HP ATF-33143-TR2 Low noise pseudomorphic hemt in a surface mount plastic package Datasheet

Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Technical Data
ATF-33143
Features
Surface Mount Package
SOT-343
• Low Noise Figure
Description
Agilent’s ATF-33143 is a high
dynamic range, low noise,
PHEMT housed in a 4-lead SC-70
(SOT-343) surface mount plastic
package.
• Excellent Uniformity in
Product Specifications
• Low Cost Surface Mount
Small Plastic Package
SOT-343 (4 lead SC-70)
• Tape-and-Reel Packaging
Option Available
Based on its featured performance, ATF-33143 is suitable for
applications in cellular and PCS
base stations, LEO systems,
MMDS, and other systems requiring super low noise figure with
good intercept in the 450␣ MHz to
10 GHz frequency range.
Pin Connections and
Package Marking
1.9 GHz; 4V, 80 mA (Typ.)
DRAIN
• 0.5 dB Noise Figure
• 15 dB Associated Gain
• 22 dBm Output Power at
1␣ dB Gain Compression
rd
• 33.5 dBm Output 3 Order
Intercept
SOURCE
3Px
Specifications
SOURCE
GATE
Note: Top View. Package marking
provides orientation and identification.
“3P” = Device code
“x” = Date code character. A new
character is assigned for each month, year.
Applications
• Low Noise Amplifier and
Driver Amplifier for
Cellular/PCS Base Stations
• LNA for WLAN, WLL/RLL,
LEO, and MMDS
Applications
• General Purpose Discrete
PHEMT for Other Ultra Low
Noise Applications
1
88759/05-2.PM6.5J
Page 1
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Absolute Maximum Ratings[1]
Symbol
VDS
VGS
VGD
IDS
Pdiss
Pin max
TCH
TSTG
θjc
Parameter
Drain - Source Voltage [2]
Gate - Source Voltage [2]
Gate Drain Voltage [2]
Drain Current [2]
Total Power Dissipation [4]
RF Input Power
Channel Temperature [5]
Storage Temperature
Thermal Resistance [6]
Absolute
Maximum
5.5
-5
-5
Idss [3]
600
20
160
-65 to 160
145
Units
V
V
V
mA
mW
dBm
°C
°C
°C/W
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. Assumes DC quiesent conditions.
3. VGS = 0 V
4. Source lead temperature is 25°C.
Derate 6␣ mW/ °C for TL > 60°C.
5. Please refer to failure rates in reliability
section to assess the reliability impact
of running devices above a channel
temperature of 140°C.
6. Thermal resistance measured using
150°C Liquid Crystal Measurement
method.
Product Consistency Distribution Charts [8, 9]
500
120
Cpk = 1.7
Std = 0.05
+0.6 V
100
400
IDS (mA)
80
300
+3 Std
-3 Std
0V
60
200
40
100
–0.6 V
20
0
0
2
4
VDS (V)
6
0
0.2
8
0.3
0.4
0.5
0.6
0.7
0.8
NF (dB)
Figure 1. Typical Pulsed I-V Curves [7].
(VGS = -0.2 V per step)
100
Figure 2. NF @ 2 GHz, 4 V, 80 mA.
LSL=0.2, Nominal=0.53, USL=0.8
Cpk = 1.21
Std = 0.94
120
Cpk = 2.3
Std = 0.2
100
80
80
60
-3 Std
+3 Std
-3 Std
+3 Std
60
40
40
20
20
0
29
31
33
35
37
0
13
OIP3 (dBm)
Figure 3. OIP3 @ 2 GHz, 4 V, 80 mA.
LSL=30.0, Nominal=33.3, USL=37.0
Notes:
7. Under large signal conditions, VGS may
swing positive and the drain current may
exceed Idss. These conditions are
acceptable as long as the maximum Pdiss
and Pin max ratings are not exceeded.
8. Distribution data sample size is 450
samples taken from 9 different wafers.
14
15
16
17
GAIN (dB)
Figure 4. Gain @ 2 GHz, 4 V, 80 mA.
LSL=13.5, Nominal=14.8, USL=16.5
Future wafers allocated to this product
may have nominal values anywhere
within the upper and lower spec limits.
9. Measurements made on production test
board. This circuit represents a trade-off
between an optimal noise match and a
realizeable match based on production
test requirements. Circuit losses have
been de-embedded from actual
measurements.
10. The probability of a parameter being
between ±1σ is 68.3%, between ±2σ is
95.4% and between ±3σ is 99.7%.
2
88759/05-2.PM6.5J
Page 2
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 DC Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Idss [1]
VP [1]
Id
gm[1]
IGDO
Igss
NF
Ga
OIP3
P1dB
Parameters and Test Conditions
Units Min. Typ.[2]
Saturated Drain Current
VDS = 1.5 V, VGS = 0 V mA 175 237
Pinchoff Voltage
VDS = 1.5 V, IDS = 10% of Idss
V
-0.65 -0.5
Quiescent Bias Current
VGS = -0.5 V, VDS = 4 V mA
—
80
Transconductance
VDS = 1.5 V, gm = Idss /VP mmho 360 440
Gate to Drain Leakage Current
VGD = 5 V
µA
Gate Leakage Current
VGD = VGS = -4 V
µA
—
42
f = 2 GHz VDS = 4 V, IDS = 80 mA
dB
0.5
VDS = 4 V, IDS = 60 mA
0.5
Noise Figure
f = 900 MHz VDS = 4 V, IDS = 80 mA
dB
0.4
VDS = 4 V, IDS = 60 mA
0.4
f = 2 GHz VDS = 4 V, IDS = 80 mA
dB 13.5
15
V
=
4
V,
I
=
60
mA
15
DS
DS
Associated Gain[3]
f = 900 MHz VDS = 4 V, IDS = 80 mA
dB
21
VDS = 4 V, IDS = 60 mA
21
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm 30
33.5
5
dBm
Pout/Tone
V
=
4
V,
I
=
60
mA
32
rd
DS
DS
Output 3 Order
[3]
Intercept Point
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm
32.5
5 dBm Pout/Tone VDS = 4 V, IDS = 60 mA
31
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm
22
VDS = 4 V, IDS = 60 mA
21
1 dB Compressed
Compressed Power [3]
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm
21
VDS = 4 V, IDS = 60 mA
20
Max.
305
-0.35
—
—
1000
600
0.8
16.5
Notes:
1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 9 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input
50 Ohm
Transmission
Line Including
Gate Bias T
(0.5 dB loss)
Input
Matching Circuit
Γ_mag = 0.20
Γ_ang = 124°
(0.3 dB loss)
50 Ohm
Transmission
Line Including
Drain Bias T
(0.5 dB loss)
DUT
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test
requirements. Circuit losses have been de-embedded from actual measurements.
3
88759/05-2.PM6.5J
Page 3
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
40
40
30
30
OIP3, IIP3 (dBm)
OIP3, IIP3 (dBm)
ATF-33143 Typical Performance Curves
20
10
2V
3V
4V
20
10
2V
3V
4V
0
0
0
20
40
60
80
100
120
0
20
40
IDSQ (mA)
80
100
120
Figure 7. OIP3, IIP3 vs. Bias [1] at
900 MHz.
25
25
20
20
P1dB (dBm)
15
10
2V
3V
4V
5
15
10
2V
3V
4V
5
0
0
0
20
40
60
80
100
120
0
20
40
IDSQ (mA)
Figure 8. P1dB vs. Bias [1,2] at 2 GHz.
1.2
1.2
21
1.0
1.0
14
0.8
13
0.6
NF
11
2V
3V
4V
10
40
60
120
22
Ga
20
100
1.4
80
100
0.8
20
Ga (dB)
15
0
80
Figure 9. P1dB vs. Bias [1,2] Tuned for NF
@ 4V, 80mA at 900MHz.
NOISE FIGURE (dB)
16
12
60
IDSQ (mA)
Ga
0.6
19
NF
18
0.4
17
0.2
120
16
0.4
2V
3V
4V
0
20
IDSQ (mA)
Figure 10. NF and Ga vs.
2GHz.
40
60
80
100
NOISE FIGURE (dB)
P1dB (dBm)
Figure 6. OIP3, IIP3 vs. Bias [1] at
2GHz.
Ga (dB)
60
IDSQ (mA)
0.2
0
120
IDSQ (mA)
Bias [1]
at
Figure 11. NF and Ga vs. Bias [1] at
900 MHz.
Notes:
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V
80␣ mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on
production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
4
88759/05-2.PM6.5J
Page 4
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Typical Performance Curves, continued
1.5
30
80 mA
60 mA
80 mA
60 mA
25
20
Ga (dB)
Fmin (dB)
1.0
15
10
0.5
5
0
0
2
4
6
8
10
0
2
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and
Current at 4V.
15
1.0
0.5
10
5
6
30
25
20
15
0
10
8
0
2000
3.5
3.0
2.5
20
2.0
15
1.5
10
1.0
5
0.5
0
40
60
80
100
0
120
OIP3, P 1dB (dBm), GAIN (dB)
P1dB
OIP3
Gain
NF
20
8000
35
NOISE FIGURE (dB)
OIP3, P 1dB (dBm), GAIN (dB)
35
0
6000
Figure 15. P1dB, OIP3 vs. Frequency
and Temp at V DS = 4V, I DS = 80mA.
Figure 14. Fmin and Ga vs. Frequency
and Temp at V DS = 4V, I DS = 80mA.
25
4000
FREQUENCY (MHz)
FREQUENCY (GHz)
30
10
25°C
-40°C
85°C
35
P1dB, OIP3 (dBm)
1.5
NOISE FIGURE (dB)
Ga (dB)
20
4
8
40
2.0
25°C
-40°C
85°C
2
6
Figure 13. Associated Gain vs.
Frequency and Current at 4V.
25
0
4
FREQUENCY (GHz)
30
3
25
2
20
15
1
10
5
P1dB
OIP3
Gain
NF
0
0
20
40
60
NOISE FIGURE (dB)
0
80
100
0
120
IDSQ (mA)
IDSQ (mA)
Figure 16. OIP3, P1dB, NF and Gain vs.
Bias[1,2] at 3.9 GHz.
Figure 17. OIP3, P1dB, NF and Gain vs.
Bias [1,2] at 5.8 GHz.
Notes:
1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4V 80 mA bias. This circuit represents a trade-off
between optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have
been de-embedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
5
88759/05-2.PM6.5J
Page 5
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
25
25
20
20
P1 dB (dBm)
P1dB (dBm)
ATF-33143 Typical Performance Curves, continued
15
10
15
10
5
5
0
0
0
20
40
60
80
100
120
IDS (mA)
Figure 18. P1dB vs. IDS Active Bias [1]
Tuned for NF @ 4 V, 80 mA at 2 GHz.
0
20
40
60
80
100
120
IDS (mA)
Figure 19. P1dB vs. IDS Active Bias [1]
Tuned for NF @ 4 V, 80 mA at 900 MHz.
Note:
1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias.
This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production
test board requirements. Circuit losses have been de-embedded from actual measurements.
6
88759/05-2.PM6.5J
Page 6
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Power Parameters Tuned for Max P1dB, VDS = 4 V, IDSQ = 80 mA
Freq
(GHz)
P1dB
(dBm)
Id
(mA)
G1dB
(dB)
PAE1dB
(%)
P3dB
(dBm)
Id
(mA)
0.9
1.5
1.8
2.0
4.0
6.0
20.7
21.2
21.1
21.6
23.0
24.0
89
91
80
81
97
130
23.2
20.7
19.2
18.1
11.9
5.9
33
36
40
44
48
36
23.2
23.8
23.0
23.2
24.6
25.2
102
116
94
89
135
136
PAE3dB Γ Out_mag Γ Out_ang
(%)
(Mag.)
(°)
51
51
52
57
48
36
0.39
0.43
0.43
0.42
0.40
0.37
160
165
170
174
-150
-124
70
Pout
Gain
PAE
Pout (dBm), G (dB), PAE (%)
60
50
40
30
20
10
0
-10
-20
-40
-30
-20
-10
0
10
20
Pin (dBm)
Figure 20. Swept Power Tuned for
Max P1dB
VDS =4V, I DSQ = 80 mA, 2 GHz.
Notes:
1. Measurements made on ATN LP1 power load pull system.
2. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
3. PAE (%) = ((Pout – Pin) / Pdc) X 100
4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.
7
88759/05-2.PM6.5J
Page 7
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA
Freq.
(GHz)
S11
Mag.
