OP400
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter
Supply Voltage
Differential Input Voltage
Input Voltage
Output Short-Circuit Duration
Storage Temperature Range
P, Y Packages
Lead Temperature (Soldering 60 sec)
Junction Temperature (TJ) Range
Operating Temperature Range
OP400A
OP400E, OP400F
OP400G
OP400H
Rating
±20 V
±30 V
Supply voltage
Continuous
−65°C to +150°C
300°C
−65°C to +150°C
−55°C to +125°C
−25°C to +85°C
0°C to 70°C
−40°C to +85°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Absolute maximum ratings apply to both dice and packaged
parts, unless otherwise noted.
THERMAL RESISTANCE
θJA is specified for worst-case mounting conditions, that is, θJA is
specified for device in socket for CERDIP and PDIP packages;
θJA is specified for device soldered to printed circuit board for
SOIC package.
Table 5. Thermal Resistance
Package Type
14-Pin Ceramic DIP (Y)
14-Pin Plastic DIP (P)
16-Pin SOIC (S)
ESD CAUTION
Rev. E | Page 5 of 16
θJA
94
76
88
θJC
10
33
23
Unit
°C/W
°C/W
°C/W
OP400
TYPICAL PERFORMANCE CHARACTERISTICS
3
1
0
1
2
3
100
90
80
–75
5
4
110
00304-007
INPUT OFFSET CURRENT (pA)
2
0
VS = ±15V
120
00304-004
CHANGE IN OFFSET VOLTAGE (μV)
TA = 25°C
VS = ±15V
–50
–25
0
25
50
75
100
125
TEMPERATURE (°C)
TIME (Minutes)
Figure 7. Input Offset Current vs. Temperature
Figure 4. Warmup Drift
1.1
70
VS = ±15V
1.0
INPUT BIAS CURRENT (nA)
50
40
30
0.8
0.7
00304-005
20
10
–75
0.9
–50
–25
0
25
50
75
100
0.6
–15
125
00304-008
INPUT OFFSET VOLTAGE (μV)
60
–10
–5
0
5
10
Figure 8. Input Bias Current vs. Common-Mode Voltage
Figure 5. Input Offset Voltage vs. Temperature
140
2.0
TA = 25°C
VS = ±15V
1.2
0.8
0.4
00304-006
INPUT BIAS CURRENT (nA)
1.6
–50
–25
0
25
50
75
100
120
100
80
60
40
20
0
125
00304-009
COMMON-MODE REJECTION (dB)
VS = ±15V
0
–75
15
COMMON-MODE VOLTAGE (V)
TEMPERATURE (°C)
1
10
100
1k
10k
FREQUENCY (Hz)
TEMPERATURE (°C)
Figure 9. Common-Mode Rejection vs. Frequency
Figure 6. Input Bias Current vs. Temperature
Rev. E | Page 6 of 16
100k
OP400
2.5
10
1
100
FOUR AMPLIFIERS
TA = 25°C
2.4
2.3
2.2
00304-013
10
00304-010
TOTAL SUPPLY CURRENT (mA)
NOISE VOLTAGE DENSITY (nV/ Hz)
100
2.1
±2
1k
±4
±6
±8
2.5
TOTAL SUPPLY CURRENT (mA)
800
600
400
200
±16
±18
±20
100
FOUR AMPLIFIERS
VS = ±15V
2.4
2.3
2.2
2.1
00304-011
10
±14
00304-014
TA = 25°C
VS = ±15V
–75
1k
–50
–25
0
25
50
75
100
125
150
TEMPERATURE (°C)
FREQUENCY (Hz)
Figure 14. Total Supply Current vs. Temperature
Figure 11. Current Noise Density vs. Frequency
0
2
4
6
8
120
100
80
POSITIVE
SUPPLY
60
40
20
0
0.1
10
TIME (Seconds)
NEGATIVE
SUPPLY
00304-015
POWER SUPPLY REJECTION (dB)
140
00304-012
CURRENT NOISE DENSITY (fA/ Hz)
1k
1
±12
Figure 13. Total Supply Current vs. Supply Voltage
Figure 10. Noise Voltage Density vs. Frequency
0
±10
SUPPLY VOLTAGE (V)
FREQUENCY (Hz)
1
10
100
1k
10k
FREQUENCY (Hz)
Figure 12. 0.1 Hz to 10 Hz Noise
Figure 15. Power Supply Rejection vs. Frequency
Rev. E | Page 7 of 16
100k
OP400
144
POWER SUPPLY REJECTION (dB)
VS = ±15V
TA = 25°C
VS = ±15V
80
142
AV = 1000
60
GAIN (dB)
140
138
AV = 100
40
AV = 10
20
136
AV = 1000
00304-016
134
–75
00304-019
0
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
1
150
10
100
1k
10k
FREQUENCY (Hz)
100k
1M
Figure 19. Closed-Loop Gain vs. Frequency
Figure 16. Power Supply Rejection vs. Temperature
5k
3k
2k
0
–75
00304-017
1k
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
TA = 25°C
VS = ±15V
25
20
15
10
5
00304-020
RL = 2kΩ
4k
OPEN-LOOP GAIN (V/mV)
OUTPUT SWING (V p-p AT 1% Distortion)
VS = ±15V
10
150
Figure 17. Open-Loop Gain vs. Temperature
90
20
135
0
180
1k
10k
FREQUENCY (Hz)
100k
1M
AV = 100
1
AV = 10
AV = 1
0.1
0.01
0.001
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency
000304-021
40
VOUT = 10V p-p
RL = 2kΩ
DISTORTION (%)
45
PHASE
PHASE SHIFT (Degrees)
GAIN
00304-018
OPEN-LOOP GAIN (dB)
0
100
100k
TA = 25°C
80
10
10k
VS = ±15V
10
100
60
1k
FREQUENCY (Hz)
Figure 20. Maximum Output Swing Frequency
TA = 25°C
VS = ±15V
120
100
100
1k
FREQUENCY (Hz)
Figure 21. Total Harmonic Distortion vs. Frequency
Rev. E | Page 8 of 16
10k
OP400
50
45
TA = 25°C
TA = 25°C
VS = ±15V
VS = ±15V
40
AV = +1
AV = +1
FALLING
OVERSHOOT (%)
35
30
25
RISING
20
15
5
0
0
0.5
1.0
1.5
2.0
CAPACITIVE LOAD (nF)
2.5
5V
3.0
Figure 22. Overshoot vs. Capacitive Load
Figure 25. Large Signal Transient Response
TA = 25°C
TA = 25°C
VS = ±15V
VS = ±15V
AV = +1
32
SINKING
30
28
0
1
2
3
TIME (Minutes)
4
20mV
5μs
5
Figure 23. Short Circuit vs. Time
00304-026
SOURCING
00304-023
SHORT-CIRCUIT CURRENT (mA)
34
100μs
00304-025
000304-022
10
Figure 26. Small Signal Transient Response
TA = 25°C
VS = ±15V
VIN = 20V p-p
130
TA = 25°C
VS = ±15V
AV = +1
120
110
90
10
100
1k
FREQUENCY (Hz)
10k
20mV
5μs
100k
Figure 27. Small Signal Transient Response, CLOAD = 1 nF
Figure 24. Channel Separation vs. Frequency
Rev. E | Page 9 of 16
00304-027
100
00304-024
CHANNEL SEPARATION (dB)
140
OP400
100Ω
10kΩ
–
–
eOUT (
nV ~
) 2 × en ( nV
) × 101
Hz =
Hz
Figure 28. Noise Test Schematic
–18V
14
13
12
11
10
9
8
V–
4
–
–
+
+
+
1–
3
2
V+
1
2
3
4
5
6
7
GND
00304-029
OP400
+
OP400
+
1/4
OP400
+
+
1/4
1/4
–
–
1/4
eOUT
OP400
+
TO SPECTRUM ANALYZER
+18V
Figure 29. Burn-In Circuit
Rev. E | Page 10 of 16
00304-028
–
OP400
APPLICATIONS
Total supply current can be reduced by connecting the inputs of
an unused amplifier to V−. This turns the amplifier off,
lowering the total supply current.
Table 6. Gain Bandwidth
Gain
5
10
100
1000
Bandwidth
150 kHz
67 kHz
7.5 kHz
500 Hz
+
+
VIN
DUAL LOW POWER INSTRUMENTATION
AMPLIFIER
+
–
A dual instrumentation amplifier that consumes less than
33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to
200 and is better than 14 bits in gains from 200 to 1000. CMRR
is above 115 dB (G = 1000). Offset voltage drift is typically
0.4 μV/°C over the military temperature range, which is
comparable to the best monolithic instrumentation amplifiers.
The bandwidth of the low power instrumentation amplifier is
a function of gain and is shown in Table 6.
The output signal is specified with respect to the reference
input, which is normally connected to analog ground. The
reference input can be used to offset the output from −10 V to
+10 V if required.
VOUT
1/4
OP400A
–
1/4
OP400A
–
REFERENCE
5kΩ
5kΩ
20kΩ
20kΩ
VOUT
RG
VIN
+
+
VIN
=5+
1/4
40,000
RG
VOUT
OP400A
+
–
–
1/4
OP400A
–
REFERENCE
5kΩ
5kΩ
20kΩ
20kΩ
RG
Figure 30. Dual Low Power Instrumentation Amplifier
Rev. E | Page 11 of 16
00304-030
The OP400 is inherently stable at all gains and is capable of
driving large capacitive loads without oscillating. Nonetheless,
good supply decoupling is highly recommended. Proper supply
decoupling reduces problems caused by supply line noise and
improves the capacitive load-driving capability of the OP400.
OP400
DIFFERENTIAL OUTPUT INSTRUMENTATION
AMPLIFIER
BIPOLAR CURRENT TRANSMITTER
In the circuit of Figure 31, which is an extension of the standard
three op amp instrumentation amplifier, the output current is
proportional to the differential input voltage. Maximum output
current is ±5 mA, with voltage compliance equal to ±10 V when
using ±15 V supplies. Output impedance of the current
transmitter exceeds 3 MΩ, and linearity is better than 16 bits
with gain set for a full-scale input of ±100 μV.
+
–
1/4
The output voltage swing of a single-ended instrumentation
amplifier is limited by the supplies, normally at ±15 V, to
a maximum of 24 V p-p. The differential output instrumentation amplifier shown in Figure 32 can provide an output voltage
swing of 48 V p-p when operated with ±15 V supplies. The
extended output swing is due to the opposite polarity of the
outputs. Both outputs swing 24 V p-p, but with opposite
polarity, for a total output voltage swing of 48 V p-p. The reference
input can be used to set a common-mode output voltage over the
range ±10 V. The PSRR of the amplifier is less than 1 μV/V with
CMRR (G = 1000) better than 115 dB. Offset voltage drift is
typically 0.4 μV/°C over the military temperature range.
25kΩ
OP400E
25kΩ
–
–
VOUT
1/4
200Ω
OP400E
25kΩ
IOUT
5mA
+
VIN
RG
25kΩ
1/4
25kΩ
OP400E
OP400E
–
+
IOUT
–
VIN
200Ω
00304-031
+
+
1/4
25kΩ
1 – 50,000
RG
Figure 31. Bipolar Current Transmitter
22pF
+
–
1/4
OP400A
25kΩ
–
25kΩ
+
25kΩ
1/4
OP400A
VIN
RG
–
25kΩ
22pF
–
1/4
+
25kΩ
25kΩ
OP400A
22pF
+
25kΩ
22pF
VIN
VOUT
=
50kΩ + R G
RG
25kΩ
–
VOUT
1/4
OP400A
REFERENCE
INPUT
+
Figure 32. Differential Output Instrumentation Amplifier
Rev. E | Page 12 of 16
00304-032
–
OP400
under 25 μV/mA. Line regulation is better than 15 μV/V,
and output voltage drift is under 20 μV/°C. Output voltage
noise from 0.1 Hz to 10 Hz is typically 75 μV p-p from the
10 V output and proportionately less from the 7.5 V, 5 V, and
2.5 V outputs.
MULTIPLE OUTPUT TRACKING VOLTAGE
REFERENCE
Figure 33 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V,
and 2.5 V for use as a system voltage reference. Maximum
output current from each reference is 5 mA with load regulation
10V
15V
10kΩ
22kΩ
1N4002
+
1/4
OP400A
1μF
10kΩ
2
REF 43
2.5V
REFERENCE
6
10kΩ
10kΩ
+
1/4
+
OP400A
4
–
10kΩ
2μF
10kΩ
+
1/4
OP400A
5V
–
10kΩ
1/4
OP400A
2.5V
–
00304-033
1μF
7.5V
–
Figure 33. Multiple Output Tracking Voltage Reference
Rev. E | Page 13 of 16
OP400
OUTLINE DIMENSIONS
8
1
0.310 (7.87)
0.220 (5.59)
9
16
7.60 (0.2992)
7.40 (0.2913)
7
1
0.100 (2.54) BSC
0.785 (19.94) MAX
0.200 (5.08)
MAX
0.060 (1.52)
0.015 (0.38)
0.150
(3.81)
MIN
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
1.27 (0.0500)
BSC
0.30 (0.0118)
0.10 (0.0039)
COPLANARITY
0.10
15°
0°
0.015 (0.38)
0.008 (0.20)
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
1
7
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210 (5.33)
MAX
0.015
(0.38)
MIN
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
SEATING
PLANE
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.005 (0.13)
MIN
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.430 (10.92)
MAX
070606-A
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
2.65 (0.1043)
2.35 (0.0925)
SEATING
PLANE
0.50 (0.0197)
0.25 (0.0098)
Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP]
(N-14)
[P-Suffix]
Dimensions shown in inches and (millimeters)
Rev. E | Page 14 of 16
45°
8°
0°
0.33 (0.0130)
0.20 (0.0079)
1.27 (0.0500)
0.40 (0.0157)
Figure 36. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (R-16)
[S-Suffix]
Dimensions shown in millimeters and (inches)
Figure 34. 14-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-14)
[Y-Suffix]
Dimensions shown in inches and (millimeters)
8
0.51 (0.0201)
0.31 (0.0122)
10.65 (0.4193)
10.00 (0.3937)
COMPLIANT TO JEDEC STANDARDS MS-013- AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
14
8
0.320 (8.13)
0.290 (7.37)
060606-A
14
PIN 1
10.50 (0.4134)
10.10 (0.3976)
0.098 (2.49) MAX
0.005 (0.13) MIN
OP400
ORDERING GUIDE
Model
OP400AY
OP400EY
OP400FY
OP400GP
OP400GPZ 1
OP400HP
OP400HPZ1
OP400GS
OP400GS-REEL
OP400GSZ1
OP400GSZ-REEL1
OP400HS
OP400HS-REEL
OP400HSZ1
OP400HSZ-REEL1
OP400GBC
1
Temperature Range
−55°C to +125°C
−25°C to +85°C
−25°C to +85°C
0°C to +70°C
0°C to +70°C
−40°C to +85°C
−40°C to +85°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
14-Lead CERDIP
14-Lead CERDIP
14-Lead CERDIP
14-Lead PDIP
14-Lead PDIP
14-Lead PDIP
14-Lead PDIP
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
16-Lead SOIC_W
Die
Package Option
Y-Suffix (Q-14)
Y-Suffix (Q-14)
Y-Suffix (Q-14)
P-Suffix (N-14)
P-Suffix (N-14)
P-Suffix (N-14)
P-Suffix (N-14)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
S-Suffix (RW-16)
Z = Pb-free part.
SMD PARTS AND EQUIVALENTS
SMD Part Number 1
5962-8777101M3A
5962-8777101MCA
1
Analog Devices Equivalent
OP400ATCMDA
OP400AYMDA
For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website.
Rev. E | Page 15 of 16
OP400
NOTES
©2007 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
C00304-0-1/07(E)
Rev. E | Page 16 of 16
Similar pages