Cypress MB9AF1A2LPMC1-G-SNE2 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

MB9A1A0N Series
32-bit ARM® Cortex®-M3
FM3 Microcontroller
The MB9A1A0N Series are highly integrated 32-bit microcontrollers that dedicated for embedded controllers with low-power
consumption mode and competitive cost.
The MB9A1A0N Series are based on the ARM® Cortex® -M3 Processor with on-chip Flash memory and SRAM, and have peripheral
functions such as Motor Control Timers, ADCs, DACs and Communication Interfaces (UART, CSIO, I 2C).
The products which are described in this data sheet are placed into TYPE7 product categories in FM3 Family Peripheral Manual.
Features
32-bit ARM® Cortex®-M3 Core
[CSIO]
 Processor version: r2p1
 Full duplex double buffer
 Up to 20 MHz Operation Frequency
 Built-in dedicated baud rate generator
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
 Overrun error detection function available
channel NMI (non-maskable interrupt) and
32 channels' peripheral interrupts and 8 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
management
[I2C]
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
On-chip Memories
A/D Converter (Max 16 channels)
[Flash memory]
[12-bit A/D Converter]
 Up to 128 Kbytes
 Successive Approximation type
 Read cycle: 0 wait-cycle
 Conversion time: Min 1.0 μs
 Security function for code protection
 Priority conversion available (priority at 2levels)
 Scanning conversion mode
[SRAM]
This series contains a total of up to 16 Kbyte on-chip SRAM
that is connected to System bus of Cortex-M3 core.
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16steps, for Priority conversion: 4steps)
 SRAM1: Up to 16 Kbytes
D/A Converter (Max 2 channels)
Multi-function Serial Interface (Max 8 channels)
 R-2R type
Operation mode is selectable from the followings for each
channel.
 10-bit resolution
 UART
Base Timer (Max 8 channels)
 CSIO
Operation mode is selectable from the followings for each
channel.
 I2 C
 16-bit PWM timer
[UART]
 16-bit PPG timer
 Full duplex double buffer
 16-/32-bit reload timer
 Selection with or without parity supported
 16-/32-bit PWC timer
 Built-in dedicated baud rate generator
 External clock available as a serial clock
 Various error detection functions available (parity errors,
framing errors, and overrun errors)
Cypress Semiconductor Corporation
Document Number: 002-05675 Rev.*C
•
198 Champion Court
•
San Jose , CA 95134-1709
•
408-943-2600
Revised June 12, 2017
MB9A1A0N Series
General-Purpose I/O Port
HDMI-CEC transmitter
This series can use its pins as general-purpose I/O ports when
they are not used for peripherals. Moreover, the port relocate
function is built in. It can set which I/O port the peripheral
function can be allocated to.
 Header block automatic transmission by judging Signal free
 Capable of pull-up control per pin
 Capable of reading pin level directly
 Built-in the port relocate function
 Up to 84 high-speed general-purpose I/O Ports@100 pin
Package
 Some ports are 5 V tolerant I/O
See List of Pin Functions and I/O Circuit Type to confirm the
corresponding pins.
Multi-function Timer
The Multi-function timer is composed of the following blocks.
 Generating status interrupt by detecting Arbitration lost
 Generating START, EOM, ACK automatically to output CEC
transmission by setting 1 byte data
 Generating transmission status interrupt when transmitting 1
block (1 byte data and EOM/ACK)
Real-time clock (RTC)
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
00 to 99.
 The interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute) is available. This function is
also available by specifying only Year, Month, Day, Hour or
Minute.
 16-bit free-run timer × 3ch.
 Timer interrupt function after set time or each set time.
 Input capture × 4ch.
 Capable of rewriting the time with continuing the time count.
 Output compare × 6ch.
 Leap year automatic count is available.
 A/D activation compare × 1ch.
 Waveform generator × 3ch.
 16-bit PPG timer × 3ch.
IGBT mode is contained
The following function can be used to achieve the motor
control.
 PWM signal output function
 DC chopper waveform output function
 Dead time function
External Interrupt Controller Unit
 Up to 16 external interrupt input pins
 Include one non-maskable interrupt (NMI) input pin
Watchdog Timer (2 channels)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This series consists of two different watchdogs, a Hardware
watchdog and a Software watchdog.
 A/D convertor activate function
The Hardware watchdog timer is clocked by the built-in
Low-speed CR oscillator. Therefore, the Hardware watchdog is
active in any low-power consumption mode except RTC, Stop,
Deep Standby RTC and Deep Standby Stop modes.
 DTIF (Motor emergency stop) interrupt function
Clock and Reset
HDMI-CEC/Remote Control Receiver (Up to 2
channels)
[Clocks]
HDMI- CEC receiver / Remote control receiver
 Main Clock:
4 MHz to 20 MHz
 Operating modes supporting the following standards can be
 Sub Clock:
32.768 kHz
 Input capture function
selected
 SIRCS
 NEC/Association for Electric Home Appliances
 HDMI-CEC
 Capable of adjusting detection timings for start bit and data
Selectable from five clock sources (2 external oscillators, 2
built-in CR oscillators, and Main PLL).
 Built-in High-speed CR Clock: 4 MHz
 Built-in Low-speed CR Clock: 100 kHz
 Main PLL Clock
bit
 Equipped with noise filter
Document Number: 002-05675 Rev.*C
Page 2 of 99
MB9A1A0N Series
[Resets]
Low-Power Consumption Mode
 Reset requests from INITX pin
Six low-power consumption modes supported.
 Power-on reset
 Software reset
 Watchdog timers reset
 Low-voltage detection reset
 Clock Super Visor reset
 Sleep
 Timer
 RTC
 Stop
 Deep Standby RTC
 Deep Standby Stop
Clock Super Visor (CSV)
The back up register is 16 bytes.
Clocks generated by built-in CR oscillators are used to
supervise abnormality of the external clocks.
Debug
 If external clock failure (clock stop) is detected, reset is
Serial Wire JTAG Debug Port (SWJ-DP)
asserted.
 If external frequency anomaly is detected, interrupt or reset is
asserted.
Power Supply
Wide range voltage: VCC = 1.8 V to 5.5 V
Low-Voltage Detector (LVD)
This Series includes 2-stage monitoring of voltage on the VCC.
When the voltage falls below the voltage that has been set,
Low-Voltage Detector generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
Document Number: 002-05675 Rev.*C
Page 3 of 99
MB9A1A0N Series
Contents
1. Product Lineup .................................................................................................................................................................. 6
2. Packages ........................................................................................................................................................................... 7
3. Pin Assignment ................................................................................................................................................................. 8
4. List of Pin Functions....................................................................................................................................................... 12
5. I/O Circuit Type................................................................................................................................................................ 31
6. Handling Precautions ..................................................................................................................................................... 35
6.1
Precautions for Product Design ................................................................................................................................... 35
6.2
Precautions for Package Mounting .............................................................................................................................. 36
6.3
Precautions for Use Environment ................................................................................................................................ 37
7. Handling Devices ............................................................................................................................................................ 38
8. Block Diagram ................................................................................................................................................................. 40
9. Memory Size .................................................................................................................................................................... 41
10. Memory Map .................................................................................................................................................................... 41
11. Pin Status in Each CPU State ........................................................................................................................................ 44
12. Electrical Characteristics ............................................................................................................................................... 52
12.1 Absolute Maximum Ratings ......................................................................................................................................... 52
12.2 Recommended Operating Conditions.......................................................................................................................... 53
12.3 DC Characteristics....................................................................................................................................................... 54
12.3.1 Current Rating .............................................................................................................................................................. 54
12.3.2 Pin Characteristics ....................................................................................................................................................... 57
12.4 AC Characteristics ....................................................................................................................................................... 58
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 58
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 59
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 59
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL) .................................................. 60
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock
of the Main PLL) ........................................................................................................................................................... 60
12.4.6 Reset Input Characteristics .......................................................................................................................................... 61
12.4.7 Power-on Reset Timing................................................................................................................................................ 61
12.4.8 Base Timer Input Timing .............................................................................................................................................. 62
12.4.9 CSIO/UART Timing ...................................................................................................................................................... 64
12.4.10 External Input Timing ................................................................................................................................................ 72
12.4.11 I2C Timing ................................................................................................................................................................. 73
12.4.12 JTAG Timing ............................................................................................................................................................. 74
12.5 12-bit A/D Converter .................................................................................................................................................... 75
12.6 10-bit D/A Converter .................................................................................................................................................... 78
12.7 Low-Voltage Detection Characteristics ........................................................................................................................ 79
12.7.1 Low-Voltage Detection Reset ....................................................................................................................................... 79
12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................... 80
12.8 Flash Memory Write/Erase Characteristics ................................................................................................................. 82
12.8.1 Write / Erase time......................................................................................................................................................... 82
12.8.2 Write cycles and data hold time ................................................................................................................................... 82
12.9 Return Time from Low-Power Consumption Mode ...................................................................................................... 83
12.9.1 Return Factor: Interrupt/WKUP .................................................................................................................................... 83
12.9.2 Return Factor: Reset .................................................................................................................................................... 85
13. Ordering Information ...................................................................................................................................................... 87
14. Package Dimensions ...................................................................................................................................................... 88
Document Number: 002-05675 Rev.*C
Page 4 of 99
MB9A1A0N Series
15. Errata................................................................................................................................................................................ 94
15.1 Part Numbers Affected ................................................................................................................................................ 94
15.2 Qualification Status...................................................................................................................................................... 94
15.3 Errata Summary .......................................................................................................................................................... 94
15.4 Errata Detail ................................................................................................................................................................ 94
15.4.1 HDMI-CEC polling message issue ............................................................................................................................... 94
15.4.2 RTC delay issue ........................................................................................................................................................... 95
Major Changes ...................................................................................................................................................................... 96
Document History ................................................................................................................................................................. 98
Sales, Solutions, and Legal Information ............................................................................................................................. 99
Document Number: 002-05675 Rev.*C
Page 5 of 99
MB9A1A0N Series
1. Product Lineup
Memory size
Product name
On-chip Flash memory
On-chip SRAM
SRAM1
MB9AF1A1L/M/N
64 Kbytes
12 Kbytes
MB9AF1A2L/M/N
128 Kbytes
16 Kbytes
Function
Product name
Pin count
MB9AF1A1L
MB9AF1A2L
64
CPU
Freq.
Power supply voltage range
Multi-function Serial Interface
(UART/CSIO/I2C)
Base Timer
(PWC/ Reload timer/PWM/PPG)
A/D activation
1ch.
compare
Input capture
4ch.
Free-run timer
3ch.
MFOutput
6ch.
Timer
compare
Waveform
3ch.
generator
PPG
3ch.
(IGBT mode)
HDMI-CEC/ Remote Control
Receiver
Real-time clock (RTC)
Watchdog timer
External Interrupts
General-purpose I/O ports
12-bit A/D converter
10-bit D/A converter
CSV (Clock Super Visor)
LVD (Low-Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
MB9AF1A1M
MB9AF1A2M
80
Cortex-M3
20 MHz
1.8 V to 5.5 V
MB9AF1A1N
MB9AF1A2N
100
8ch. (Max)
8ch. (Max)
1 unit (Max)
2ch. (Max)
8 pins (Max)+ NMI × 1
52 pins (Max)
9ch. (1 unit)
1 unit
1ch. (SW) + 1ch. (HW)
11 pins (Max)+ NMI × 1
67 pins (Max)
12ch. (1 unit)
2ch. (Max)
Yes
2ch.
4 MHz
100 kHz
SWJ-DP
16 pins (Max)+ NMI × 1
84 pins (Max)
16ch. (1 unit)
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the I/O port according to your function use.
See Electrical Characteristics 12.4 AC Characteristics 12.4.3 Built-in CR Oscillation Characteristics for accuracy of built-in CR.
Document Number: 002-05675 Rev.*C
Page 6 of 99
MB9A1A0N Series
2. Packages
Product name
Package
MB9AF1A1L
MB9AF1A2L
MB9AF1A1M
MB9AF1A2M
MB9AF1A1N
MB9AF1A2N
LQD064 (0.5mm pitch)

LQFP:
LQG064 (0.65mm pitch)

LQFP:
LQH080 (0.5mm pitch)
-

LQFP:
LQJ080 (0.65mm pitch)
-

-
LQFP:
LQI100 (0.5mm pitch)
-
-

QFP:
PQH100 (0.65mm pitch)
-
-

LQFP:
-
-
-
-
: Supported
Note:
−
See Package Dimensions for detailed information on each package.
Document Number: 002-05675 Rev.*C
Page 7 of 99
MB9A1A0N Series
3. Pin Assignment
LQD064/LQG064
VSS
P82 / SCK7_2
P81 / SOT7_2
P80 / SIN7_2
P60 / SIN5_0 / TIOA2_2 / INT15_1 / WKUP3 / CEC1
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P62 / SCK5_0 / ADTG_3
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P0C / SCK4_0 / TIOA6_1
P0B / SOT4_0 / TIOB6_1
P0A / SIN4_0 / INT00_2
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
(TOP VIEW)
VCC
1
48
P21 / SIN0_0 / INT06_1 / WKUP2
P50 / SIN3_1 / INT00_0
2
47
P22 / SOT0_0 / TIOB7_1
P51 / SOT3_1 / INT01_0
3
46
P23 / SCK0_0 / TIOA7_1
P52 / SCK3_1 / INT02_0
4
45
P19 / AN09 / SCK2_2
P30 / TIOB0_1 / INT03_2
5
44
P18 / AN08 / SOT2_2
P31 / SCK6_1 / TIOB1_1 / INT04_2
6
43
AVSS
P32 / SOT6_1 / TIOB2_1 / INT05_2
7
42
AVRH
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
8
41
AVCC
P39 / DTTI0X_0 / ADTG_2
9
40
P17 / AN07 / SIN2_2 / INT04_1
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
10
39
P15 / AN05 / IC03_2
P3B / TIOA1_1 / RTO01_0
11
38
P14 / AN04 / INT03_1 / IC02_2
P3C / TIOA2_1 / RTO02_0
12
37
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3D / TIOA3_1 / RTO03_0
13
36
P12 / AN02 / SOT1_1 / IC00_2
P3E / TIOA4_1 / RTO04_0
14
35
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / WKUP1
P3F / TIOA5_1 / RTO05_0
15
34
P10 / AN00
VSS
16
33
VCC
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C
VCC
P46 / X0A
P47 / X1A
INITX
P49 / TIOB0_0
P4A / TIOB1_0
P4B / TIOB2_0 / IGTRG
P4C / SCK7_1 / TIOB3_0 / CEC0
P4D / SOT7_1 / TIOB4_0 / DA0
P4E / SIN7_1 / TIOB5_0 / INT06_2 / DA1
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
LQFP - 64
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05675 Rev.*C
Page 8 of 99
MB9A1A0N Series
LQH080/LQJ080
VSS
P82 / SCK7_2
P81 / SOT7_2
P80 / SIN7_2
P60 / SIN5_0 / TIOA2_2 / INT15_1 / WKUP3 / CEC1
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P62 / SCK5_0 / ADTG_3
P63 / INT03_0
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P0E / CTS4_0 / TIOB3_2
P0D / RTS4_0 / TIOA3_2
P0C / SCK4_0 / TIOA6_1
P0B / SOT4_0 / TIOB6_1
P0A / SIN4_0 / INT00_2
P07 / ADTG_0
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
(TOP VIEW)
VCC
1
60
P20 / INT05_0 / CROUT_0
P50 / SIN3_1 / INT00_0
2
59
P21 / SIN0_0 / INT06_1 / WKUP2
P51 / SOT3_1 / INT01_0
3
58
P22 / SOT0_0 / TIOB7_1
P52 / SCK3_1 / INT02_0
4
57
P23 / SCK0_0 / TIOA7_1
P53 / SIN6_0 / TIOA1_2 / INT07_2
5
56
P1B / AN11 / SOT4_1 / IC01_1
P54 / SOT6_0 / TIOB1_2
6
55
P1A / AN10 / SIN4_1 / INT05_1 / IC00_1
P55 / SCK6_0 / ADTG_1
7
54
P19 / AN09 / SCK2_2
P56 / INT08_2
8
53
P18 / AN08 / SOT2_2
P30 / TIOB0_1 / INT03_2
9
52
AVSS
P31 / SCK6_1 / TIOB1_1 / INT04_2
10
51
AVRH
P32 / SOT6_1 / TIOB2_1 / INT05_2
11
50
AVCC
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
12
49
P17 / AN07 / SIN2_2 / INT04_1
P39 / DTTI0X_0 / ADTG_2
13
48
P16 / AN06 / SCK0_1
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
14
47
P15 / AN05 / SOT0_1 / IC03_2
P3B / TIOA1_1 / RTO01_0
15
46
P14 / AN04 / SIN0_1 / INT03_1 / IC02_2
P3C / TIOA2_1 / RTO02_0
16
45
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3D / TIOA3_1 / RTO03_0
17
44
P12 / AN02 / SOT1_1 / IC00_2
P3E / TIOA4_1 / RTO04_0
18
43
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / WKUP1
P3F / TIOA5_1 / RTO05_0
19
42
P10 / AN00
VSS
20
41
VCC
32
33
34
35
36
37
38
39
40
P4C / SCK7_1 / TIOB3_0 / CEC0
P4D / SOT7_1 / TIOB4_0 / DA0
P4E / SIN7_1 / TIOB5_0 / INT06_2 / DA1
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
28
INITX
P4B / TIOB2_0 / IGTRG
27
P47 / X1A
31
26
P46 / X0A
P4A / SCK3_2 / TIOB1_0
25
VCC
30
24
29
23
C
VSS
P48 / SIN3_2 / INT14_1
22
P45 / TIOA5_0
P49 / SOT3_2 / TIOB0_0
21
P44 / TIOA4_0
LQFP - 80
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05675 Rev.*C
Page 9 of 99
MB9A1A0N Series
LQI100
P82 / SCK7_2
P81 / SOT7_2
P80 / SIN7_2
P60 / SIN5_0 / TIOA2_2 / INT15_1 / WKUP3 / CEC1
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P62 / SCK5_0 / ADTG_3
P63 / INT03_0
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P0E / CTS4_0 / TIOB3_2
P0D / RTS4_0 / TIOA3_2
P0C / SCK4_0 / TIOA6_1
P0B / SOT4_0 / TIOB6_1
P0A / SIN4_0 / INT00_2
P09 / RTS4_2 / TIOB0_2
P08 / CTS4_2 / TIOA0_2
P07 / SCK4_2 / ADTG_0
P06 / SOT4_2 / TIOB5_2 / INT01_1
P05 / SIN4_2 / TIOA5_2 / INT00_1
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
VCC
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
100 VSS
(TOP VIEW)
VCC
1
75
VSS
P50 / SIN3_1 / INT00_0
2
74
P20 / INT05_0 / CROUT_0
P51 / SOT3_1 / INT01_0
3
73
P21 / SIN0_0 / INT06_1 / WKUP2
P52 / SCK3_1 / INT02_0
4
72
P22 / SOT0_0 / TIOB7_1
P53 / SIN6_0 / TIOA1_2 / INT07_2
5
71
P23 / SCK0_0 / TIOA7_1 / RTO00_1
P54 / SOT6_0 / TIOB1_2
6
70
P1F / AN15 / FRCK0_1 / ADTG_5
P55 / SCK6_0 / ADTG_1
7
69
P1E / AN14 / RTS4_1 / DTTI0X_1
P56 / INT08_2
8
68
P1D / AN13 / CTS4_1 / IC03_1
P30 / TIOB0_1 / INT03_2
9
67
P1C / AN12 / SCK4_1 / IC02_1
P31 / SCK6_1 / TIOB1_1 / INT04_2
10
66
P1B / AN11 / SOT4_1 / IC01_1
P32 / SOT6_1 / TIOB2_1 / INT05_2
11
65
P1A / AN10 / SIN4_1 / INT05_1 / IC00_1
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
12
64
P19 / AN09 / SCK2_2
P34 / TIOB4_1 / FRCK0_0
13
63
P18 / AN08 / SOT2_2
P35 / TIOB5_1 / INT08_1 / IC03_0
14
62
AVSS
LQFP - 100
P36 / SIN5_2 / INT09_1 / IC02_0
15
61
AVRH
P37 / SOT5_2 / INT10_1 / IC01_0
16
60
AVCC
P38 / SCK5_2 / INT11_1 / IC00_0
17
59
P17 / AN07 / SIN2_2 / INT04_1
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
P46 / X0A
P47 / X1A
INITX
P48 / SIN3_2 / INT14_1
P49 / SOT3_2 / TIOB0_0
P4A / SCK3_2 / TIOB1_0
P4B / TIOB2_0 / IGTRG
P4C / SCK7_1 / TIOB3_0 / CEC0
P4D / SOT7_1 / TIOB4_0 / DA0
P4E / SIN7_1 / TIOB5_0 / INT06_2 / DA1
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
VCC
35
51
VCC
25
34
P10 / AN00
VSS
33
52
C
24
VSS
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / WKUP1
P3F / TIOA5_1 / RTO05_0
32
P12 / AN02 / SOT1_1 / IC00_2
53
P45 / TIOA5_0
54
23
31
22
P3E / TIOA4_1 / RTO04_0
P44 / TIOA4_0
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3D / TIOA3_1 / RTO03_0
30
55
29
21
P42 / TIOA2_0
P14 / AN04 / SIN0_1 / INT03_1 / IC02_2
P3C / TIOA2_1 / RTO02_0
P43 / TIOA3_0 / ADTG_7
56
28
20
P41 / TIOA1_0 / INT13_1
P15 / AN05 / SOT0_1 / IC03_2
P3B / TIOA1_1 / RTO01_0
27
P16 / AN06 / SCK0_1
57
26
58
19
VCC
18
P40 / TIOA0_0 / INT12_1
P39 / DTTI0X_0 / ADTG_2
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05675 Rev.*C
Page 10 of 99
MB9A1A0N Series
PQH100
P50 / SIN3_1 / INT00_0
VCC
VSS
P82 / SCK7_2
P81 / SOT7_2
P80 / SIN7_2
P60 / SIN5_0 / TIOA2_2 / INT15_1 / WKUP3 / CEC1
P61 / SOT5_0 / TIOB2_2 / DTTI0X_2
P62 / SCK5_0 / ADTG_3
P63 / INT03_0
P0F / NMIX / CROUT_1 / RTCCO_0 / SUBOUT_0 / WKUP0
P0E / CTS4_0 / TIOB3_2
P0D / RTS4_0 / TIOA3_2
P0C / SCK4_0 / TIOA6_1
P0B / SOT4_0 / TIOB6_1
P0A / SIN4_0 / INT00_2
P09 / RTS4_2 / TIOB0_2
P08 / CTS4_2 / TIOA0_2
P07 / SCK4_2 / ADTG_0
P06 / SOT4_2 / TIOB5_2 / INT01_1
P05 / SIN4_2 / TIOA5_2 / INT00_1
P04 / TDO / SWO
P03 / TMS / SWDIO
P02 / TDI
P01 / TCK / SWCLK
P00 / TRSTX
VCC
VSS
P20 / INT05_0 / CROUT_0
P21 / SIN0_0 / INT06_1 / WKUP2
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
(TOP VIEW)
P51 / SOT3_1 / INT01_0
81
50
P22 / SOT0_0 / TIOB7_1
P52 / SCK3_1 / INT02_0
82
49
P23 / SCK0_0 / TIOA7_1 / RTO00_1
P53 / SIN6_0 / TIOA1_2 / INT07_2
83
48
P1F / AN15 / FRCK0_1 / ADTG_5
P54 / SOT6_0 / TIOB1_2
84
47
P1E / AN14 / RTS4_1 / DTTI0X_1
P55 / SCK6_0 / ADTG_1
85
46
P1D / AN13 / CTS4_1 / IC03_1
P56 / INT08_2
86
45
P1C / AN12 / SCK4_1 / IC02_1
P30 / TIOB0_1 / INT03_2
87
44
P1B / AN11 / SOT4_1 / IC01_1
P31 / SCK6_1 / TIOB1_1 / INT04_2
88
43
P1A / AN10 / SIN4_1 / INT05_1 / IC00_1
P32 / SOT6_1 / TIOB2_1 / INT05_2
89
42
P19 / AN09 / SCK2_2
P33 / SIN6_1 / TIOB3_1 / INT04_0 / ADTG_6
90
41
P18 / AN08 / SOT2_2
P34 / TIOB4_1 / FRCK0_0
91
40
AVSS
P35 / TIOB5_1 / INT08_1 / IC03_0
92
39
AVRH
P36 / SIN5_2 / INT09_1 / IC02_0
93
38
AVCC
P37 / SOT5_2 / INT10_1 / IC01_0
94
37
P17 / AN07 / SIN2_2 / INT04_1
P38 / SCK5_2 / INT11_1 / IC00_0
95
36
P16 / AN06 / SCK0_1
P39 / DTTI0X_0 / ADTG_2
96
35
P15 / AN05 / SOT0_1 / IC03_2
P3A / TIOA0_1 / RTO00_0 / RTCCO_2 / SUBOUT_2
97
34
P14 / AN04 / SIN0_1 / INT03_1 / IC02_2
P3B / TIOA1_1 / RTO01_0
98
33
P13 / AN03 / SCK1_1 / IC01_2 / RTCCO_1 / SUBOUT_1
P3C / TIOA2_1 / RTO02_0
99
32
P12 / AN02 / SOT1_1 / IC00_2
P3D / TIOA3_1 / RTO03_0 100
31
P11 / AN01 / SIN1_1 / INT02_1 / FRCK0_2 / WKUP1
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
P40 / TIOA0_0 / INT12_1
P41 / TIOA1_0 / INT13_1
P42 / TIOA2_0
P43 / TIOA3_0 / ADTG_7
P44 / TIOA4_0
P45 / TIOA5_0
C
VSS
VCC
P46 / X0A
P47 / X1A
INITX
P48 / SIN3_2 / INT14_1
P49 / SOT3_2 / TIOB0_0
P4A / SCK3_2 / TIOB1_0
P4B / TIOB2_0 / IGTRG
P4C / SCK7_1 / TIOB3_0 / CEC0
P4D / SOT7_1 / TIOB4_0 / DA0
P4E / SIN7_1 / TIOB5_0 / INT06_2 / DA1
PE0 / MD1
MD0
PE2 / X0
PE3 / X1
VSS
30
4
29
3
VSS
VCC
VCC
2
P3F / TIOA5_1 / RTO05_0
P10 / AN00
1
P3E / TIOA4_1 / RTO04_0
QFP - 100
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05675 Rev.*C
Page 11 of 99
MB9A1A0N Series
4. List of Pin Functions
List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
LQFP-64
1
Pin No
LQFP-80
LQFP-100
1
1
QFP-100
79
Pin name
VCC
I/O circuit
type
Pin state
type
-
P50
2
2
2
80
INT00_0
E
F
E
F
E
F
E
F
E
H
E
H
E
O
E
F
E
F
E
F
SIN3_1
P51
3
3
3
81
INT01_0
SOT3_1
(SDA3_1)
P52
4
4
4
82
INT02_0
SCK3_1
(SCL3_1)
P53
-
5
5
83
SIN6_0
TIOA1_2
INT07_2
P54
-
6
6
84
SOT6_0
(SDA6_0)
TIOB1_2
P55
-
7
7
85
SCK6_0
(SCL6_0)
ADTG_1
-
8
8
86
5
9
9
87
P56
INT08_2
P30
TIOB0_1
INT03_2
P31
TIOB1_1
6
10
10
88
SCK6_1
(SCL6_1)
INT04_2
P32
TIOB2_1
7
11
11
89
SOT6_1
(SDA6_1)
INT05_2
Document Number: 002-05675 Rev.*C
Page 12 of 99
MB9A1A0N Series
Pin No
LQFP-80
LQFP-100
LQFP-64
Pin name
QFP-100
I/O circuit
type
Pin state
type
P33
INT04_0
8
12
12
90
TIOB3_1
E
F
E
H
E
F
E
F
E
F
E
F
E
H
E
H
E
H
E
H
SIN6_1
ADTG_6
P34
-
-
13
91
FRCK0_0
TIOB4_1
P35
-
-
14
92
IC03_0
TIOB5_1
INT08_1
P36
-
-
15
93
IC02_0
SIN5_2
INT09_1
P37
IC01_0
-
-
16
94
SOT5_2
(SDA5_2)
INT10_1
P38
IC00_0
-
-
17
95
SCK5_2
(SCL5_2)
INT11_1
P39
9
13
18
96
DTTI0X_0
ADTG_2
P3A
RTO00_0
(PPG00_0)
10
14
19
97
TIOA0_1
RTCCO_2
SUBOUT_2
P3B
11
15
20
98
RTO01_0
(PPG00_0)
TIOA1_1
P3C
12
16
21
99
RTO02_0
(PPG02_0)
TIOA2_1
Document Number: 002-05675 Rev.*C
Page 13 of 99
MB9A1A0N Series
Pin No
LQFP-80
LQFP-100
LQFP-64
Pin name
QFP-100
I/O circuit
type
Pin state
type
P3D
13
17
22
100
RTO03_0
(PPG02_0)
E
H
E
H
E
H
TIOA3_1
P3E
14
18
23
1
RTO04_0
(PPG04_0)
TIOA4_1
P3F
15
19
24
2
RTO05_0
(PPG04_0)
TIOA5_1
16
20
25
3
VSS
-
-
-
26
4
VCC
-
P40
-
-
27
5
TIOA0_0
E
F
E
F
E
H
E
H
E
H
E
H
INT12_1
P41
-
-
28
6
TIOA1_0
INT13_1
-
-
29
7
P42
TIOA2_0
P43
-
-
30
8
TIOA3_0
ADTG_7
P44
-
21
31
9
-
22
32
10
17
23
33
11
C
-
-
24
34
12
VSS
-
18
25
35
13
VCC
-
19
26
36
14
20
27
37
15
21
28
38
16
-
29
39
17
TIOA4_0
P45
TIOA5_0
P46
X0A
P47
X1A
INITX
D
M
D
N
B
C
E
F
P48
INT14_1
SIN3_2
Document Number: 002-05675 Rev.*C
Page 14 of 99
MB9A1A0N Series
LQFP-64
Pin No
LQFP-80
LQFP-100
Pin name
QFP-100
I/O circuit
type
Pin state
type
P49
22
30
40
18
TIOB0_0
E
H
E
H
E
H
G
Q
J
T
J
S
C
P
H
D
A
A
A
B
SOT3_2
(SDA3_2)
-
P4A
23
31
41
19
TIOB1_0
SCK3_2
(SCL3_2)
-
P4B
24
32
42
20
TIOB2_0
IGTRG
P4C
TIOB3_0
25
33
43
21
SCK7_1
(SCL7_1)
CEC0
P4D
TIOB4_0
26
34
44
22
SOT7_1
(SDA7_1)
DA0
P4E
TIOB5_0
27
35
45
23
INT06_2
SIN7_1
DA1
PE0
28
36
46
24
29
37
47
25
30
38
48
26
31
39
49
27
32
40
50
28
VSS
-
33
41
51
29
VCC
-
34
42
52
30
MD1
MD0
PE2
X0
PE3
X1
P10
AN00
F
J
F
L
P11
AN01
35
43
53
31
SIN1_1
INT02_1
FRCK0_2
WKUP1
Document Number: 002-05675 Rev.*C
Page 15 of 99
MB9A1A0N Series
LQFP-64
Pin No
LQFP-80
LQFP-100
Pin name
QFP-100
I/O circuit
type
Pin state
type
P12
AN02
36
44
54
32
SOT1_1
(SDA1_1)
F
J
F
J
F
K
F
J
F
J
F
K
IC00_2
P13
AN03
37
45
55
33
SCK1_1
(SCL1_1)
IC01_2
RTCCO_1
SUBOUT_1
P14
38
AN04
46
56
34
IC02_2
INT03_1
-
SIN0_1
P15
39
AN05
47
57
35
IC03_2
SOT0_1
(SDA0_1)
-
P16
-
48
58
36
AN06
SCK0_1
(SCL0_1)
P17
40
49
59
37
AN07
SIN2_2
INT04_1
41
50
60
38
AVCC
-
42
51
61
39
AVRH
-
43
52
62
40
AVSS
-
P18
44
53
63
41
AN08
F
J
F
J
SOT2_2
(SDA2_2)
P19
45
54
64
42
AN09
SCK2_2
(SCL2_2)
Document Number: 002-05675 Rev.*C
Page 16 of 99
MB9A1A0N Series
Pin No
LQFP-80
LQFP-100
LQFP-64
Pin name
QFP-100
I/O circuit
type
Pin state
type
P1A
AN10
-
55
65
43
SIN4_1
F
K
F
J
F
J
F
J
F
J
F
J
E
H
E
H
E
G
E
F
INT05_1
IC00_1
P1B
AN11
-
56
66
44
SOT4_1
(SDA4_1)
IC01_1
P1C
AN12
-
-
67
45
SCK4_1
(SCL4_1)
IC02_1
P1D
-
-
68
46
AN13
CTS4_1
IC03_1
P1E
-
-
69
47
AN14
RTS4_1
DTTI0X_1
P1F
-
-
70
48
AN15
ADTG_5
FRCK0_1
P23
46
57
71
49
SCK0_0
(SCL0_0)
TIOA7_1
-
-
RTO00_1
P22
47
58
72
50
SOT0_0
(SDA0_0)
TIOB7_1
P21
48
59
73
51
SIN0_0
INT06_1
WKUP2
P20
-
60
74
52
INT05_0
CROUT_0
Document Number: 002-05675 Rev.*C
Page 17 of 99
MB9A1A0N Series
-
Pin No
LQFP-80
LQFP-100
75
76
QFP-100
53
54
49
61
77
55
50
62
78
56
51
63
79
57
52
64
80
58
53
65
81
59
-
-
82
60
-
-
83
61
84
62
LQFP-64
66
-
-
85
63
-
-
86
64
54
67
87
65
55
68
88
66
56
69
89
67
Document Number: 002-05675 Rev.*C
I/O circuit
type
Pin name
VSS
VCC
P00
TRSTX
P01
TCK
SWCLK
P02
TDI
P03
TMS
SWDIO
P04
TDO
SWO
P05
TIOA5_2
SIN4_2
INT00_1
P06
TIOB5_2
SOT4_2
(SDA4_2)
INT01_1
P07
ADTG_0
SCK4_2
(SCL4_2)
P08
TIOA0_2
CTS4_2
P09
TIOB0_2
RTS4_2
P0A
SIN4_0
INT00_2
P0B
SOT4_0
(SDA4_0)
TIOB6_1
P0C
SCK4_0
(SCL4_0)
TIOA6_1
Pin state
type
E
E
E
E
E
E
E
E
E
E
E
F
E
F
E
H
E
H
E
H
G
F
G
H
G
H
Page 18 of 99
MB9A1A0N Series
LQFP-64
Pin No
LQFP-80
LQFP-100
I/O circuit
type
Pin name
QFP-100
Pin state
type
P0D
-
70
90
68
RTS4_0
E
H
E
H
E
I
E
O
E
H
E
H
G
R
G
H
G
H
H
TIOA3_2
P0E
-
71
91
69
CTS4_0
TIOB3_2
P0F
NMIX
57
72
92
70
CROUT_1
RTCCO_0
SUBOUT_0
WKUP0
-
73
93
71
P63
INT03_0
P62
58
74
94
72
SCK5_0
(SCL5_0)
ADTG_3
P61
59
75
95
73
SOT5_0
(SDA5_0)
TIOB2_2
DTTI0X_2
P60
SIN5_0
60
76
96
74
TIOA2_2
INT15_1
WKUP3
CEC1
61
77
97
75
P80
SIN7_2
P81
62
78
98
76
SOT7_2
(SDA7_2)
P82
63
79
99
77
SCK7_2
(SCL7_2)
G
64
80
100
78
VSS
-
Document Number: 002-05675 Rev.*C
Page 19 of 99
MB9A1A0N Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin
function
ADC
ADTG_0
-
Pin No
LQFP-80
LQFP-100
66
84
ADTG_1
-
7
7
85
ADTG_2
9
13
18
96
58
74
94
72
-
-
-
-
ADTG_5
-
-
70
48
ADTG_6
8
12
12
90
ADTG_7
-
-
30
8
ADTG_8
-
-
-
-
AN00
34
42
52
30
AN01
35
43
53
31
AN02
36
44
54
32
AN03
37
45
55
33
AN04
38
46
56
34
AN05
39
47
57
35
AN06
-
48
58
36
AN07
40
49
59
37
44
53
63
41
AN09
45
54
64
42
AN10
-
55
65
43
AN11
-
56
66
44
AN12
-
-
67
45
AN13
-
-
68
46
AN14
-
-
69
47
AN15
-
-
70
48
Pin name
Function description
ADTG_3
ADTG_4
AN08
A/D converter external trigger input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Document Number: 002-05675 Rev.*C
LQFP-64
QFP-100
62
Page 20 of 99
MB9A1A0N Series
Pin
function
Base Timer
0
Base Timer
1
Base Timer
2
Base Timer
3
Base Timer
4
Base Timer
5
Base Timer
6
Base Timer
7
Pin name
TIOA0_0
TIOA0_1
TIOA0_2
TIOB0_0
TIOB0_1
TIOB0_2
TIOA1_0
TIOA1_1
TIOA1_2
TIOB1_0
TIOB1_1
TIOB1_2
TIOA2_0
TIOA2_1
TIOA2_2
TIOB2_0
TIOB2_1
TIOB2_2
TIOA3_0
TIOA3_1
TIOA3_2
TIOB3_0
TIOB3_1
TIOB3_2
TIOA4_0
TIOA4_1
TIOA4_2
TIOB4_0
TIOB4_1
TIOB4_2
TIOA5_0
TIOA5_1
TIOA5_2
TIOB5_0
TIOB5_1
TIOB5_2
Function description
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
Base timer ch.5 TIOB pin
10
22
5
11
23
6
12
60
24
7
59
13
25
8
14
26
15
27
-
Pin No
LQFP-80
LQFP-100
27
14
19
85
30
40
9
9
86
28
15
20
5
5
31
41
10
10
6
6
29
16
21
76
96
32
42
11
11
75
95
30
17
22
70
90
33
43
12
12
71
91
21
31
18
23
34
44
13
22
32
19
24
82
35
45
14
83
5
97
63
18
87
64
6
98
83
19
88
84
7
99
74
20
89
73
8
100
68
21
90
69
9
1
22
91
10
2
60
23
92
61
LQFP-64
QFP-100
TIOA6_1
Base timer ch.6 TIOA pin
56
69
89
67
TIOB6_1
Base timer ch.6 TIOB pin
55
68
88
66
46
47
-
57
58
-
71
72
-
49
50
-
TIOA7_0
TIOA7_1
TIOA7_2
TIOB7_0
TIOB7_1
TIOB7_2
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Document Number: 002-05675 Rev.*C
Page 21 of 99
MB9A1A0N Series
Pin
function
Debugger
Pin name
SWCLK
Pin No
LQFP-100
78
LQFP-64
50
LQFP-80
62
QFP-100
56
52
64
80
58
SWO
Serial wire debug interface clock input pin
Serial wire debug interface data input /
output pin
Serial wire viewer output pin
53
65
81
59
TRSTX
JTAG reset input pin
49
61
77
55
TCK
JTAG test clock input pin
50
62
78
56
TDI
JTAG test data input pin
51
63
79
57
TMS
JTAG test mode state input/output pin
52
64
80
58
TDO
JTAG debug data output pin
53
65
81
59
2
2
2
80
-
-
82
60
54
67
87
65
3
3
3
81
-
-
83
61
4
4
4
82
35
43
53
31
-
73
93
71
38
46
56
34
INT03_2
5
9
9
87
INT04_0
8
12
12
90
40
49
59
37
6
10
10
88
-
60
74
52
-
55
65
43
INT05_2
7
11
11
89
INT06_1
48
59
73
51
27
35
45
23
-
5
5
83
-
-
14
92
-
8
8
86
SWDIO
External
Interrupt
Function description
INT00_0
INT00_1
External interrupt request 00 input pin
INT00_2
INT01_0
INT01_1
INT02_0
INT02_1
External interrupt request 01 input pin
External interrupt request 02 input pin
INT03_0
INT03_1
INT04_1
External interrupt request 03 input pin
External interrupt request 04 input pin
INT04_2
INT05_0
INT05_1
INT06_2
INT07_2
INT08_1
INT08_2
External interrupt request 05 input pin
External interrupt request 06 input pin
External interrupt request 07 input pin
External interrupt request 08 input pin
INT09_1
External interrupt request 09 input pin
-
-
15
93
INT10_1
External interrupt request 10 input pin
-
-
16
94
INT11_1
External interrupt request 11 input pin
-
-
17
95
INT12_1
External interrupt request 12 input pin
-
-
27
5
INT13_1
External interrupt request 13 input pin
-
-
28
6
INT14_1
External interrupt request 14 input pin
-
29
39
17
INT15_1
External interrupt request 15 input pin
60
76
96
74
NMIX
Non-Maskable Interrupt input pin
57
72
92
70
Document Number: 002-05675 Rev.*C
Page 22 of 99
MB9A1A0N Series
Pin
function
GPIO
P00
LQFP-64
49
Pin No
LQFP-80
LQFP-100
61
77
QFP-100
55
P01
50
62
78
56
P02
51
63
79
57
P03
52
64
80
58
P04
53
65
81
59
P05
-
-
82
60
P06
-
-
83
61
P07
-
66
84
62
Pin name
P08
Function description
General-purpose I/O port 0
-
-
85
63
P09
-
-
86
64
P0A
54
67
87
65
P0B
55
68
88
66
P0C
56
69
89
67
P0D
-
70
90
68
P0E
-
71
91
69
P0F
57
72
92
70
P10
34
42
52
30
P11
35
43
53
31
P12
36
44
54
32
P13
37
45
55
33
P14
38
46
56
34
P15
39
47
57
35
P16
-
48
58
36
P17
40
49
59
37
44
53
63
41
P19
45
54
64
42
P1A
-
55
65
43
P1B
-
56
66
44
P1C
-
-
67
45
P1D
-
-
68
46
P1E
-
-
69
47
P1F
-
-
70
48
P20
-
60
74
52
48
59
73
51
47
58
72
50
46
57
71
49
P18
P21
P22
General-purpose I/O port 1
General-purpose I/O port 2
P23
Document Number: 002-05675 Rev.*C
Page 23 of 99
MB9A1A0N Series
Pin
function
GPIO
Pin name
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P3A
P3B
P3C
P3D
P3E
P3F
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P53
P54
P55
P56
P60
P61
P62
P63
P80
P81
P82
PE0
PE2
PE3
Function description
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
General-purpose I/O port 8
General-purpose I/O port E
Document Number: 002-05675 Rev.*C
LQFP-64
5
6
7
8
9
10
11
12
13
14
15
19
20
22
23
24
25
26
27
2
3
4
60
59
58
61
62
63
28
30
31
LQFP-80
9
10
11
12
13
14
15
16
17
18
19
21
22
26
27
29
30
31
32
33
34
35
2
3
4
5
6
7
8
76
75
74
73
77
78
79
36
38
39
Pin No
LQFP-100
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
27
28
29
30
31
32
36
37
39
40
41
42
43
44
45
2
3
4
5
6
7
8
96
95
94
93
97
98
99
46
48
49
QFP-100
87
88
89
90
91
92
93
94
95
96
97
98
99
100
1
2
5
6
7
8
9
10
14
15
17
18
19
20
21
22
23
80
81
82
83
84
85
86
74
73
72
71
75
76
77
24
26
27
Page 24 of 99
MB9A1A0N Series
Pin
function
Multifunction
Serial
0
Pin No
Pin name
SIN0_0
SIN0_1
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SCK0_0
(SCL0_0)
SCK0_1
(SCL0_1)
Multifunction
Serial
1
Multifunction
Serial
2
Function description
Multi-function serial interface ch.0 input
pin
Multi-function serial interface ch.0 output
pin.
This pin operates as SOT0 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SDA0 when it is used in an I2C
(operation mode 4).
Multi-function serial interface ch.0 clock
I/O pin.
This pin operates as SCK0 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SCL0 when it is used in an I2C
(operation mode 4).
LQFP-64
48
LQFP-80
59
LQFP-100
73
QFP-100
51
-
46
56
34
47
58
72
50
-
47
57
35
46
57
71
49
-
48
58
36
SIN1_1
Multi-function serial interface ch.1 input
pin
35
43
53
31
SOT1_1
(SDA1_1)
Multi-function serial interface ch.1 output
pin.
This pin operates as SOT1 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SDA1 when it is used in an I2C
(operation mode 4).
36
44
54
32
SCK1_1
(SCL1_1)
Multi-function serial interface ch.1 clock
I/O pin.
This pin operates as SCK1 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SCL1 when it is used in an I2C
(operation mode 4).
37
45
55
33
40
49
59
37
44
53
63
41
45
54
64
42
SIN2_2
SOT2_2
(SDA2_2)
SCK2_2
(SCL2_2)
Multi-function serial interface ch.2 input
pin
Multi-function serial interface ch.2 output
pin.
This pin operates as SOT2 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SDA2 when it is used in an I2C
(operation mode 4).
Multi-function serial interface ch.2 clock
I/O pin.
This pin operates as SCK2 when it is used
in a UART/CSIO (operation modes 0 to 2)
and as SCL2 when it is used in an I2C
(operation mode 4).
Document Number: 002-05675 Rev.*C
Page 25 of 99
MB9A1A0N Series
Pin
function
Multifunction
Serial
3
SIN3_1
SIN3_2
SOT3_1
(SDA3_1)
SOT3_2
(SDA3_2)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
Multifunction
Serial
4
LQFP-64
2
Pin No
LQFP-80
LQFP-100
2
2
QFP-100
80
-
29
39
17
3
3
3
81
-
30
40
18
4
4
4
82
-
31
41
19
54
67
87
65
-
55
65
43
-
-
82
60
Multi-function serial interface ch.4 output
pin.
This pin operates as SOT4 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SDA4 when it is used in
an I2C (operation mode 4).
55
68
88
66
-
56
66
44
-
-
83
61
Multi-function serial interface ch.4 clock
I/O pin.
This pin operates as SCK4 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SCL4 when it is used in an
I2C (operation mode 4).
56
69
89
67
-
-
67
45
-
-
84
62
-
70
90
68
-
-
69
47
-
-
86
64
-
71
91
69
-
-
68
46
-
-
85
63
Pin name
Function description
Multi-function serial interface ch.3 input
pin
Multi-function serial interface ch.3 output
pin.
This pin operates as SOT3 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SDA3 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.3 clock
I/O pin.
This pin operates as SCK3 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SCL3 when it is used in an
I2C (operation mode 4).
SIN4_0
SIN4_1
Multi-function serial interface ch.4 input
pin
SIN4_2
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SOT4_2
(SDA4_2)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
RTS4_0
RTS4_1
Multi-function serial interface ch.4 RTS
output pin
RTS4_2
CTS4_0
CTS4_1
Multi-function serial interface ch.4 CTS
input pin
CTS4_2
Document Number: 002-05675 Rev.*C
Page 26 of 99
MB9A1A0N Series
Pin
function
Multifunction
Serial
5
Pin name
SIN5_0
SIN5_2
SOT5_0
(SDA5_0)
SOT5_2
(SDA5_2)
SCK5_0
(SCL5_0)
SCK5_2
(SCL5_2)
Multifunction
Serial
6
SIN6_0
SIN6_1
SOT6_0
(SDA6_0)
SOT6_1
(SDA6_1)
SCK6_0
(SCL6_0)
SCK6_1
(SCL6_1)
Multifunction
Serial
7
SIN7_1
SIN7_2
SOT7_1
(SDA7_1)
SOT7_2
(SDA7_2)
SCK7_1
(SCL7_1)
SCK7_2
(SCL7_2)
Function description
Multi-function serial interface ch.5 input
pin
Multi-function serial interface ch.5 output
pin.
This pin operates as SOT5 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SDA5 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.5 clock
I/O pin.
This pin operates as SCK5 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SCL5 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.6 input
pin
Multi-function serial interface ch.6 output
pin.
This pin operates as SOT6 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SDA6 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.6 clock
I/O pin.
This pin operates as SCK6 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SCL6 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.7 input
pin
Multi-function serial interface ch.7 output
pin.
This pin operates as SOT7 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SDA7 when it is used in
an I2C (operation mode 4).
Multi-function serial interface ch.7 clock
I/O pin.
This pin operates as SCK7 when it is
used in a UART/CSIO (operation modes
0 to 2) and as SCL7 when it is used in
an I2C (operation mode 4).
Document Number: 002-05675 Rev.*C
LQFP-64
60
Pin No
LQFP-80 LQFP-100
76
96
QFP-100
74
-
-
15
93
59
75
95
73
-
-
16
94
58
74
94
72
-
-
17
95
-
5
5
83
8
12
12
90
-
6
6
84
7
11
11
89
-
7
7
85
6
10
10
88
27
35
45
23
61
77
97
75
26
34
44
22
62
78
98
76
25
33
43
21
63
79
99
77
Page 27 of 99
MB9A1A0N Series
Pin
function
Multifunction
Timer
0
9
Pin No
LQFP-80
LQFP-100
13
18
QFP-100
96
-
-
69
47
59
75
95
73
-
-
13
91
-
-
70
48
FRCK0_2
35
43
53
31
IC00_0
-
-
17
95
IC00_1
-
55
65
43
IC00_2
36
44
54
32
IC01_0
-
-
16
94
IC01_1
-
56
66
44
37
45
55
33
-
-
15
93
IC02_1
-
-
67
45
IC02_2
38
46
56
34
IC03_0
-
-
14
92
IC03_1
-
-
68
46
IC03_2
RTO00_0
(PPG00_0)
RTO00_1
(PPG00_1)
39
47
57
35
10
14
19
97
-
-
71
49
11
15
20
98
12
16
21
99
13
17
22
100
14
18
23
1
15
19
24
2
24
32
42
20
Pin name
DTTI0X_0
DTTI0X_1
DTTI0X_2
Function description
Input signal of waveform generator to
control outputs RTO00 to RTO05 of
Multi-function timer 0
FRCK0_0
FRCK0_1
IC01_2
IC02_0
RTO01_0
(PPG00_0)
RTO02_0
(PPG02_0)
RTO03_0
(PPG02_0)
RTO04_0
(PPG04_0)
RTO05_0
(PPG04_0)
IGTRG
16-bit free-run timer ch.0 external clock
input pin
16-bit input capture input pin of
Multi-function timer 0.
ICxx describes a channel number.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is
used in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG00 when it is
used in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is
used in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG02 when it is
used in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is
used in PPG0 output mode.
Waveform generator output pin of
Multi-function timer 0.
This pin operates as PPG04 when it is
used in PPG0 output mode.
PPG IGBT mode external trigger input
pin
Document Number: 002-05675 Rev.*C
LQFP-64
Page 28 of 99
MB9A1A0N Series
Pin
function
Real-time
clock
Pin name
Function description
RTCCO_0
RTCCO_1
Pulse output pin of Real-time clock
RTCCO_2
SUBOUT_0
SUBOUT_1
Sub clock output pin
SUBOUT_2
LowPower
Consumption
Mode
QFP-100
70
37
45
55
33
10
14
19
97
57
72
92
70
37
45
55
33
10
14
19
97
57
72
92
70
35
43
53
31
48
59
73
51
60
76
96
74
26
34
44
22
DA0
DA1
D/A converter ch.1 analog output pin
27
35
45
23
CEC0
HDMI-CEC ch.0 pin
25
33
43
21
CEC1
HDMI-CEC ch.1 pin
60
76
96
74
WKUP0
WKUP1
WKUP3
HDMICEC
Pin No
LQFP-80 LQFP-100
72
92
Deep standby mode return signal input
pin 0
Deep standby mode return signal input
pin 1
Deep standby mode return signal input
pin 2
Deep standby mode return signal input
pin 3
D/A converter ch.0 analog output pin
WKUP2
DAC
LQFP-64
57
Document Number: 002-05675 Rev.*C
Page 29 of 99
MB9A1A0N Series
Pin
function
Reset
Pin name
INITX
Mode
MD0
MD1
Function description
External Reset Input Pin.
A reset is valid when INITX = L.
Mode 0 pin.
During normal operation, MD0 = L must
be input.
During serial programming to Flash
memory, MD0 = H must be input.
Mode 1 pin.
During normal operation, input is not
needed. During serial programming to
Flash memory, MD1 = L must be input.
Power
VCC
Power supply pin
GND
VSS
Clock
QFP-100
21
28
38
16
29
37
47
25
28
36
46
24
1
1
1
79
-
-
26
4
18
25
35
13
33
41
51
29
-
-
76
54
16
20
25
3
-
24
34
12
32
40
50
28
-
-
75
53
64
80
100
78
Main clock (oscillation) input pin
30
38
48
26
X0A
Sub clock (oscillation) input pin
19
26
36
14
X1
Main clock (oscillation) I/O pin
31
39
49
27
X1A
Sub clock (oscillation) I/O pin
20
27
37
15
Built-in High-speed CR-osc clock output
port
-
60
74
52
57
72
92
70
41
50
60
38
42
51
61
39
43
52
62
40
17
23
33
11
CROUT_1
AVCC
AVRH
Analog
GND
C pin
Pin No
LQFP-80
LQFP-100
X0
CROUT_0
Analog
Power
GND pin
LQFP-64
AVSS
C
A/D converter and D/A converter
analog power supply pin
A/D converter analog reference voltage
input pin
A/D converter and D/A converter
GND pin
Power supply stabilization capacity pin
Note:
−
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-05675 Rev.*C
Page 30 of 99
MB9A1A0N Series
5. I/O Circuit Type
Type
Circuit
Remarks
It is possible to select the main oscillation
/ GPIO function.
A
Pull-up
When the main oscillation is selected.
resistor
P-ch
P-ch
Digital output
X1
• Oscillation feedback resistor
: Approximately 1 MΩ
• With standby mode control
When the GPIO is selected.
N-ch
Digital output
R
Pull-up resistor control
•
•
•
•
•
CMOS level output.
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Digital input
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
• CMOS level hysteresis input
• Pull-up resistor
: Approximately 50 kΩ
B
Pull-up resistor
Digital input
Document Number: 002-05675 Rev.*C
Page 31 of 99
MB9A1A0N Series
Type
Circuit
Remarks
C
Digital input
• Open drain output
• CMOS level hysteresis input
Digital output
N-ch
It is possible to select the sub oscillation /
GPIO function
D
Pull-up
When the sub oscillation is selected.
resistor
P-ch
P-ch
Digital output
X1A
N-ch
Digital output
R
Pull-up resistor control
• Oscillation feedback resistor
: Approximately 5 MΩ
• With standby mode control
When the GPIO is selected.
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Digital input
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05675 Rev.*C
Page 32 of 99
MB9A1A0N Series
Type
Circuit
Remarks
•
•
•
•
•
E
P-ch
P-ch
N-ch
Digital output
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C pin, the
digital output P-ch transistor is always
off
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
N-ch
R
Digital output
Digital output
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C pin, the
digital output P-ch transistor is always
off
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-05675 Rev.*C
Page 33 of 99
MB9A1A0N Series
Type
Circuit
Remarks
G
P-ch
N-ch
Digital output
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With standby mode control
5 V tolerant input
IOH = -4 mA, IOL = 4 mA
Available to control PZR registers.
P0B, P0C, P4C, P60, P81, P82 only.
• When this pin is used as an I2C pin, the
digital output P-ch transistor is always
off
Digital output
R
Digital input
Standby mode control
CMOS level hysteresis input
H
Mode input
J
P-ch
P-ch
N-ch
R
Digital output
Digital output
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog output
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C pin, the
digital output P-ch transistor is always
off
Pull-up resistor control
Digital input
Standby mode control
Analog output
Document Number: 002-05675 Rev.*C
Page 34 of 99
MB9A1A0N Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-05675 Rev.*C
Page 35 of 99
MB9A1A0N Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress Inc. recommends the solder reflow method, and has established a ranking
of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of
recommended conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a
silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-05675 Rev.*C
Page 36 of 99
MB9A1A0N Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1
MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1.
2.
3.
4.
5.
Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,
use anti-static measures or processing to prevent discharges.
Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices
begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05675 Rev.*C
Page 37 of 99
MB9A1A0N Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and
GND pin, between AVCC pin and AVSS pin near this device.
Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Using an external clock
To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pin.
 Example of Using an External Clock
Device
X0/PE2 (X0A/P46)
Can be used as
general-purpose I/O
ports.
X1/PE3 (X1A/P47)
Set as
general-purpose I/O
ports.
Handling when using Multi-function serial pin as I2C pin
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to
keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF.
Document Number: 002-05675 Rev.*C
Page 38 of 99
MB9A1A0N Series
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7μF would be recommended for this series.
C
Device
Cs
VSS
GND
Mode pins (MD0, MD1)
Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance
stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.
Turning on: VCC  AVCC  AVRH
Turning off: AVRH  AVCC  VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Differences in features among the products with different memory sizes and between Flash memory
products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash memory products and MASK products are different because chip
layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Document Number: 002-05675 Rev.*C
Page 39 of 99
MB9A1A0N Series
8. Block Diagram
MB9AF1A1/1A2
ROM
Table
SWJ-DP
Cortex-M3 Core
@20MHz(Max)
Flash I/F
I
Multi-layer AHB (Max 20MHz)
TRSTX,TCK,
TDI,TMS
TDO
D
Sys
AHB-APB Bridge: APB0
(Max 20MHz)
NVIC
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
Watchdog Timer
(Hardware)
Security
On-Chip
Flash
64/128Kbyte
SRAM1
12/16Kbyte
CSV
CLK
X0
X1
X0A
X1A
Main
Osc
Sub
Osc
PLL
Source Clock
CR
4MHz
CR
100kHz
CROUT
AVCC,
AVSS,AVRH
ANxx
Deep Standby Ctrl
WKUPx
12-bit A/D Converter
Power On
Reset
Unit 0
LVD Ctrl
ADTGx
LVD
Regulator
TIOBx
Base Timer
16-bit 8ch./
32-bit 4ch.
A/D Activation
Compare
1ch.
IC0x
FRCK0
16-bit Input Capture
4ch.
16-bit FreeRun Timer
3ch.
16-bit Output
Compare
6ch.
DTTI0X
RTO0x
IGTRG
AHB-APB Bridge : APB2 (Max 20MHz)
TIOAx
AHB-APB Bridge : APB1 (Max 20MHz)
DAx
HDMI-CEC/
Remote Receiver
Control
Multi-Function Timer ×1
CECx
RTCCO
SUBOUT
Real Time Clock
External Interrupt
Controller
16-pin + NMI
INTxx
NMIX
MODE-Ctrl
MD1,
MD0
P0x,
P1x,
GPIO
Waveform Generator
3ch.
16-bit PPG
3ch.
C
IRQ-Monitor
10-bit D/A Converter
2ch.
PIN-Function-Ctrl
.
.
.
Pxx
Multi-Function
Serial IF
8ch.
HW flow control(ch.4)*
SCKx
SINx
SOTx
CTS4
RTS4
*: For the MB9AF1A1L and MB9AF1A2L, Multi-function Serial Interface does not support hardware flow control in these products.
Document Number: 002-05675 Rev.*C
Page 40 of 99
MB9A1A0N Series
9. Memory Size
See Memory size in Product Lineup to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
Reserved
Reserved
0x4003_C000
0x4003_B000
0x4003_9000
0x4003_8000
0x4400_0000
0x4200_0000
32Mbytes
Bit band alias
0x4003_6000
0x4003_5000
Peripherals
0x4003_4000
0x4003_3000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
0x4000_0000
Reserved
0x2400_0000
0x2200_0000
32Mbytes
Bit band alias
Reserved
0x2008_0000
0x2000_0000
SRAM1
0x4002_9000
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
Reserved
See " Memory Map (2)"
for the memory size
details.
0x0010_0008
0x0010_0000
Security/CR Trim
MFS
Reserved
LVD/DS mode
HDMI-CEC/
Remote Control Receiver
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
D/AC
A/DC
Reserved
Base Timer
PPG
MFT unit0
Reserved
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
Document Number: 002-05675 Rev.*C
Reserved
Reserved
0x4002_1000
0x4002_0000
Flash
0x0000_0000
RTC
SW WDT
HW WDT
Clock/Reset
Reserved
Flash I/F
Page 41 of 99
MB9A1A0N Series
Memory Map (2)
MB9AF1A2L/M/N
MB9AF1A1L/M/N
0x2008_0000
0x2008_0000
Reserved
Reserved
0x2000_4000
0x2000_3000
SRAM1
16 Kbytes
0x2000_0000
0x2000_0000
Reserved
Reserved
0x0010_0008
0x0010_0004
0x0010_0000
SRAM1
12 Kbytes
0x0010_0008
CR trimming
Security
0x0010_0004
0x0010_0000
CR trimming
Security
Reserved
Reserved
SA2 (60 KB)
0x0000_0000
SA1 (4 KB)
0x0001_0000
SA2 (60 KB)
0x0000_0000
Flash 64 Kbytes
SA3 (64 KB)
Flash 128 Kbytes
0x0002_0000
SA1 (4 KB)
*: See MB9AAA0N/1A0N/A30N/130N/130L Series Flash Programming Manual to confirm the detail of Flash memory.
Document Number: 002-05675 Rev.*C
Page 42 of 99
MB9A1A0N Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Reserved
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_1FFF
Reserved
0x4002_2000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_8FFF
D/A Converter
0x4002_9000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt
0x4003_1000
0x4003_1FFF
Interrupt Source Check Register
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
HDMI-CEC/ Remote Control Receiver
0x4003_5000
0x4003_50FF
Low-Voltage Detector
0x4003_5100
0x4003_5FFF
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial
0x4003_9000
0x4003_9FFF
Reserved
0x4003_A000
0x4003_AFFF
Reserved
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_FFFF
Reserved
0x4004_0000
0x4004_FFFF
Reserved
0x4005_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x4006_1FFF
0x4006_2000
0x4006_2FFF
Reserved
0x4006_3000
0x4006_3FFF
Reserved
0x4006_4000
0x41FF_FFFF
Reserved
Document Number: 002-05675 Rev.*C
AHB
APB0
Flash memory I/F register
Reserved
Software Watchdog timer
Reserved
Base Timer
APB1
APB2
Reserved
Deep standby mode Controller
Reserved
Reserved
AHB
Reserved
Page 43 of 99
MB9A1A0N Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX = 0
This is the period when the INITX pin is the L level.
 INITX = 1
This is the period when the INITX pin is the H level.
 SPL = 0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
 SPL = 1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep Standby mode, pins switch to the general-purpose I/O port.