Ang.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.86
0.77
0.76
0.73
0.72
0.72
0.72
0.73
0.74
0.75
0.77
0.79
0.82
0.83
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
-75.60
-115.00
-122.50
-151.80
-164.60
-171.80
171.00
158.20
136.50
117.00
98.00
80.20
64.70
50.60
36.60
21.80
7.50
-4.80
-15.40
-27.30
-40.40
-52.20
-61.20
dB
S21
Mag.
Ang.
23.20
20.44
19.80
16.97
15.54
14.67
12.79
11.18
8.76
6.99
5.47
3.94
2.45
1.27
0.37
-0.72
-1.97
-3.45
-4.69
-5.70
-6.52
-7.51
-8.78
14.45
10.53
9.77
7.06
5.99
5.41
4.36
3.62
2.74
2.24
1.88
1.57
1.33
1.16
1.04
0.92
0.80
0.67
0.58
0.52
0.47
0.42
0.36
132.90
109.80
105.30
87.50
79.20
74.20
62.70
53.00
35.20
17.50
-1.00
-19.00
-34.90
-49.10
-64.30
-80.40
-96.20
-110.80
-122.80
-135.40
-148.30
-162.10
-172.80
dB
S12
Mag.
Ang.
-28.18
-25.35
-25.04
-23.61
-22.97
-22.73
-21.94
-21.31
-20.00
-18.86
-17.99
-17.52
-17.39
-17.08
-16.54
-16.48
-16.71
-17.27
-17.65
-17.79
-17.72
-17.92
-18.56
0.039
0.054
0.056
0.066
0.071
0.073
0.080
0.086
0.100
0.114
0.126
0.133
0.135
0.140
0.149
0.150
0.146
0.137
0.131
0.129
0.130
0.127
0.118
54.80
42.20
40.20
33.20
30.60
28.90
25.10
21.60
13.70
3.40
-8.90
-22.30
-33.60
-43.40
-55.20
-68.40
-81.10
-92.90
-101.60
-111.60
-122.20
-134.70
-143.30
S22
Mag.
Ang.
0.26
0.34
0.35
0.39
0.41
0.42
0.45
0.47
0.49
0.50
0.51
0.54
0.57
0.60
0.63
0.66
0.70
0.73
0.76
0.79
0.81
0.82
0.84
MSG/MAG
(dB)
-118.50
-150.00
-155.50
-176.10
175.00
169.80
160.60
152.70
139.90
125.70
109.10
91.60
75.90
63.70
52.00
38.50
22.50
6.70
-5.20
-15.20
-25.10
-37.30
-49.20
25.69
22.90
22.42
20.29
19.26
18.70
17.36
16.25
10.91
9.78
9.03
8.44
7.78
7.42
7.68
7.61
7.44
6.46
5.86
5.65
5.65
5.44
4.17
ATF-33143 Typical Noise Parameters
Rn/50
0.080
0.070
0.070
0.060
0.050
0.046
0.030
0.030
0.040
0.060
0.110
0.210
0.370
0.550
0.720
Ga
dB
25.91
21.80
21.00
18.14
16.96
16.29
14.95
13.58
11.74
10.36
9.17
8.18
7.19
6.56
6.29
30
MSG/MAG and |S 21|2 (dB)
VDS = 4 V, IDS = 60 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
Ang.
0.5
0.29
0.42
31.40
0.9
0.33
0.33
44.70
1.0
0.34
0.32
48.00
1.5
0.38
0.26
71.90
1.8
0.39
0.22
94.00
2.0
0.42
0.22
109.70
2.5
0.47
0.25
149.40
3.0
0.51
0.29
166.80
4.0
0.63
0.39
-160.60
5.0
0.72
0.46
-135.30
6.0
0.82
0.51
-112.40
7.0
0.93
0.57
-90.90
8.0
1.03
0.61
-71.80
9.0
1.13
0.66
-55.50
10.0
1.22
0.69
-41.80
25
MSG
20
15
10
|S21|2
MAG
5
0
-5
0
5
10
15
20
FREQUENCY (GHz)
Figure 22. MSG/MAG and |S21| 2 vs.
Frequency at 4V, 60 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
8
88759/05-2.PM6.5J
Page 8
2001.04.26, 9:12 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 80 mA
Freq.
(GHz)
S11
Mag.
Ang.
0.5
0.9
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.86
0.77
0.76
0.72
0.72
0.72
0.73
0.74
0.75
0.77
0.79
0.82
0.84
0.86
0.88
0.90
0.91
0.91
0.92
0.93
0.94
0.93
-76.90
-115.90
-123.20
-151.70
-171.10
170.10
157.40
135.90
116.60
97.60
80.00
64.50
50.50
36.40
21.60
7.40
-4.90
-15.50
-27.40
-40.50
-52.30
-61.30
dB
S21
Mag.
Ang.
23.48
20.64
20.00
17.13
14.82
12.96
11.36
8.92
7.15
5.63
4.09
2.61
1.42
0.52
-0.57
-1.81
-3.30
-4.54
-5.51
-6.34
-7.33
-8.61
14.93
10.77
10.00
7.18
5.51
4.45
3.70
2.79
2.28
1.91
1.60
1.35
1.18
1.06
0.94
0.81
0.68
0.59
0.53
0.48
0.43
0.37
132.10
109.10
104.80
87.40
74.30
62.60
52.90
35.40
17.70
-0.70
-18.60
-34.40
-48.60
-63.70
-79.80
-95.50
-110.00
-122.00
-134.50
-147.40
-161.20
-171.90
dB
S12
Mag.
Ang.
-28.64
-25.85
-25.51
-24.01
-22.97
-22.27
-21.51
-20.09
-18.86
-17.99
-17.52
-17.33
-17.02
-16.48
-16.42
-16.59
-17.20
-17.59
-17.65
-17.65
-17.86
-18.49
0.037
0.051
0.053
0.063
0.071
0.077
0.084
0.099
0.114
0.126
0.133
0.136
0.141
0.150
0.151
0.148
0.138
0.132
0.131
0.131
0.128
0.119
55.40
43.90
42.10
36.00
32.10
28.10
24.60
16.40
5.70
-6.90
-20.60
-32.00
-42.10
-54.00
-67.30
-80.20
-92.00
-100.80
-110.80
-121.50
-134.00
-142.90
S22
Mag.
Ang.
0.26
0.34
0.35
0.39
0.43
0.45
0.47
0.49
0.50
0.52
0.54
0.57
0.61
0.64
0.67
0.71
0.74
0.76
0.79
0.81
0.82
0.84
MSG/MAG
(dB)
-126.60
-155.50
-160.50
-180.00
166.60
158.70
151.20
138.70
124.70
108.30
91.00
75.30
63.10
51.50
38.00
22.00
6.40
-5.60
-15.50
-25.40
-37.60
-49.50
26.06
23.25
22.76
20.57
18.90
17.62
16.44
10.67
9.78
9.05
8.50
7.88
7.53
7.78
7.72
7.59
6.55
5.97
5.76
5.78
5.57
4.30
ATF-33143 Typical Noise Parameters
Rn/50
0.080
0.070
0.070
0.050
0.050
0.040
0.040
0.044
0.070
0.130
0.250
0.420
0.630
0.830
Ga
dB
25.77
21.91
21.14
18.46
16.56
15.23
13.79
11.92
10.53
9.37
8.33
7.41
6.70
6.69
30
MSG/MAG and |S 21|2 (dB)
VDS = 4 V, IDS = 80 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
Ang.
0.5
0.30
0.40
28.20
0.9
0.35
0.31
44.10
1.0
0.36
0.30
47.40
1.5
0.40
0.23
79.10
2.0
0.46
0.22
117.00
2.5
0.52
0.26
157.70
3.0
0.58
0.29
171.10
4.0
0.69
0.39
-157.20
5.0
0.80
0.46
-132.40
6.0
0.90
0.52
-109.40
7.0
1.02
0.57
-88.80
8.0
1.12
0.63
-70.50
9.0
1.21
0.66
-54.10
10.0
1.32
0.76
-40.40
25
MSG
20
15
10
|S21|2
MAG
5
0
-5
0
5
10
15
20
FREQUENCY (GHz)
Figure 23. MSG/MAG and |S21| 2 vs.
Frequency at 4V, 80 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
9
88759/05-2.PM6.5J
Page 9
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
Noise Parameter
Applications Information
Fmin values at 2␣ GHz and higher
are based on measurements while
the Fmins below 2 GHz have been
extrapolated. The Fmin values are
based on a set of 16 noise figure
measurements made at 16
different impedances using an
ATN NP5 test system. From these
measurements, a true Fmin is
calculated. Fmin represents the
true minimum noise figure of the
device when the device is presented with an impedance
matching network that transforms the source impedance,
typically 50Ω, to an impedance
represented by the reflection
coefficient Γo. The designer must
design a matching network that
will present Γo to the device with
minimal associated circuit losses.
The noise figure of the completed
amplifier is equal to the noise
figure of the device plus the
losses of the matching network
preceding the device. The noise
figure of the device is equal to
Fmin only when the device is
presented with Γo. If the reflection coefficient of the matching
network is other than Γo, then the
noise figure of the device will be
greater than Fmin based on the
following equation.
NF = Fmin + 4 Rn
|Γs – Γo | 2
Zo (|1 + Γo| 2) (1 – Γs| 2)
Where Rn /Zo is the normalized
noise resistance, Γo is the optimum reflection coefficient
required to produce Fmin and Γs is
the reflection coefficient of the
source impedance actually
presented to the device. The
losses of the matching networks
are non-zero and they will also
add to the noise figure of the
device creating a higher amplifier
noise figure. The losses of the
matching networks are related to
the Q of the components and
associated printed circuit board
loss. Γo is typically fairly low at
higher frequencies and increases
as frequency is lowered. Larger
gate width devices will typically
have a lower Γo as compared to
narrower gate width devices.
Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50Ω is required
for the device to produce Fmin. At
VHF frequencies and even lower
L Band frequencies, the required
impedance can be in the vicinity
of several thousand ohms.
Matching to such a high impedance requires very hi-Q components in order to minimize circuit
losses. As an example at 900 MHz,
when airwwound coils (Q > 100)
are used for matching networks,
the loss can still be up to 0.25 dB
which will add directly to the
noise figure of the device. Using
muiltilayer molded inductors with
Qs in the 30 to 50 range results in
additional loss over the airwound
coil. Losses as high as 0.5 dB or
greater add to the typical 0.15 dB
Fmin of the device creating an
amplifier noise figure of nearly
0.65 dB. A discussion concerning
calculated and measured circuit
losses and their effect on amplifier noise figure is covered in
Agilent Application 1085.
Reliability Data
Nominal Failures per million (FPM)
for different durations
90% confidence Failures per million (FPM)
for different durations
Channel
Temperature
(oC)
(FITs)
1000
hours
1 year
5 year
10 year 30 year
(FITs)
1000
hours
1 year
5 year
10 year
30 year
100
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
125
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
11
140
<0.1
<0.1
<0.1
<0.1
160
<0.1
<0.1
6
160
9.3K
150
<0.1
<0.1
2
140
26K
<0.1
0.3
780
8800
131K
160
<0.1
<0.1
920
21K
370K
<0.1
67
24K
120K
520K
180
<0.1
4400
450K
830K
1000K
21
53K
590K
850K
1000K
NOT
recommended
Predicted failures with temperature extrapolated from failure distribution and activation energy data of
higher temperature operational life STRIFE of PHEMT process
10
88759/05-2.PM6.5J
Page 10
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
ATF-33143 Die Model
Statz Model
MESFETM1
NFET=yes
PFET=no
Vto=–0.95
Beta=0.48
Lambda=0.09
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
Cgs=1.6 pF
Gdcap=3
Cgd=0.32 pF
Rgd=
Tqm=
Vmax=
Fc=
Rd=.125
Rg=1
Rs=0.0625
Ld=0.00375 nH
Lg-0.00375 nH
Ls=0.00125 nH
Cds=0.08 pF
Crf=0.1
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
This model can be used as a
design tool. It has been tested on
MDS for various specifications.
However, for more precise and
accurate design, please refer to
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
Al lParams=
the measured data in this data
sheet. For future improvements
Agilent reserves the right to
change these models without
prior notice.
