IRF IRHLF6930Z4 Radiation hardened logic level power mosfet thru-hole Datasheet

PD - 94685
RADIATION HARDENED
LOGIC LEVEL POWER MOSFET
THRU-HOLE (TO-39)
IRHLF6970Z4
60V, P-CHANNEL
TECHNOLOGY
Product Summary
Part Number Radiation Level RDS(on)
ID
IRHLF6970Z4 100K Rads (Si) 1.2Ω
-1.6A
IRHLF6930Z4
300K Rads (Si)
1.2Ω
-1.6A
International Rectifier’s R6 TM Logic Level Power
Mosfets provide simple solution to interfacing CMOS
and TTL control circuits to power devices in space
and other radiation environments. The threshold
voltage remains within accptable operating limits
over the full operating temperature and post radiation. This is achieved while maintaining single event
gate rupture and single event burnout immunity.
These devices are used in applications such as current boost low signal source in PWM, voltage comparator and operational amplifiers.
T0-39
Features:
n
n
n
n
n
n
n
n
n
5V CMOS and TTL Compatible
Fast Switching
Single Event Effect (SEE) Hardened
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Light Weight
Complimentary N-Channel Available IRHLF670Z4
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = -4.5V, TC = 25°C
ID @ VGS = -4.5V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt ➂
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
Units
-1.6
-1.0
-6.4
5.0
0.04
±10
10
-1.6
0.5
-4.0
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (0.063in/1.6mm from case for 10s)
0.98 ( Typical )
g
For footnotes refer to the last page
www.irf.com
1
07/07/03
IRHLF6970Z4
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
-60
—
—
V
—
-0.06
—
V/°C
—
—
1.2
Ω
VGS = -4.5V, ID = -1.0A
➃
-1.0
1.0
—
—
—
—
—
—
-2.0
—
-1.0
-10
V
S( )
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
7.0
-100
100
4.0
1.5
1.8
18
20
15
25
—
VDS = VGS, ID = -250µA
VDS = -10V, IDS = -1.0A ➃
VDS= -48V ,VGS=0V
VDS = -48V,
VGS = 0V, TJ =125°C
VGS = -10V
VGS =10V
VGS = -5.0V, ID = -1.6A
VDS = -30V
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
Typ Max Units
Ω
BVDSS
µA
nA
nC
ns
Test Conditions
VGS = 0V, I D = -250µA
Reference to 25°C, ID = -1.0mA
VDD = -30V, ID = -1.6A,
VGS =-5.0V, RG = 24Ω
nH Measured from Drain lead (6mm /0.25in
from package) to Source lead(6mm/0.25in
from packge)with Source wire internally
bonded from Source pin to Drain pad
C iss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
177
40
8.0
Rg
Gate Resistance
—
28
—
—
—
—
pF
VGS = 0V, VDS = -25V
f = 1.0MHz
Ω
f = 5.0MHz, open drain
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
-1.6
-6.4
-5.0
50
50
Test Conditions
A
V
ns
nC
Tj = 25°C, IS = -1.6A, VGS = 0V ➃
Tj = 25°C, IF =-1.6A, di/dt ≤ -100A/µs
VDD ≤ -25V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
Junction-to-Case
Min Typ Max Units
—
—
25
Test Conditions
°C/W
Note: Corresponding Spice and Saber models are available on International Rectifier Web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHLF6970Z4
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
VSD
100K Rads(Si)1
Min
Max
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source ➃
On-State Resistance (TO-39)
Diode Forward Voltage ➃
300KRads(Si)2
Min
Max
Units
-60
-1.0
—
—
—
—
—
-2.0
-100
100
-1.0
1.2
-60
-1.0
—
—
—
—
—
-2.0
-100
100
-10
1.2
nA
—
-5.0
—
-5.0
V
V
µA
Ω
Test Conditions
VGS = 0V, ID = -250µA
VGS = VDS, ID = -250µA
VGS =-10V
VGS = 10 V
VDS=-48V, VGS =0V
VGS = -4.5V, ID =-1.0A
VGS = 0V, IS = -1.6A