Document Number: 002-05675 Rev.*C
Page 44 of 99
MB9A1A0N Series
Pin status type
List of Pin Status
Power-on
Run
Device
reset or
INITX
internal mode or
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
Main
crystal
oscillator
input pin
External
main
clock
input
A
selected
GPIO
selected
Main
crystal
oscillator
output pin
Input
enabled
Setting
disabled
Input
enabled
Setting
disabled
Input
enabled
Setting
disabled
Setting
disabled
Input
enabled
Maintain
previous
state
Maintain
previous
state
Setting
disabled
Setting
disabled
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state /
When
Hi-Z /
Hi-Z /
oscillation
Internal
Internal
stops*1,
input fixed input fixed
Hi-Z
at 0
at 0
output /
Internal
input
fixed at 0
B
C
INITX = 0 INITX = 1 INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
Power supply stable
Power supply
stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
INITX = 1
-
Input
enabled
Maintain
previous
state /
When
oscillation
stops*1,
output
maintains
previous
state /
Internal
input fixed
at 0
Output
maintains
previous
state /
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*1,
Hi-Z output
/
Internal
input fixed
at 0
Input
enabled
Input
enabled
Hi-Z /
Input
enabled /
When
oscillation
stops*1,
Hi-Z /
Internal
input fixed
at 0
Output
maintains
Hi-Z /
previous
Internal input GPIO selected
state /
fixed at 0
Internal input
fixed at 0
Hi-Z /
Internal
input fixed
at 0
Output
maintains
Hi-Z /
previous
Maintain
Internal input
state /
previous state
fixed at 0
Internal input
fixed at 0
Maintain
previous
state /
When
oscillation
stops*1,
Hi-Z output
/
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*1, Hi-Z
output /
Internal input
fixed at 0
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain Maintain
previous previous
state
state
Hi-Z /
Internal
input fixed
at 0
INITX
input pin
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Document Number: 002-05675 Rev.*C
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Pull-up /
Input
enabled
Output
maintains
previous
state /
Internal input
fixed at 0
Pull-up /
Input
enabled
Input
enabled
Maintain
previous
state /
When
oscillation
stops*1, Hi-Z
output /
Internal input
fixed at 0
Input enabled
Maintain
previous state
/
When
oscillation
stops*1, Hi-Z
output /
Internal input
fixed at 0
Hi-Z /
Maintain
Internal input
previous state
fixed at 0
Pull-up /
Input
enabled
Pull-up / Input
enabled
Page 45 of 99
Pin status type
MB9A1A0N Series
D
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
Mode
input pin
Input
enabled
JTAG
selected
Hi-Z
GPIO
selected
Setting
disabled
INITX = 0
Input
enabled
Pull-up /
Input
enabled
INITX = 1
Input
enabled
Pull-up /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
E
External
interrupt Setting
enabled disabled
selected
Resource
other than
above
F
selected
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
GPIO
selected
WKUP
enabled
External
interrupt Setting
enabled disabled
selected
G Resource
other than
above
selected
Hi-Z
GPIO
selected
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
INITX = 1
INITX = 1
SPL = 0
SPL = 1
Input
Input
Input
enabled enabled
enabled
Maintain
previous
state
Maintain Maintain
previous previous
Hi-Z /
state
state
Internal
input fixed
at 0
Maintain
previous
state
Maintain Maintain
previous previous
state
state
Hi-Z /
Input
enabled
Document Number: 002-05675 Rev.*C
Hi-Z /
Input
enabled
Power supply stable
Power supply
stable
INITX = 1
INITX = 1
SPL = 0
SPL = 1
Input
Input
Input enabled
enabled
enabled
Maintain
previous
state
Maintain
Maintain
previous
previous state
Hi-Z
/
state
Internal input
fixed at 0
GPIO
selected
Internal input
fixed at 0
GPIO selected
Hi-Z /
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
Maintain
state /
previous state
Internal input
fixed at 0
Hi-Z /
Hi-Z /
Internal
WKUP input
WKUP input
input fixed enabled
enabled
at 0
Maintain
previous
state
Maintain Maintain
previous previous
state
state
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
GPIO
selected
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
state /
Internal input
fixed at 0
GPIO selected
Hi-Z /
Internal input
fixed at 0
Maintain
previous state
Page 46 of 99
Pin status type
MB9A1A0N Series
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
-
INITX = 0 INITX = 1 INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
GPIO
selected
NMIX
selected
I
J
Resource
other than
above
selected Hi-Z
GPIO
selected
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Analog
input
selected
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z
Resource
other than
above
selected
Setting
disabled
Setting
disabled
GPIO
selected
Document Number: 002-05675 Rev.*C
Setting
disabled
Maintain Maintain
previous previous
state
state
Maintain Maintain
previous previous
state
state
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Power supply stable
Power supply
stable
INITX = 1
SPL = 0
SPL = 1
Resource
selected
H
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Maintain Maintain
previous previous
state
state
INITX = 1
INITX = 1
SPL = 0
SPL = 1
GPIO
selected
GPIO selected
Internal input
fixed at 0
Hi-Z /
Hi-Z /
Internal
Output
Internal input
input fixed maintains
fixed at 0
at 0
Maintain
previous
state /
previous state
Internal input
fixed at 0
Maintain
previous
state
GPIO selected
Hi-Z /
WKUP input
WKUP
input
Hi-Z /
enabled
enabled
Internal
input fixed
at 0
Maintain
previous state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
GPIO
selected
GPIO selected
Internal input
fixed at 0
Hi-Z /
Hi-Z /
Internal
Output
Internal input
input fixed maintains
fixed at 0
at 0
previous
Maintain
state /
previous state
Internal input
fixed at 0
Page 47 of 99
Pin status type
MB9A1A0N Series
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
-
Analog
input
selected
Hi-Z
External
interrupt
enabled
K selected
Resource
other than
above
Setting
selected disabled
INITX = 0 INITX = 1 INITX = 1
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
input
input fixed input fixed
fixed at 0
at 0 /
at 0 /
/
Analog
Analog
Analog
input
input
input
enabled enabled
enabled
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
Power supply stable
Power supply
stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
INITX = 1
-
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Setting
disabled
Maintain Maintain
previous previous
state
state
GPIO
selected
Analog
input
selected
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
GPIO
selected
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
state /
Internal input
fixed at 0
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
GPIO selected
Hi-Z /
Internal input
fixed at 0
Maintain
previous state
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Internal input
fixed at 0 /
Analog input
enabled
Hi-Z /
Hi-Z /
Internal
WKUP input
WKUP input
input fixed enabled
enabled
at 0
WKUP
enabled
L External
interrupt
enabled
selected
Resource Setting
other than disabled
above
selected
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Maintain
previous
state
Setting
disabled
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Maintain
previous
state
Setting
disabled
GPIO
selected
Document Number: 002-05675 Rev.*C
Setting
disabled
Maintain Maintain
previous previous
state
state
GPIO
selected
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
state /
Internal input
fixed at "0"
GPIO selected
Hi-Z /
Internal input
fixed at 0
Maintain
previous state
Page 48 of 99
Pin status type
MB9A1A0N Series
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
Sub
crystal
oscillator
input pin
Input
enabled
External
sub clock Setting
input
disabled
M selected
GPIO
selected
Sub
crystal
oscillator
output pin
Setting
disabled
Hi-Z /
Internal
input fixed
at 0
INITX = 0 INITX = 1 INITX = 1
Input
enabled
Setting
disabled
Setting
disabled
Hi-Z /
Internal
input fixed
at 0
Input
enabled
Setting
disabled
Setting
disabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
External
interrupt
enabled
selected
Setting
disabled
Setting
disabled
Setting
disabled
GPIO
selected
Hi-Z
O
Document Number: 002-05675 Rev.*C
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Maintain
Internal
previous
input fixed
state
at 0
N
Hi-Z /
Input
enabled
Input
enabled
Hi-Z /
Input
enabled
Timer mode,
RTC mode, or
Stop mode state
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Power supply stable
Power supply stable
Power supply
stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
INITX = 1
-
Input
enabled
Maintain
previous
state /
When
oscillation
stops*2,
output
maintains
previous
state /
Internal
input fixed
at 0
Output
maintains
previous
state /
Internal
input fixed
at 0
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain Maintain
previous previous
state
state
Maintain Maintain
previous previous
state
state
Input
enabled
Input
enabled
Input
enabled
Input enabled
Hi-Z / Input
enabled /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state / When
oscillation
stops*2,
output
maintains
previous
state /
Internal input
fixed at 0
Hi-Z / Input
enabled /
When
oscillation
stops*2, Hi-Z
/ Internal
input fixed at
0
Maintain
previous state
/
When Return
from Deep
Standby STOP
mode, GPIO is
selected
Hi-Z /
Internal
input fixed
at 0
Output
maintains
Hi-Z /
Maintain
previous
Internal input
state /
previous state
fixed at 0
Internal input
fixed at 0
Maintain
previous
state /
When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state / When
oscillation
stops*2, Hi-Z
/ Internal
input fixed at
0
Output
maintains
previous
state /
Internal input
fixed at 0
GPIO
Maintain
selected /
previous
Internal input
state
fixed at 0
Output
Hi-Z /
maintains
Internal
previous
input fixed state /
at 0
Internal input
fixed at 0
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state / When
oscillation
stops*2, Hi-Z
/ Internal
input fixed at
0
Maintain
previous state
/
When
oscillation
stops*2,
Hi-Z / Internal
input fixed at 0
Hi-Z /
Maintain
Internal input
previous state
fixed at 0
GPIO selected
Hi-Z /
Internal input
fixed at 0
Maintain
previous state
Page 49 of 99
Pin status type
MB9A1A0N Series
P
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
Mode
input pin
Input
enabled
GPIO
selected
Setting
disabled
CEC
enabled
Setting
disabled
Resource
other than
above
Q selected
Hi-Z
GPIO
selected
CEC
enabled
Setting
disabled
INITX = 0 INITX = 1 INITX = 1
Input
Input
Input
enabled enabled
enabled
Maintain
Setting
Setting
previous
disabled disabled
state
Maintain
Setting
Setting
previous
disabled disabled
state
Timer mode,
RTC mode, or
Stop mode state
Power supply stable
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain Maintain
previous previous
state
state
Setting
disabled
Setting
disabled
Maintain Maintain
previous previous
state
state
Hi-Z
GPIO
selected
Setting
disabled
Setting
disabled
Document Number: 002-05675 Rev.*C
Hi-Z /
Input
enabled
INITX = 1
SPL = 0
SPL = 1
Input
Input
enabled
enabled
Maintain
Hi-Z / input
previous
enabled
state
Maintain
Maintain
previous
previous
state
state
GPIO
selected
Internal input
fixed at 0
Hi-Z /
Hi-Z /
Internal
Output
Internal input
input fixed maintains
fixed at 0
at 0
previous
state /
Internal input
fixed at 0
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Maintain Maintain
previous previous
state
state
Hi-Z /
Input
enabled
Power supply stable
INITX = 1
SPL = 0
SPL = 1
Input
Input
enabled
enabled
Maintain
Hi-Z / input
previous
enabled
state
Maintain
Maintain
previous
previous
state
state
WKUP
enabled
Setting
External disabled
interrupt
enabled
R selected
Resource
other than
above
selected
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Maintain
previous
state
Maintain
previous
state
Power supply
stable
INITX = 1
Input enabled
Maintain
previous state
Maintain
previous state
GPIO selected
Maintain
previous state
Maintain
previous state
Hi-Z /
WKUP input
WKUP input
enabled
enabled
GPIO
selected
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
state /
Internal input
fixed at 0
GPIO selected
Hi-Z /
Internal input
fixed at 0
Maintain
previous state
Page 50 of 99
Pin status type
MB9A1A0N Series
Power-on
Run
Device mode or
reset or
INITX
internal
low-voltage
input
Sleep
reset
detection
state
mode
state
state
state
Function
group
Power
Power
supply
Power supply stable supply
unstable
stable
-
Analog
output
selected
External
interrupt
enabled
selected
Resource
S other than
above
selected
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
GPIO
selected
Analog
Setting
output
disabled
selected
Resource
other than
above
T selected
Hi-Z
GPIO
selected
INITX = 0 INITX = 1 INITX = 1
-
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Timer mode,
RTC mode, or
Stop mode state
Deep Standby RTC mode Return from
or Deep Standby Stop Deep Standby
mode state
mode state
Power supply stable
Power supply stable
Power supply
stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
INITX = 1
-
*3
*4
Maintain
previous
state
Maintain
previous
Maintain
state
previous
state
*3
Maintain
previous
Maintain
state
previous
state
GPIO
selected
Internal input
fixed at 0
GPIO selected
Hi-Z /
Internal input
fixed at 0
Hi-Z /
Internal
Output
input fixed maintains
at 0
previous
state /
Internal input
fixed at 0
*4
GPIO
selected
Internal input
fixed at 0
Maintain
previous state
GPIO selected
Hi-Z /
Internal input
Hi-Z /
fixed at 0
Internal
Output
input fixed maintains
at 0
Maintain
previous
state /
previous state
Internal input
fixed at 0
*1: Oscillation is stopped at Sub run mode, Low-speed CR Run mode, Sub Sleep mode, Low-speed CR Sleep mode,
Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop
mode.
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.
*3: Maintain previous state at Timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.
*4: Maintain previous state at Timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.
Document Number: 002-05675 Rev.*C
Page 51 of 99
MB9A1A0N Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Rating
Parameter
Symbol
Power supply voltage*1,*2
Analog power supply voltage*1,*3
Analog reference voltage*1,*3
VCC
AVCC
AVRH
Input voltage*1
VI
Min
Max
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS + 6.5
VSS + 6.5
VSS + 6.5
VCC + 0.5
(≤ 6.5 V)
VSS + 6.5
AVCC + 0.5
(≤ 6.5 V)
VCC + 0.5
(≤ 6.5 V)
10
4
100
50
- 10
-4
- 100
- 50
400
+ 150
VSS - 0.5
VSS - 0.5
Analog pin input voltage*1
VIA
VSS - 0.5
Output voltage*1
VO
VSS - 0.5
current*4
L level maximum output
L level average output current*5
L level total maximum output current
L level total average output current*6
H level maximum output current*4
H level average output current*5
H level total maximum output current
H level total average output current*6
Power consumption
Storage temperature
IOL
IOLAV
∑IOL
∑IOLAV
IOH
IOHAV
∑IOH
∑IOHAV
PD
TSTG
- 55
Unit
Remarks
V
V
V
V
V
5V tolerant
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mW
C
*1: These parameters are based on the condition that VSS = AVSS = 0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: Be careful not to exceed VCC + 0.5 V, for example, when the power is turned on.
*4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*5: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100
ms period.
*6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or
temperature) in excess of absolute maximum ratings.
Do not exceed any of these ratings.
Document Number: 002-05675 Rev.*C
Page 52 of 99
MB9A1A0N Series
12.2 Recommended Operating Conditions
(VSS = AVSS = 0.0V)
Parameter
Symbol
Conditions
Value
Unit
Min
Max
5.5
5.5
V
V
AVCC
V
10
μF
+ 85
C
Power supply voltage
Analog power supply voltage
VCC
AVCC
-
Analog reference voltage
AVRH
-
Smoothing capacitor
LQD064,
LQG064,
Operating
LQH080,
Temperature LQJ080,
LQI100,
PQH100
CS
-
1.8
1.8
2.7
AVCC
1
TA
-
- 40
Remarks
AVCC = VCC
AVCC ≥ 2.7 V
AVCC < 2.7 V
For built-in Regulator *
*: See C Pin in Handling Devices for the smoothing capacitor.
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-05675 Rev.*C
Page 53 of 99
MB9A1A0N Series
12.3 DC Characteristics
12.3.1 Current Rating
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin
name
Conditions
PLL
Run mode
High-spee
d
CR
Run mode
ICC
Sub
Run mode
Power
supply
current
VCC
ICCS
Low-speed
CR
Run mode
PLL
Sleep
mode
High-spee
d
CR
Sleep
mode
Sub
Sleep
mode
Low-speed
CR
Sleep
mode
CPU: 20 MHz,
Peripheral: 20 MHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU: 20 MHz,
Peripheral: clock stopped,
NOP operation
Value
Typ*3
Max*4
Unit
Remarks
19
24
mA
*1, *5
9.5
12.5
mA
*1, *5
4.5
5
mA
*1
0.25
0.55
mA
*1, *6
0.3
0.95
mA
*1
Peripheral: 20 MHz
8
10.5
mA
*1, *5
Peripheral: 4 MHz*2
2
2.5
mA
*1
Peripheral: 32 kHz
0.2
0.45
mA
*1, *6
Peripheral: 100 kHz
0.25
0.65
mA
*1
CPU/Peripheral: 4 MHz*2
Flash memory 0 Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
CPU/Peripheral: 32 kHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
CPU/Peripheral: 100 kHz,
Flash memory 0 Wait,
FRWTR.RWT = 00,
FSYNDN.SD = 000
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=3.3 V
*4: TA=+85°C, VCC=5.5 V
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05675 Rev.*C
Page 54 of 99
MB9A1A0N Series
Parameter
Pin
name
Symbol
Conditions
Main
Timer mode
ICCT
Sub
Timer mode
ICCR
Power
supply
current
RTC mode
VCC
ICCH
ICCRD
ICCHD
Stop mode
Deep
Standby
RTC mode
Deep
Standby
Stop mode
Value
Unit
Remarks
Typ*2
Max*3
0.9
3.3
mA
*1, *4
1.5
3.5
mA
*1, *4
7.5
60
μA
*1, *5
16
150
μA
*1, *5
TA = + 25C,
When LVD is off
1.5
6.5
μA
*1, *5
TA = + 85C,
When LVD is off
6
79
μA
*1, *5
TA = + 25C,
When LVD is off
0.6
5
μA
*1
TA = + 85C,
When LVD is off
4.2
77
μA
*1
TA = + 25C,
When LVD is off
1.3
4.5
μA
*1, *5
TA = + 85C,
When LVD is off
3
22
μA
*1, *5
TA = + 25C,
When LVD is off
0.4
3
μA
*1
TA = + 85C,
When LVD is off
1.4
20
μA
*1
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
*1: When all ports are fixed.
*2: VCC=3.3 V
*3: VCC=5.5 V
*4: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*5: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05675 Rev.*C
Page 55 of 99
MB9A1A0N Series
Low Voltage Detection Current
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40C to + 85C)
Parameter
Low-voltage
detection circuit
(LVD) power
supply current
Symbol
ICCLVD
Pin
name
VCC
Value
Conditions
For occurrence of reset or for
occurrence of interrupt in normal
mode operation
For occurrence of reset and for
occurrence of interrupt in normal
mode operation
For occurrence of interrupt in
low-power mode operation
Typ*
Max
10
20
Unit
Remarks
μA
When not detected
14
30
μA
0.3
2
μA
When not detected
*: When VCC = 3.3 V
Flash Memory Current
(VCC = 1.8 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase
current
Pin
name
Symbol
ICCFLASH
VCC
Conditions
At Write/Erase
Value
Typ
Max
10.8
11.9
Unit
Remarks
mA
A/D Converter Current
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Power supply
current
Reference power
supply current
Pin
name
Symbol
ICCAD
ICCAVRH
AVCC
AVRH
Conditions
Value
Unit
Typ
Max
At 1unit
operation
1.4
2.5
mA
At stop
0.1
0.35
μA
At 1unit
operation
AVRH=5.5 V
0.5
1.5
mA
At stop
0.1
0.3
μA
Remarks
D/A Converter Current
(VCC = AVCC = 1.8 V to 5.5 V, VSS = AVSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Power supply
current
Pin
name
Symbol
IDDA
AVCC
IDSA
Conditions
At D/A 1ch.
operation
AVCC=3.3 V
At D/A 1ch.
operation
AVCC=5.0 V
At D/A stop
Value
Unit
Remarks
Typ
Max
314
440
μA
*1, *2
476
670
μA
*1, *2
-
1.0
μA
*1
*1: No-load
*2: Generates the max current by the CODE about 0x200
Document Number: 002-05675 Rev.*C
Page 56 of 99
MB9A1A0N Series
12.3.2 Pin Characteristics
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40C to + 85C)
Parameter
H level input
voltage
(hysteresis
input)
L level input
voltage
(hysteresis
input)
H level
output voltage
L level
output voltage
Symbol
VIHS
VILS
VOH
VOL
MD0, MD1,
PE0, PE2,
PE3, P46, P47,
P3A, P3B,
P3C,
P3D, P3E, P3F,
INITX
P0A, P0B,
P0C, P4C,
P60,
P80, P81, P82
CMOS
hysteresis
input pins other
than the above
MD0, MD1,
PE0, PE2,
PE3,
P46, P47,
INITX
CMOS
hysteresis
input pins other
than the above
Pxx
Pxx
-
VCC × 0.8
-
VCC + 0.3
V
-
VCC × 0.7
-
VSS + 5.5
V
-
VCC × 0.7
-
VCC + 0.3
V
-
VSS - 0.3
-
VCC × 0.2
V
-
VSS - 0.3
-
VCC × 0.3
V
VCC - 0.5
-
VCC
V
VSS
-
0.4
V
-5
-
+5
-
-
+ 1.8
VCC ≥ 4.5 V
25
50
100
VCC  4.5 V
40
100
400
-
5
15
VCC ≥ 4.5 V,
IOH = - 4 mA
VCC < 4.5 V,
IOH = - 1 mA
VCC ≥ 4.5 V,
IOL = 4 mA
VCC < 4.5 V,
IOL = 2 mA
VCC = AVCC =
AVRH = VSS
= AVSS = 0.0
V
IIL
CEC0,
CEC1
Pull-up resistor
value
RPU
Pull-up pin
CIN
Max
Conditions
Input leak
current
Input
capacitance
Min
Value
Typ
Pin name
Other than
VCC, VSS,
AVCC, AVSS,
AVRH
Document Number: 002-05675 Rev.*C
-
Unit
Remarks
5V tolerant
μA
kΩ
pF
Page 57 of 99
MB9A1A0N Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Pin
name
Symbol
Conditions
VCC ≥ 2.0 V
Input frequency
tCYLH
Input clock pulse
width
-
Input clock rising
time and falling time
Internal operating
clock*1
frequency
Internal operating
clock*1
cycle time
tCF,
tCR
fCM
fCC
fCP0
fCP1
fCP2
tCYCC
tCYCP0
tCYCP1
tCYCP2
Max
Unit
Remarks
4
4
4
4
50
62.5
20
4
20
16
250
250
MHz
MHz
MHz
MHz
ns
ns
45
55
%
-
-
5
ns
-
-
-
20
20
20
20
20
MHz
MHz
MHz
MHz
MHz
When using external
clock
When using external
clock
Master clock
Base clock (HCLK/FCLK)
APB0 bus clock*2
APB1 bus clock*2
APB2 bus clock*2
-
-
50
-
ns
Base clock (HCLK/FCLK)
-
-
50
-
ns
APB0 bus clock*2
-
-
50
-
ns
APB1 bus clock*2
-
-
50
-
ns
APB2 bus clock*2
VCC  2.0 V
VCC ≥ 4.5 V
fCH
Input clock cycle
Value
Min
X0,
X1
VCC  4.5 V
VCC ≥ 4.5 V
VCC  4.5 V
PWH/tCYLH,
PWL/tCYLH
When crystal oscillator is
connected
When using external
clock
When using external
clock
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
X0
Document Number: 002-05675 Rev.*C
Page 58 of 99
MB9A1A0N Series
12.4.2 Sub Clock Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Input frequency
fCL
Input clock cycle
tCYLL
Input clock pulse
width
-
Pin
name
X0A,
X1A
Conditions
Value
Unit
Remarks
Min
Typ
Max
-
-
32.768
-
kHz
-
32
-
100
kHz
When crystal oscillator is
connected
When using external clock
-
10
-
31.25
μs
When using external clock
PWH/tCYLL,
PWL/tCYLL
45
-
55
%
When using external clock
X0A
12.4.3 Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Conditions
VCC ≥
2.2 V
Clock frequency
fCRH
VCC <
2.2 V
Frequency
stabilization time
tCRWT
-
Value
Min
Typ
Max
TA = + 25C
3.92
4
4.08
TA = - 40C to + 85C
3.8
4
4.2
TA = - 40C to + 85C
2.3
-
7.03
TA = + 25C
3.4
4
4.6
TA = - 40C to + 85C
3.16
4
4.84
TA = - 40C to + 85C
2.3
-
7.03
-
-
10
Unit
Remarks
When trimming*1
MHz
When not
trimming
When trimming*1
MHz
When not
trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.
This period is able to use High-speed CR clock as source clock.
Document Number: 002-05675 Rev.*C
Page 59 of 99
MB9A1A0N Series
Built-in Low-speed CR
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Clock frequency
fCRL
Conditions
-
Value
Min
Typ
Max
50
100
150
Unit
Remarks
kHz
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Symbol
Value
Unit
Remarks
Min
Typ
Max
tLOCK
200
-
-
μs
fPLLI
fPLLO
fCLKPLL
4
1
10
-
-
20
5
20
20
MHz
multiplier
MHz
MHz
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock
of the Main PLL)
(VCC = 2.2V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Symbol
Value
Unit
Min
Typ
Max
tLOCK
200
-
-
μs
fPLLI
fPLLO
fCLKPLL
3.8
3
11.4
-
4
-
4.2
4
16.8
16.8
MHz
multiplier
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
Note:
−
Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency has been trimmed.
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the
master clock from exceeding the maximum frequency.
Document Number: 002-05675 Rev.*C
Page 60 of 99
MB9A1A0N Series
Main PLL connection
PLL input
clock
K
divider
Main clock (CLKMO)
High-speed CR clock (CLKHC)
PLL macro
oscillation clock
Main
PLL
M
divider
Main PLL
clock
(CLKPLL)
N
divider
12.4.6 Reset Input Characteristics
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Reset input time
Pin
name
Symbol
tINITX
INITX
Conditions
-
Value
Min
Max
500
1.5
1.5
-
Unit
ns
ms
ms
Remarks
When RTC mode or Stop mode
When Deep Standby mode
12.4.7 Power-on Reset Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Power supply rising time
dV/dt
Power supply shut down time
tOFF
Reset release voltage
VDETH
Pin
name
VCC
Value
Unit
Remarks
Min
Typ
Max
0.1
-
-
V/ms
1
-
-
ms
1.44
1.60
1.76
V
When voltage rises
1.39
1.55
1.71
V
When voltage drops
Reset detection voltage
VDETL
Time until releasing
Power-on reset
tPRT
0.46
-
11.4
ms
dV/dt ≥ 0.1mV/μs
Reset detection delay time
tOFFD
-
-
0.4
ms
dV/dt ≥ -0.04mV/μs
Document Number: 002-05675 Rev.*C
Page 61 of 99
MB9A1A0N Series
VDETH
VDETL
VCC
dV
0.2V
dt
0.2V
tOFF
tPRT
Internal reset
tOFFD
Reset active
Release
CPU Operation
Reset active
start
12.4.8 Base Timer Input Timing
Timer input timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Input pulse width
Symbol
tTIWH,
tTIWL
Pin name
Value
Conditions
TIOAn/TIOBn
(when using as
ECK, TIN)
-
tTIWH
Unit
Min
Max
2tCYCP
-
Remarks
ns
tTIWL
ECK
TIN
Document Number: 002-05675 Rev.*C
VIHS
VIHS
VILS
VILS
Page 62 of 99
MB9A1A0N Series
Trigger input timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
TIOAn/TIOBn
(when using
as TGIN)
-
tTRGH
TGIN
VIHS
Value
Min
Max
2tCYCP
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.
Document Number: 002-05675 Rev.*C
Page 63 of 99
MB9A1A0N Series
12.4.9 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Baud rate
Serial clock cycle
time
Symbol
tSCYC
SCK   SOT
delay time
tSLOVI
SIN  SCK 
setup time
tIVSHI
SCK   SIN
hold time
Serial clock L
pulse width
Serial clock H
pulse width
tSHIXI
Conditions
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
VCC  2.7 V
2.7 V ≤
VCC 4.5 V
Min
Max
5
Min
-
Max
5
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Unit
Min
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
Master mode
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
-
75
-
50
-
30
ns
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK   SOT
delay time
tSLOVE
SIN  SCK 
setup time
tIVSHE
SCK   SIN
hold time
SCK falling time
SCK rising time
Pin
name
tSHIXE
tF
tR
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
Notes:
−
The above characteristics apply to clock synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 50 pF.
Document Number: 002-05675 Rev.*C
Page 64 of 99
MB9A1A0N Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05675 Rev.*C
Page 65 of 99
MB9A1A0N Series
CSIO (SPI = 0, SCINV = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Baud rate
Serial clock cycle
time
Symbol
tSCYC
tSHOVI
SIN  SCK 
setup time
tIVSLI
tSLIXI
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
VCC  2.7 V
2.7 V ≤
VCC  4.5 V
Min
Max
5
Min
-
Max
5
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Unit
Min
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
Master mode
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
-
75
-
50
-
30
ns
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK   SOT
delay time
tSHOVE
SIN  SCK 
setup time
tIVSLE
SCK   SIN
hold time
SCK falling time
SCK rising time
Conditions
-
SCK   SOT
delay time
SCK   SIN
hold time
Serial clock L
pulse width
Serial clock H
pulse width
Pin
name
tSLIXE
tF
tR
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
Notes:
−
The above characteristics apply to clock synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 50 pF.
Document Number: 002-05675 Rev.*C
Page 66 of 99
MB9A1A0N Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05675 Rev.*C
Page 67 of 99
MB9A1A0N Series
CSIO (SPI = 1, SCINV = 0)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Baud rate
Serial clock
cycle time
Symbol
tSCYC
SCK   SOT
delay time
tSHOVI
SIN  SCK 
setup time
tIVSLI
SCK   SIN
hold time
tSLIXI
SOT  SCK 
delay time
Serial clock L
pulse width
Serial clock H
pulse width
tSOVLI
Conditions
-
-
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
Master
mode
VCC  2.7 V
2.7 V ≤
VCC  4.5 V
Min
Max
5
Min
-
Max
5
4tCYCP
-
4tCYCP
-40
+40
75
VCC ≥ 4.5 V
Unit
Min
-
Max
5
Mbps
-
4tCYCP
-
ns
-30
+30
-20
+20
ns
-
50
-
30
-
ns
0
-
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
2tCYCP - 30
-
ns
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
-
75
-
50
-
30
ns
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK   SOT
delay time
tSHOVE
SIN  SCK 
setup time
tIVSLE
SCK   SIN
hold time
SCK falling time
SCK rising time
Pin
name
tSLIXE
tF
tR
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
Notes:
−
The above characteristics apply to clock synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 50 pF.
Document Number: 002-05675 Rev.*C
Page 68 of 99
MB9A1A0N Series
tSCYC
VOH
SCK
VOL
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
tR
VOH
VOL
tIVSLE
SIN
VIL
tF
*
SOT
VIL
tSHSL
VIH
VIH
tSHOVE
VOH
VOL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05675 Rev.*C
Page 69 of 99
MB9A1A0N Series
CSIO (SPI = 1, SCINV = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Baud rate
Serial clock
cycle time
Symbol
Pin
name
Conditions
-
-
-
VCC  2.7 V
Min
-
Max
5
2.7 V ≤
VCC  4.5 V
Min
Max
5
VCC ≥ 4.5 V
Unit
Min
-
Max
5
Mbps
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
4tCYCP
-
ns
SCK   SOT
delay time
tSLOVI
SCKx,
SOTx
-40
+40
-30
+30
-20
+20
ns
SIN  SCK 
setup time
tIVSHI
75
-
50
-
30
-
ns
SCK  SIN
hold time
tSHIXI
0
-
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
2tCYCP - 30
-
ns
SOT  SCK 
delay time
Serial clock L
pulse width
Serial clock H
pulse width
tSOVHI
Master
mode
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
2tCYCP - 10
-
ns
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
tCYCP + 10
-
ns
-
75
-
50
-
30
ns
10
-
10
-
10
-
ns
20
-
20
-
20
-
ns
-
5
5
-
5
5
-
5
5
ns
ns
SCK   SOT
delay time
tSLOVE
SIN  SCK 
setup time
tIVSHE
SCK   SIN
hold time
SCK falling time
SCK rising time
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
tSHIXE
tF
tR
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Slave mode
Notes:
−
The above characteristics apply to clock synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 50 pF.
Document Number: 002-05675 Rev.*C
Page 70 of 99
MB9A1A0N Series
tSCYC
VOH
SCK
tSOVHI
SOT
VOH
VOL
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VIH
VIL
Master mode
tR
tF
tSHSL
SCK
VIH
VIH
VIL
tSLSH
VIL
VIL
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
SIN
VIH
VIL
Slave mode
UART external clock input (EXT = 1)
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Serial clock L pulse width
Serial clock H pulse width
SCK falling time
SCK rising time
Symbol
tSLSH
tSHSL
tF
tR
Conditions
CL = 50 pF
Max
tCYCP + 10
tCYCP + 10
-
5
5
Unit
Remarks
ns
ns
ns
ns
tF
tR
tSHSL
SCK
V IL
Document Number: 002-05675 Rev.*C
Value
Min
V IH
tSLSH
V IH
V IL
V IL
V IH
Page 71 of 99
MB9A1A0N Series
12.4.10 External Input Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Pin name
Value
Min
Conditions
Max
Unit
ADTG
Input pulse width
tINH,
tINL
FRCKx
ICxx
DTTIxX
IGTRG
INTxx,
NMIX
WKUPx
Remarks
A/D converter trigger input
-
*2
*3
*4
2tCYCP*1
-
ns
2tCYCP*1
2tCYCP*1
2tCYCP + 100*1
500
500
-
ns
ns
ns
ns
ns
Free-run timer input clock
Input capture
Waveform generator
PPG IGBT mode
External interrupt,
NMI
Deep standby wake up
*1: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, PPG, External interrupt, Deep Standby mode
Controller are connected to, see Block Diagram in this data sheet.
*2: When in Run mode, in Sleep mode.
*3: When in Timer mode, in RTC mode, in Stop mode.
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.
Document Number: 002-05675 Rev.*C
Page 72 of 99
MB9A1A0N Series
12.4.11 I2C Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
SCL clock frequency
(Repeated) START condition
hold time
SDA   SCL 
SCL clock L width
SCL clock H width
(Repeated) START condition
setup time
SCL   SDA 
Data hold time
SCL   SDA  
Data setup time
SDA    SCL 
STOP condition setup time
SCL   SDA 
Bus free time between
STOP condition and
START condition
Noise filter
Symbol
Conditions
fSCL
Standard-mode
Min
Max
0
100
Fast-mode
Min
Max
0
400
Unit
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2 tCYCP*4
-
2 tCYCP*4
-
ns
tSUSTA
tHDDAT
tSP
CL = 50 pF,
R = (VP/IOL)*1
-
Remarks
*1: R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
VP indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of
tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number which I2C is connected to, see Block Diagram in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
SDA
SCL
Document Number: 002-05675 Rev.*C
Page 73 of 99
MB9A1A0N Series
12.4.12 JTAG Timing
(VCC = 1.8V to 5.5V, VSS = 0V, TA = - 40C to + 85C)
Parameter
Symbol
Pin name
TMS,TDI setup
time
tJTAGS
TCK,
TMS,TDI
TMS,TDI hold
time
tJTAGH
TCK,
TMS,TDI
TDO delay time
tJTAGD
TCK,
TDO
Conditions
Value
Unit
Min
Max
15
-
ns
VCC  4.5 V
15
-
ns
VCC ≥ 4.5 V
-
30
2.7 V ≤VCC  4.5 V
-
45
60
VCC ≥ 4.5 V
VCC  4.5 V
VCC ≥ 4.5 V
VCC  2.7 V
Remarks
ns
Note:
−
When the external load capacitance CL = 50 pF.
TCK
TMS/TDI
TDO
Document Number: 002-05675 Rev.*C
Page 74 of 99
MB9A1A0N Series
12.5 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40C to + 85C)
Parameter
Pin
name
Symbol
Min
1.0
4.0
0.3
1.2
50
Value
Typ
± 2.5
± 3.5
± 1.8
± 2.7
±9
AVRH ± 9
Max
12
± 3.0
± 4.0
± 1.9
± 2.9
± 20
AVRH ± 20
-
-
μs
-
10
μs
-
1000
ns
Unit
Resolution
-
-
Integral Nonlinearity
INL
-
Differential Nonlinearity
DNL
-
Zero transition voltage
Full-scale transition voltage
VZT
VFST
ANxx
ANxx
Conversion time*1
-
-
Sampling time*2
tS
-
Compare clock cycle*3
tCCK
-
tSTT
-
-
-
1
μs
CAIN
-
-
-
pF
LSB
Period of operation enable
state transitions
Analog input capacity
200
bit
LSB
LSB
LSB
LSB
mV
mV
Analog input resistor
RAIN
-
-
-
Interchannel disparity
Analog port input leak
current
Analog input voltage
-
-
-
-
15
0.9
1.6
4.0
4
-
ANxx
-
-
0.3
μA
-
ANxx
-
AVRH
V
Reference voltage
-
AVRH
AVSS
2.7
AVCC
-
AVCC
V
kΩ
Remarks
AVCC ≥ 2.7 V
AVCC < 2.7 V
AVCC ≥ 2.7 V
AVCC < 2.7 V
AVCC ≥ 2.7 V
AVCC < 2.7 V
AVCC ≥ 2.7 V
AVCC < 2.7 V
AVCC ≥ 2.7 V
AVCC < 2.7 V
AVCC ≥ 4.5 V
2.7 V ≤ AVCC < 4.5 V
AVCC < 2.7 V
AVCC ≥ 2.7 V
AVCC < 2.7 V
*1: The conversion time is the value of sampling time (tS) + compare time (tC).
The condition of the minimum conversion time is the following.
AVCC ≥ 2.7 V, HCLK=20 MHz
sampling time: 0.3 μs, compare time: 0.7 μs
AVCC < 2.7 V, HCLK=20 MHz
sampling time: 1.2 μs, compare time: 2.8 μs
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).
For setting*4 of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family
Peripheral Manual Analog Macro Part.
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.
For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.
The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.
*2: A necessary sampling time changes by external impedance.
Ensure to set the sampling time to satisfy (Equation 1).
*3: The compare time (tC) is the value of (Equation 2).
Document Number: 002-05675 Rev.*C
Page 75 of 99
MB9A1A0N Series
ANxx
Analog input pin
Analog
Signal source
REXT
Comparator
RAIN
CAIN
(Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9
tS:
Sampling time
RAIN:
input resistor of A/D = 0.9 kΩ at 4.5 V ≤ AVCC ≤ 5.5 V
input resistor of A/D = 1.6 kΩ at 2.7 V ≤ AVCC < 4.5 V
input resistor of A/D = 4.0 kΩ at 1.8 V ≤ AVCC < 2.7 V
CAIN:
input capacity of A/D = 15 pF at 1.8 V ≤ AVCC ≤ 5.5 V
REXT:
Output impedance of external circuit
(Equation 2) tC = tCCK × 14
tC:
Compare time
tCCK:
Compare clock cycle
Document Number: 002-05675 Rev.*C
Page 76 of 99
MB9A1A0N Series
Definition of 12-bit A/D Converter Terms
• Resolution:
• Integral Nonlinearity:
• Differential Nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point
(0b000000000000←→0b000000000001) and the full-scale transition point
(0b111111111110←→0b111111111111) from the actual conversion characteristics.
Deviation from the ideal value of the input voltage that is required to change
the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Actual conversion
characteristics
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVSS
Actual conversion characteristics
AVRH
AVSS
AVRH
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05675 Rev.*C
Page 77 of 99
MB9A1A0N Series
12.6 10-bit D/A Converter
Electrical Characteristics for the D/A Converter
(VCC = AVCC = 1.8V to 5.5V, VSS = AVSS = 0V, TA = - 40C to + 85C)
Parameter
Resolution
Symbol
Integral Nonlinearity
Differential Nonlinearity
tC20
tC100
INL
DNL
Output Voltage offset
VOFF
Analog output
impedance
RO
Output undefined
period
tR
Conversion time
Pin name
DAx
Min
0.37
1.87
-4.0
-0.9
-50.0
2.45
5.0
Value
Typ
0.53
2.67
3.50
9.0
Max
10
0.69
3.47
+4.0
+0.9
10.0
+5.5
4.55
-
-
-
250
Unit
bit
μs
μs
LSB
LSB
mV
mV
kΩ
MΩ
Remarks
Load 20 pF
Load 100 pF
*
*
Code is 0x000
Code is 0x3FF
D/A operation
D/A stop
ns
*: No-load
Document Number: 002-05675 Rev.*C
Page 78 of 99
MB9A1A0N Series
12.7 Low-Voltage Detection Characteristics
12.7.1 Low-Voltage Detection Reset
(TA = - 40C to + 85C)
Parameter
Symbol
Conditions
Min
1.43
1.53
1.80
1.90
Value
Typ
1.53
1.63
1.93
2.03
Max
1.63
1.73
2.06
2.16
Unit
Detected voltage
Released voltage
Detected voltage
Released voltage
VDLR
VDHR
VDLR
VDHR
LVD stabilization wait
time
tLVDRW
-
-
-
633 × tCYCP*
μs
Detection delay time
tLVDRD
dV/dt ≥ -4mV/μs
-
-
60
μs
SVHR = 0001
SVHR = 0100
V
V
V
V
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05675 Rev.*C
Page 79 of 99
MB9A1A0N Series
12.7.2 Interrupt of Low-Voltage Detection
Normal mode
(TA = - 40C to + 85C)
Parameter
Symbol
Conditions
Min
1.87
1.97
1.96
2.06
2.05
2.15
2.15
2.25
2.24
2.34
2.33
2.43
2.43
2.53
2.61
2.71
2.80
2.90
2.99
3.09
3.36
3.46
3.45
3.55
3.73
3.83
3.83
3.93
3.92
4.02
Value
Typ
2.00
2.10
2.10
2.20
2.20
2.30
2.30
2.40
2.40
2.50
2.50
2.60
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.60
3.70
3.70
3.80
4.00
4.10
4.10
4.20
4.20
4.30
Max
2.13
2.23
2.24
2.34
2.35
2.45
2.45
2.55
2.56
2.66
2.67
2.77
2.77
2.87
2.99
3.09
3.20
3.30
3.41
3.51
3.84
3.94
3.95
4.05
4.27
4.37
4.37
4.47
4.48
4.58
Unit
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
VDLI
VDHI
LVD stabilization
wait time
tLVDIW
-
-
-
633 × tCYCP*
μs
Detection delay time
tLVDID
dV/dt ≥
- 4mV/μs
-
-
60
μs
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0101
SVHI = 0110
SVHI = 0111
SVHI = 1000
SVHI = 1001
SVHI = 1010
SVHI = 1011
SVHI = 1100
SVHI = 1101
SVHI = 1110
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05675 Rev.*C
Page 80 of 99
MB9A1A0N Series
Low power mode
(TA = - 40C to + 85C)
Parameter
Symbol
Conditions
Min
1.80
Value
Typ
2.00
Max
2.20
V
When voltage drops
1.90
2.10
2.30
V
When voltage rises
1.89
2.10
2.31
V
When voltage drops
1.99
2.20
2.41
V
When voltage rises
1.98
2.20
2.42
V
When voltage drops
2.08
2.30
2.52
V
When voltage rises
2.07
2.30
2.53
V
When voltage drops
2.17
2.40
2.63
V
When voltage rises
2.16
2.40
2.64
V
When voltage drops
2.26
2.50
2.74
V
When voltage rises
2.25
2.50
2.75
V
When voltage drops
2.35
2.60
2.85
V
When voltage rises
2.34
2.60
2.86
V
When voltage drops
2.44
2.70
2.96
V
When voltage rises
2.52
2.80
3.08
V
When voltage drops
2.62
2.90
3.18
V
When voltage rises
2.70
3.00
3.30
V
When voltage drops
2.80
3.10
3.40
V
When voltage rises
2.88
3.20
3.52
V
When voltage drops
2.98
3.30
3.62
V
When voltage rises
3.24
3.60
3.96
V
When voltage drops
3.34
3.70
4.06
V
When voltage rises
3.33
3.70
4.07
V
When voltage drops
3.43
3.80
4.17
V
When voltage rises
3.60
4.00
4.40
V
When voltage drops
3.70
4.10
4.50
V
When voltage rises
3.69
4.10
4.51
V
When voltage drops
3.79
4.20
4.61
V
When voltage rises
3.78
4.20
4.62
V
When voltage drops
3.88
4.30
4.72
V
When voltage rises
Unit
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
Detected voltage
VDLIL
Released voltage
VDHIL
LVD stabilization
wait time
tLVDILW
-
-
-
8039 × tCYCP*
μs
Detection delay time
tLVDILD
dV/dt ≥ - 0.4mV/μs
-
-
800
μs
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0101
SVHI = 0110
SVHI = 0111
SVHI = 1000
SVHI = 1001
SVHI = 1010
SVHI = 1011
SVHI = 1100
SVHI = 1101
SVHI = 1110
Remarks
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05675 Rev.*C
Page 81 of 99
MB9A1A0N Series
12.8 Flash Memory Write/Erase Characteristics
12.8.1 Write / Erase time
(VCC = 2.0V to 5.5V, TA = - 40C to + 85C)
Parameter
Value
Typ*
1.6
0.4
Max*
7.5
2.1
Half word (16-bit)
write time
25
Chip erase time
4
Sector erase
time
Large Sector
Small Sector
Unit
Remarks
s
Includes write time prior to internal erase
400
μs
Not including system-level overhead time.
19.2
s
Includes write time prior to internal erase
*: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write.
12.8.2 Write cycles and data hold time
Erase/write cycles (cycle)
Data hold time (year)
1,000
20 *
10,000
100,000
10 *
5*
Remarks
*: At average + 85C
Document Number: 002-05675 Rev.*C
Page 82 of 99
MB9A1A0N Series
12.9 Return Time from Low-Power Consumption Mode
12.9.1 Return Factor: Interrupt/WKUP
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Value
Typ
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Max*
40
80
μs
630
1260
μs
630
1260
μs
1083
2100
μs
1099
2127
μs
tICNT
Sub Timer mode
RTC mode,
Stop mode
Deep Standby RTC mode
Deep Standby Stop mode
Remarks
μs
tCYCC
Low-speed CR Timer mode
Unit
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by external interrupt*)
External
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-05675 Rev.*C
Page 83 of 99
MB9A1A0N Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)
Internal
resource
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family
Peripheral Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before
the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual.
Document Number: 002-05675 Rev.*C
Page 84 of 99
MB9A1A0N Series
12.9.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Unit
Typ
Max*
359
647
μs
359
647
μs
929
1787
μs
Sub Timer mode
929
1787
μs
RTC/Stop mode
1099
2127
μs
Deep Standby RTC mode
Deep Standby Stop mode
1099
2127
μs
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Low-speed CR Timer mode
tRCNT
Remarks
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Document Number: 002-05675 Rev.*C
Start
Page 85 of 99
MB9A1A0N Series
Operation example of return from low power consumption mode (by internal resource reset*)
Internal
resource
reset
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Start
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family
Peripheral Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before
the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual.
−
The time during the power-on reset/low-voltage detection reset is excluded. See (12.4.7)
Power-on Reset Timing in 12.4 AC Characteristics in Electrical Characteristics for the detail on
the time during the power-on reset/low-voltage detection reset.