ATF-33143 Model
INSIDE Package
Var
Ean
VAR
VAR1
K=5
Z2=85
Z1=30
C
C1
C=0.1 pF
GATE
Port
G
Num=1 VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=D 0000
F=1 GHz
TanD=0.001
L
L6
L=0.2 nH
R=0.001
L
L1
L=0.6 nH
R=0.001
GaAsFET
FET1
Model=MESFETN1
Mode=nonlinear
SOURCE
Port
S1
Num=2
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINPTL9
Z=Z2 Ohm
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L4
L=0.2 nH
R=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
MSub
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=D 001
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1 DE+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=D
Rough=D mil
SOURCE
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
Port
S2
Num=4
DRAIN
Port
D
Num=4
11
88759/05-2.PM6.5J
Page 11
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
Part Number Ordering Information
No. of
Devices
3000
10000
100
Part Number
ATF-33143-TR1
ATF-33143-TR2
ATF-33143-BLK
Container
7" Reel
13" Reel
antistatic bag
Package Dimensions
Outline 43 (SOT-343/SC-70 4 lead)
1.30 (0.051)
BSC
1.30 (.051) REF
2.60 (.102)
E
1.30 (.051)
E1
0.85 (.033)
0.55 (.021) TYP
1.15 (.045) BSC
e
1.15 (.045) REF
D
h
A
A1
b TYP
L
C TYP
θ
DIMENSIONS
SYMBOL
A
A1
b
C
D
E
e
h
E1
L
θ
MAX.
MIN.
1.00 (0.039)
0.80 (0.031)
0.10 (0.004)
0 (0)
0.35 (0.014)
0.25 (0.010)
0.20 (0.008)
0.10 (0.004)
2.10 (0.083)
1.90 (0.075)
2.20 (0.087)
2.00 (0.079)
0.65 (0.025)
0.55 (0.022)
0.450 TYP (0.018)
1.35 (0.053)
1.15 (0.045)
0.35 (0.014)
0.10 (0.004)
10
0
DIMENSIONS ARE IN MILLIMETERS (INCHES)
12
88759/05-2.PM6.5J
Page 12
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
Device Orientation
REEL
END VIEW
TOP VIEW
4 mm
CARRIER
TAPE
8 mm
3Px
USER
FEED
DIRECTION
3Px
3Px
3Px
COVER TAPE
Tape Dimensions
For Outline 4T
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
13
88759/05-2.PM6.5J
Page 13
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
当社半導体部品のご使用にあたって
仕様及び仕様書に関して
・本仕様は製品改善および技術改良等により予告なく変更する場合があります。ご使用の際には最
新の仕様を問い合わせの上、用途のご確認をお願いいたします。
・本仕様記載内容を無断で転載または複写することは禁じられております。
・本仕様内でご紹介している応用例(アプリケーション)は当社製品がご使用できる代表的なもの
です。ご使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し
た場合、当社はその責任を負いかねます。
・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの
です。仕様書の条件外で保存、使用された場合に動作不良、機械不良が発生しても当社は責任を
負いかねます。ただし、当社は納品後 1 年以内に当社の責任に帰すべき理由で、不良或いは故障
が発生した場合、無償で製品を交換いたします。
・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有し、そ
の交渉は当社の要求によりすみやかに行われることとさせて頂きます。なお、基本的に変更は3ヶ
月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。
ご使用用途に関して
・当社の製品は、一般的な電子機器(コンピュータ、OA 機器、通信機器、AV 機器、家電製品、ア
ミューズメント機器、計測機器、一般産業機器など)の一部に組み込まれて使用されるものです。
極めて高い信頼性と安全性が要求される用途(輸送機器、航空・宇宙機器、海底中継器、原子力
制御システム、生命維持のための医療機器などの財産・環境もしくは生命に悪影響を及ぼす可能
性を持つ用途)を意図し、設計も製造もされているものではありません。それゆえ、本製品の安
全性、品質および性能に関しては、仕様書(又は、カタログ)に記載してあること以外は明示的
にも黙示的にも一切の保証をするものではありません。
回路設計上のお願い
・当社は品質、信頼性の向上に努力しておりますが、一般的に半導体製品の誤動作や、故障の発生
は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、
他人の生命又は財産に被害や悪影響を及ぼし、或いは本製品を取り付けまたは使用した設備、施
設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、
一切の責任を負いかねます。
お客様の責任において、装置の安全設計をお願いいたします。
14
88759/05-2.PM6.5J
Page 14
2001.04.26, 9:13 AM Adobe PageMaker 6.5J/PPC
Similar pages