1. Part number IRHLF6970Z4
2. Part number IRHLF6930Z4
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
LET
Energy Range
VDS (V)
(MeV)
(µm)
0V
2V
4V
5V
6V
7V
8V
10V
Br
37.9
285
36.8
-60
-60
-60
-60
-60
-50
-35
-25
I
59.9
345
32.7
-60
-60
-60
-60
-60
-20
-
-
Au
82.3
357
28.5
-60
-60
-60
-60
-
-
-
-
VDS
(MeV/(mg/cm2))
@VGS= @VGS= @VGS= @VGS= @VGS= @VGS= @VGS= @VGS=
-70
-60
-50
-40
-30
-20
-10
0
Br
I
Au
0
2
4
6
8
10
12
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHLF6970Z4
10
VGS
TOP
-10V
-7.5V
-5.0V
-4.0V
-3.5V
-3.0V
-2.5V
BOTTOM -2.25V
1
-2.25V
60µs PULSE WIDTH
Tj = 25°C
1
10
1
60µs PULSE WIDTH
Tj = 150°C
0.1
100
10
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current ( Α)
T J = 25°C
T J = 150°C
1
VDS = -25V
15
60µs PULSE
WIDTH
0.1
3
4
5
6
7
-V GS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
10
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
2
1
-VDS , Drain-to-Source Voltage (V)
-VDS , Drain-to-Source Voltage (V)
1
-2.25V
0.1
0.1
0.1
VGS
-10V
-7.5V
-5.0V
-4.0V
-3.5V
-3.0V
-2.5V
BOTTOM -2.25V
TOP
-I D , Drain-to-Source Current (A)
-I D , Drain-to-Source Current (A)
10
Pre-Irradiation
8
ID = -1.6A
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -4.5V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
250
12
-VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
200
C, Capacitance (pF)
IRHLF6970Z4
Ciss
150
100
C
oss
50
C
rss
VDS = -48V
VDS = -30V
VDS = -12V
10
8
6
4
2
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
1
10
0
100
1
2
3
4
5
QG , Total Gate Charge (nC)
-VDS , Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
10
OPERATION IN THIS AREA LIMITED
BY RDS(on)
-I D , Drain-to-Source Current (A)
-I SD , Reverse Drain Current ( Α)
ID = -1.6A
T J = 150°C
T J = 25°C
1
VGS = 0V
0.1
0
1
2
3
4
5
6
-VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
100µs
1
1ms
0.1
7
Tc = 25°C
Tj = 150°C
Single Pulse
1
10ms
10
100
1000
-VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHLF6970Z4
Pre-Irradiation
1.6
RD
VDS
VGS
-I D , Drain Current (A)
1.3
D.U.T.
RG
-
+
1.0
V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.6
Fig 10a. Switching Time Test Circuit
0.3
td(on)
tr
t d(off)
tf
VGS
10%
0.0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
90%
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC)
100
D = 0.50
10
0.20
0.10
0.05
0.02
0.01
1
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.1
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHLF6970Z4
L
-
D .U .T
RG
+
IA S
VGS
-2
0V
tp
25
VVDD
DD
A
D R IV E R
0 .0 1 Ω
15V
Fig 12a. Unclamped Inductive Test Circuit
IAS
EAS , Single Pulse Avalanche Energy (mJ)
VDS
ID
-0.7A
-1.0A
BOTTOM -1.6A
TOP
20
15
10
5
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
-12V
12V
.2µF
.3µF
-5.0V
QGS
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHLF6970Z4
Pre-Irradiation
Footnotes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = - 25V, starting TJ = 25°C, L= 8.0mH
Peak IL = -1.6A, VGS = -12V
➂ I SD ≤ -1.6A, di/dt ≤ -170A/µs,
VDD ≤ - 60V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
-10 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
➅ Total Dose Irradiation with VDS Bias.
-48 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — TO-205AF (Modified TO-39)
LEGEND
1- SOURCE
2- GATE
3- DRAIN
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 07/03
8
www.irf.com
Similar pages