−
When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the
main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time
or the Main PLL clock stabilization wait time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05675 Rev.*C
Page 86 of 99
MB9A1A0N Series
13. Ordering Information
Part number
On-chip
Flash
memory
On-chip
SRAM
MB9AF1A1LPMC1-G-SNE2
64 Kbyte
12 Kbyte
MB9AF1A2LPMC1-G-SNE2
128 Kbyte
16 Kbyte
MB9AF1A1LPMC-G-SNE2
64 Kbyte
12 Kbyte
MB9AF1A2LPMC-G-UNE2
128 Kbyte
16 Kbyte
MB9AF1A1MPMC-G-UNE2
64 Kbyte
12 Kbyte
MB9AF1A2MPMC-G-UNE2
128 Kbyte
16 Kbyte
MB9AF1A1MPMC1-G-SNE2
64 Kbyte
12 Kbyte
MB9AF1A2MPMC1-G-UNE2
128 Kbyte
16 Kbyte
MB9AF1A1NPMC-G-SNE2
64 Kbyte
12 Kbyte
MB9AF1A2NPMC-G-UNE2
128 Kbyte
16 Kbyte
MB9AF1A1NPF-G-SNE1
64 Kbyte
12 Kbyte
MB9AF1A2NPF-G-SNE1
128 Kbyte
16 Kbyte
Document Number: 002-05675 Rev.*C
Package
Packing
Plastic  LQFP
(0.5mm pitch), 64-pin
(LQD064)
Plastic  LQFP
(0.65mm pitch), 64-pin
(LQG064)
Plastic  LQFP
(0.5mm pitch), 80-pin
(LQH080)
Plastic  LQFP
(0.65mm pitch), 80-pin
(LQJ080)
Tray
Plastic  LQFP
(0.5mm pitch), 100-pin
(LQI100)
Plastic  QFP
(0.65mm pitch), 100-pin
(PQH100)
Page 87 of 99
MB9A1A0N Series
14. Package Dimensions
Package Type
Package Code
LQFP 64
LQD064
4
D
D1
48
5 7
33
33
32
49
48
32
49
17
64
5
7
E1
E
4
3
6
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.08
C A-B
D
8
TOP VIEW
A
2
9
A
A'
0.08 C
SEATING
PLANE
L1
0.25
L
A1
c
b
SECTION A-A'
10
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
A
A1
1. 70
0.00
0.20
b
0.15
0.2
c
0.09
0.20
D
12.00 BSC.
D1
10.00 BSC.
e
0.50 BSC
E
12.00 BSC.
E1
10.00 BSC.
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
002-11499 **
PACKAGE OUTLINE, 64 LEAD LQFP
10.0X10.0X1.7 MM LQD064 Rev**
Document Number: 002-05675 Rev.*C
Page 88 of 99
MB9A1A0N Series
Package Type
Package Code
LQFP 64
LQG064
D
D1
48
4
5 7
33
33
32
49
48
32
49
17
64
E1 E
5
7
4
3
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.13
C A-B
D
8
TOP VIEW
2
A
A
A'
0.10 C
SEATI NG
PLA NE
0.2 5
L1
L
9
A1
10
c
b
SEC TION A -A'
SIDE VIEW
SYMBOL
DIMENSION
MIN.
NOM. MAX.
0.00
0.20
1.70
A
A1
b
0.27
c
0.09
0.32
0.37
0.20
D
14.00 BSC
D1
12.00 BSC
e
0.65 BSC
E
14.00 BSC
E1
12.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
002-13881 **
PACKAGE OUTLINE, 64 LEAD LQFP
12.0X12.0X1.7 MM LQG064 REV**
Document Number: 002-05675 Rev.*C
Page 89 of 99
MB9A1A0N Series
Package Type
Package Code
LQFP 80
LQH080
D
D1
60
4
5 7
60
41
41
40
61
40
61
21
80
5
7
E1
E
4
3
6
21
80
1
20
D
e
20
2 5 7
0.10 C A-B D
3
b
0.08
C A-B
1
BOTTOM VIEW
D
0.20 C A-B D
8
TOP VIEW
2
A
A
A'
0.08 C
SIDE VIEW
SEATING
PLANE
9
L1
L
0.25
A1
10
c
b
SECTION A-A'
DIMENSIONS
SYMBOL
MIN. NOM. MAX.
1. 70
A
A1
0.15
0.05
b
0.15
0.27
c
0.09
0.20
D
14.00 BSC.
D1
12.00 BSC.
e
0.50 BSC
E
14.00 BSC.
12.00 BSC.
E1
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
002-11501 **
PACKAGE OUTLINE, 80 LEAD LQFP
12.0X12.0X1.7 MM LQH080 Rev **
Document Number: 002-05675 Rev.*C
Page 90 of 99
MB9A1A0N Series
Package Type
Package Code
LQFP 80
LQJ080
D
D1
60
4
5 7
41
41
61
40
E1
60
40
61
21
80
E
5
7
4
3
6
80
21
1
20
20
2 5 7
1
0.10 C A-B D
3
e
0.20 C A-B D
b
ddd
C A-B
D
8
2
A
9
A
A'
0.10 C
SEATING
PLANE
c
L1
0.2 5
A1
10
b
SECTION A-A'
L
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
1.70
A
A1
0.00
b
0.16
c
0.09
0.20
0.32
0.38
0.20
D
16.00 BSC
D1
14.00 BSC
e
0.65 BSC
E
16.00 BSC
E1
14.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
8
002-14043 **
PACKAGE OUTLINE, 80 LEAD LQFP
14.0X14.0X1.7 MM LQJ080 REV**
Document Number: 002-05675 Rev.*C
Page 91 of 99
MB9A1A0N Series
Package Type
Package Code
LQFP 100
LQI100
D
D1
75
4
D
5 7
51
D1
51
50
76
4
5 7
75
50
76
E1 E
5 4
7
E1 E
5 4
7
3
6
26
100
1
26
25
1
25
2 5 7
e
100
BOTTOM VIEW
0.1 0 C A-B D
3
0.2 0 C A-B D
b
TOP VIEW
8
0.0 8
C A-B
D
2
A
9
A
SEAT ING
PLA NE
A'
0.25
L1
0.0 8 C
c
A1
b
10
SECTION A-A'
L
SIDE VIEW
SYMBOL
DETAIL A
DIMENSIONS
MIN.
NOM. MAX.
1.70
A
A1
0.05
b
0.15
0.15
0.27
c
0.09
0.20
D
16.00 BSC
D1
14.00 BSC
e
0.50 BSC
E
16.00 BSC
E1
14.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
NOTES :
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING
LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
4. TO BE DETERMINED AT SEATING PLANE C.
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
AT DATUM PLANE H.
6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED
WITHIN THE ZONE INDICATED.
7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY
SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST
FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS.
BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER
SECTIONS OF THE MOLDER BODY.
8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR
PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b
MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON
THE LOWER RADIUS OR THE LEAD FOOT.
9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD
BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO
THE LOWEST POINT OF THE PACKAGE BODY.
002-11500 *A
PACKAGE OUTLINE, 100 LEAD LQFP
14.0X14.0X1.7 MM LQI100 REV*A
Document Number: 002-05675 Rev.*C
Page 92 of 99
MB9A1A0N Series
Package Type
Package Code
QFP 100
PQH100
D
D1
4
5 7
80
51
81
51
50
80
50
81
31
100
E1 E
5
7
6
3
4
31
100
1
30
e
3
0.40 C A-B D
30
2 5 7
1
0.20 C A-B D
b
0.13
C A-B
D
BOTTOM VIEW
8
TOP VIEW
2
9
A
A'
SEATING
PLANE
L2
c
10
b
0.10 C
SECTION A-A'
DETAIL A
SIDE VIEW
SYMBOL
DIMENSIONS
MIN.
NOM. MAX.
A1
0.05
0.45
b
0.27
c
0.11
A
3.35
0.32
0.23
D
23.90 BSC
D1
20.00 BSC
e
0.65 BSC
E
17.90 BSC
E1
14.00 BSC
0
L
0.37
8
0.73
0.88
L1
1.95 REF
L2
0.25 BSC
1.03
002-15156 **
PACKAGE OUTLINE, 100 LEAD QFP
20.00X14.00X3.35 MM PQH100 REV**
Document Number: 002-05675 Rev.*C
Page 93 of 99
MB9A1A0N Series
15. Errata
This chapter describes the errata for MB9A1A0N Series. Details include errata trigger conditions, scope of impact, available
workaround, and silicon revision applicability.
Contact your local Cypress Sales Representative if you have questions.
15.1 Part Numbers Affected
Part Number
Initial Revision
MB9AF1A1LPMC1-G-SNE2, MB9AF1A2LPMC1-G-SNE2, MB9AF1A1LPMC-G-SNE2,
MB9AF1A2LPMC-G-SNE2, MB9AF1A2LPMC-G-UNE2, MB9AF1A1MPMC-G-SNE2,
MB9AF1A1MPMC-G-UNE2, MB9AF1A2MPMC-G-SNE2, MB9AF1A2MPMC-G-UNE2,
MB9AF1A1MPMC1-G-SNE2, MB9AF1A2MPMC1-G-SNE2, MB9AF1A2MPMC1-G-UNE2,
MB9AF1A1NPMC-G-SNE2, MB9AF1A2NPMC-G-SNE2, MB9AF1A2NPMC-G-UNE2,
MB9AF1A1NPF-G-SNE1, MB9AF1A2NPF-G-SNE1
15.2 Qualification Status
Product Status: In Production − Qual.
15.3 Errata Summary
This table defines the errata applicability to available devices.
Items
Part Number
Silicon Revision
Fix Status
[15.4.1] HDMI-CEC polling message issue
Refer to 15.1
Initial Rev
Next silicon is not planned
[15.4.2] RTC delay issue
Refer to 15.1
Initial Rev
Next silicon is not planned
15.4 Errata Detail
15.4.1
HDMI-CEC polling message issue
 PROBLEM DEFINITION
Error#1) While MCU sends a Polling Message, it always returns a NACK to a message coming to the MCU from another node.
Error#2) MCU always waits for 7-bit signal free on CEC line before it drives the line even when the last line initiator was another
node.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This error always happens.
 SCOPE OF IMPACT
MCU does not reply properly to another node.
 WORKAROUND
The software workaround is applied to Error #1.
1.
Store 0x0 to SFREE register.
2.
Monitor CEC line with GPIO and wait until 1 lasts for the signal free time.
3.
Store frame data to TXDATA register and store 0x0F to RCADR1 or RCADR2 register.
It sends a message after 3~4 clocks of 32.768 kHz clock when TXDATA is stored 0x0F.
Document Number: 002-05675 Rev.*C
Page 94 of 99
MB9A1A0N Series
If the device receives a frame from another node within 2~3 clocks after storing TXDATA, the bus error occurs and if the device
receives a frame from another node within 3~4 clocks after storing TXDATA, the arbitration lost occurs. In these cases:
4-A-1. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
4-A-2. Return back to step 2 above
If the device receives a frame from another node within 1~2 clocks after storing TXDATA, take these steps.
4-B-1. Monitor CEC line with GPIO after 50us from storing TXDATA
4-B-2. Set TXEN to 1 -> 0 -> 1 immediately when GPIO finds state low on the CEC line
4-B-3. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
4-B-4. Return back to step 2 above
For Error #2, there is no software workaround, but signal free time of fixed 7-bit does not violate HDMI-CEC specification. The
specification says signal free time must be more than and equals to 5-bit.
 FIX STATUS
The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned.
15.4.2
RTC delay issue
 PROBLEM DEFINITION
RTC delays when software reset or APB2 reset occurs.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This error happens when software reset or APB2 reset occurs.
 SCOPE OF IMPACT
RTC delays and does not time correctly.
 WORKAROUND
RTC block is supplied with sub-clock. Both software reset and APB2 reset disable two clocks of sub-clock to RTC block. The
workaround is to count occurrence of software and APB2 reset and calculate how many clocks of sub-clock were disabled and add
one second to RTC counter when accumulated disabled sub-clock period reaches one second.
 FIX STATUS
The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned.
Document Number: 002-05675 Rev.*C
Page 95 of 99
MB9A1A0N Series
Major Changes
Spansion Publication Number: DS706-00068
Page
Section
Revision 0.1
Revision 1.0
43
BLOCK DIAGRAM
ELECTRICAL
CHARACTERISTICS
58,59
3.DC Characteristics (1) Current
Rating
Revision 2.0
Features
2
· On-chip Memories
Packages
7 - 31
Pin Assignment
List of Pin Functions
Change Results
Initial release
Changed from Preliminary to Full Producton
Deleted a part of QFN
Added note for MB9AF1AxL
Revised the values of “TBD”
Changed the description of on-chip SRAM
Deleted QFN package
40
Handling Devices
Crystal oscillator circuit
Added the following description
"Evaluate oscillation of your using crystal oscillator by your
mount board."
44
Memory Map
· Memory map(2)
Added the summary of Flash memory sector
57 - 59
Electrical Characteristics
3. DC Characteristics
(1) Current rating
· Changed the table format
· Added Main Timer mode current
· Added Flash Memory Current
· Moved A/D Converter Current
· Moved D/A Converter Current
60
63
64
Electrical Characteristics
3. DC Characteristics
(2) Pin Characteristics
Electrical Characteristics
4. AC Characteristics
(4-1) Operating Conditions of Main
PLL
(4-2) Operating Conditions of Main
PLL
Electrical Characteristics
4. AC Characteristics
(6) Power-on Reset Timing
66 - 73
Electrical Characteristics
4. AC Characteristics
(8) CSIO/UART Timing
77
Electrical Characteristics
5. 12bit A/D Converter
81
84
Electrical Characteristics
7. Low-voltage Detection
Characteristics
Electrical Characteristics
8. Flash Memory Write/Erase
Characteristics
Document Number: 002-05675 Rev.*C
Added the input leak current of CEC port at power off
· Added the figure of Main PLL connection
· Changed the figure of timing
· Changed from Reset release delay time(tOND) to Time until
releasing Power-on reset(tPRT)
· Modified from UART Timing to CSIO/UART Timing
· Changed from Internal shift clock operation to Master mode
· Changed from External shift clock operation to Slave mode
· Added the typical value of Integral Nonlinearity, Differential
Nonlinearity, Zero transition voltage and Full-scale transition
voltage
· Added Conversion time at AVCC < 2.7 V
Deleted the figure
Change to the erase time of include write time prior to internal
erase
Page 96 of 99
MB9A1A0N Series
Page
Section
Change Results
Electrical Characteristics
9. Return Time from Low-Power
Added Return Time from Low-Power Consumption Mode
Consumption Mode
89
Ordering Information
Changed notation of part number
NOTE: Please see “Document History” about later revised information.
85 - 88
Document Number: 002-05675 Rev.*C
Page 97 of 99
MB9A1A0N Series
Document History
Document Title: MB9A1A0N Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller
Document Number: 002-05675
Revision
ECN
**
-
Orig. of
Submission
Change
Date
AKIH
06/30/2015
Description of Change
Migrated to Cypress and assigned document number 002-05675.
No change to document contents or format.
*A
5193131
AKIH
03/31/2016
Updated to Cypress format.
Modified RTC description in “Features, Real-Time Clock(RTC)”. Changed starting
count value from 01 to 00. Deleted “second, or day of the week” in the Interrupt
function. (Page 2)
Changed package code as the following table in following section.
2. Package (Page 7)
3. Pin Assignment (Page 8 -11)
12. Electrical Characteristics (Page 53)
13. Ordering Information (Page 87)
14. Package Dimensions (Page 88 - 93)
Before
*B
5513616
HTER
02/08/2017
After
FPT-64P-M38
LQD064
FPT-64P-M39
LQG064
FPT-80P-M37
LQH080
FPT-80P-M40
LQJ080
FPT-100P-M23
LQI100
FPT-100P-M06
PQH100
Added the Baud rate spec in “12.4.9 CSIO/UART Timing” (Page 64 - 70)
Changed Part numbers in 13. Ordering Information (Page 87)
“MB9AF1A2LPMC-G-SNE2” to “MB9AF1A2LPMC-G-UNE2”
“MB9AF1A2MPMC-G-SNE2” to “MB9AF1A2MPMC-G-UNE2”
“MB9AF1A2NPMC-G-SNE2” to “MB9AF1A2NPMC-G-UNE2”
“MB9AF1A1MPMC-G-SNE2” to “MB9AF1A1MPMC-G-UNE2”
“MB9AF1A2MPMC1-G-SNE2” to “MB9AF1A2MPMC1-G-UNE2”
Added 15. Errata (Page 94 - 95)
*C
5768635
YSAT
Document Number: 002-05675 Rev.*C
06/12/2017
Adapted new cypress logo
Page 98 of 99
MB9A1A0N Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
Microcontroller
cypress.com/mcu
PSoC
cypress.com/psoc
Powermanagement ICs
cypress.com/pmic
Touch Sensing
USB Controllers
Wireless/RF
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components
Technical Support
cypress.com/support
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any li ability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05675 Rev.*C
June 12, 2017
Page 99 of 99
Similar pages