IRF IRG4PH40UD2-EPBF Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 95239
IRG4PH40UD2-EP
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• UltraFast IGBT optimized for high operating
frequencies up to 200kHz in resonant mode
• IGBT co-packaged with HEXFREDTM ultrafast
ultra-soft-recovery anti-parallel diode for use in
resonant circuits
• Industry standard TO-247AD package with
extended leads
• Lead-Free
Benefits
VCES = 1200V
VCE(on) typ. = 2.43V
G
@VGE = 15V, IC = 21A
E
n-channel
• Higher switching frequency capability than
competitive IGBTs
• Highest efficiency available
• HEXFRED diodes optimized for performance with
IGBTs. Minimized recovery characteristics require
less / no snubbing
Applications
• Induction cooking systems
• Microwave Ovens
• Resonant Circuits
TO-247AD
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ Tc = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current
Clamped Inductive Load current
c
d
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Storage Temperature Range, for 10 sec.
Mounting Torque, 6-32 or M3 screw
Max.
Units
1200
41
21
82
82
10
40
±20
160
65
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf in (1.1N m)
y
y
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC
RθJC
RθCS
RθJA
Junction-to-Case- IGBT
Junction-to-Case- Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Parameter
–––
–––
–––
–––
–––
–––
0.24
–––
0.77
2.5
–––
40
°C/W
Wt
Weight
–––
6 (0.21)
–––
g (oz.)
www.irf.com
1
7/27/04
IRG4PH40UD2-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
e 1200
Collector-to-Emitter Breakdown Voltage
V(BR)CES
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
Gate Threshold Voltage
Threshold Voltage temp. coefficient
gfe
ICES
Forward Transconductance
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
f
18
—
—
—
—
3.0
—
16
—
—
—
—
—
—
—
0.43
2.43
2.97
2.47
—
-11
24
—
—
3.4
3.3
—
Conditions
—
V VGE = 0V, IC = 250µA
—
V VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1mA
IC = 21A
VGE = 15V
3.1
V
IC = 41A
—
See Fig.2, 5
IC = 21A, TJ = 150°C
—
VCE = VGE, IC = 250µA
6.0
— mV/°C VCE = VGE, IC = 250µA
—
S VCE = 100V, IC = 21A
250
µA VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 150°C
5000
3.8
V IF = 10A See Fig.13
IF = 10A, TJ = 150°C
3.7
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
ETS
LE
Cies
Coes
Cres
trr
Min. Typ. Max. Units
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
100
18
34
22
26
100
200
1950
1710
3660
21
25
220
380
6220
13
2100
99
12
50
150
24
50
—
—
140
300
—
—
4490
—
—
—
—
—
—
—
—
—
76
Irr
Diode Peak Reverse Recovery Current
—
—
72
4.4
110
7.0
A
Qrr
Diode Reverse Recovery Charge
—
—
5.9
130
8.8
200
nC
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
—
—
—
250
210
180
380
—
—
2
nC
ns
µJ
ns
µJ
nH
pF
ns
Conditions
IC = 21A
VCC = 400V
VGE = 15V
See Fig.8
IC = 21A, VCC = 800V
VGE = 15V, RG = 10Ω
Energy losses include "tail" and
diode reverse recovery.
See Fig. 9, 10, 11, 18
TJ = 150°C, See Fig. 9, 10, 11, 18
IC = 21A, VCC = 800V
VGE = 15V, RG = 10Ω
Energy losses include "tail" and
diode reverse recovery.
Measured 5mm from package
VGE = 0V
VCC = 30V,
See Fig.7
f = 1.0MHz
TJ=25°C
See Fig
TJ=125°C
14
TJ=25°C
See Fig
TJ=125°C
15
TJ=25°C
See Fig
TJ=125°C
A/µs TJ=25°C
TJ=125°C
16
IF = 8.0A
VR = 200V
di/dt = 200A/µs
See Fig
17
www.irf.com
IRG4PH40UD2-EP
50
Square wave:
45
60% of rated
voltage
Load Current ( A )
40
35
I
30
Ideal diodes
25
20
For both:
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 35W
15
10
5
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 150 o C
10
TJ = 25 o C
V GE = 15V
20µs PULSE WIDTH
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
V CC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
10
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH40UD2-EP
4.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
50
40
30
20
10
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 42 A
3.0
IC = 21 A
IC =10.5 A
2.0
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
, Junction
Temperature
TT
Temperature
( °C( °) C)
J J, Junction
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.01
0.00001
0.10
P DM
0.05
t1
0.02
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD2-EP
3500
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd, C ce SHORTED
C res = C gc
3000
C oes = C ce + C gc
20
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
4000
Cies
2500
2000
1500
Coes
1000
Cres
500
VCE = 400V
IC = 21A
16
12
8
4
0
0
1
0
10
40
60
80
100
120
QG, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
5
4.8
VCE = 800V
VGE = 15V
4.6
TJ = 25°C
I C = 21A
R G = 10 Ω
Total Switching Losses (mJ)
Total Swiching Losses (mJ)
20
4.4
4.2
4
VGE = 15V
VCC = 800V
I C = 42A
10
I C = 21A
I C = 10.5A
3.8
3.6
1
0
10
20
30
40
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH40UD2-EP
1000
16
TJ = 150°C
VCE= 800V
VGE = 15V
14
Total Swiching Losses (mJ)
I C , Collector-to-Emitter Current (A)
R G = 10Ω
12
VGE = 20V
T J = 125 oC
100
10
8
6
4
10
SAFE OPERATING AREA
2
1
0
10
20
30
40
IC, Collecto-to-Emitter (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
50
1
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD2-EP
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
IRG4PH40UD2-EP
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
430µF
80%
of Vce
Ic
D.U.T.
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
∫ Vce Ic dt
t1+5µS
Vce ic dt
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫ Ic dt
trr
id dt
tx
+Vg
tx
10% Irr
10% Vcc
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH40UD2-EP
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 800V
800V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH40UD2-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: T HIS IS AN IRGP30B120KD-E
WIT H ASS EMBLY
LOT CODE 5657
AS SEMB LED ON WW 35, 2000
IN T HE AS SEMBLY LINE "H"
PART NUMB ER
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in as sembly line position
indicates "Lead-Free"
56
ASS EMBLY
LOT CODE
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-247AD package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/04
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages