PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER GENERAL DESCRIPTION FEATURES The ICS853054 is an 4:1 Differential-to-3.3V or 2.5V LVPECL/ECL Clock Multiplexer which HiPerClockS™ can operate up to 2.5GHz and is a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS853054 has 4 selectable differential clock inputs. The PCLKx, nPCLKx input pairs can accept LVPECL, LVDS, CML or SSTL levels. The fully differential architecture and low propagation delay make it ideal for use in clock distribution circuits. The select pins have internal pulldown resistors. The SEL1 pin is the most significant bit and the binary number applied to the select pins will select the same numbered data input (i.e., 00 selects PCLK0, nPCLK0). • High speed 4:1 differential multiplexer ICS • One differential 3.3V or 2.5V LVPECL output • Four selectable differential PCLK, nPCLK inputs • PCLKx, nPCLKx pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL • Maximum output frequency: 3.2GHz • Translates any single ended input signal to LVPECL levels with resistor bias on nPCLKx input • Part-to-part skew: TBD • Propagation delay: 465ps (typical) • Additive phase jitter, RMS: 0.238ps (typical) • LVPECL mode operating voltage supply range: VCC = 2.375V to 3.465V, VEE = 0V • ECL mode operating voltage supply range: VCC = 0V, VEE = -3.465V to -2.375V • -40°C to 85°C ambient operating temperature • Available in both standard and lead-free RoHS-compliant packages BLOCK DIAGRAM PIN ASSIGNMENT PCLK0 nPCLK0 00 PCLK1 nPCLK1 01 PCLK2 nPCLK2 10 PCLK3 nPCLK3 PCLK0 nPCLK0 PCLK1 nPCLK1 VCC SEL0 SEL1 VEE Q nQ 16 15 14 13 12 11 10 9 VCC Q nQ VEE nPCLK3 PCLK3 nPCLK2 PCLK2 ICS853054 16-Lead TSSOP 4.4mm x 5.0mm x 0.92mm package body G Package Top View 11 SEL1 1 2 3 4 5 6 7 8 SEL0 The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. 853054AG www.icst.com/products/hiperclocks.html REV. A JANUARY 5, 2006 1 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER TABLE 1. PIN DESCRIPTIONS Number Name 1 PCLK0 Type Input 2 nPCLK0 Input 3 PCLK1 Input 4 nPCLK1 Input 5, 16 VCC Power 6, 7 SEL0, SEL1 Input 8, 13 VEE Power 9 PCLK2 10 11 Description Pulldown Non-inver ting differential LVPECL clock input. Inver ting differential LVPECL clock input. Pullup/Pulldown VCC/2 default when left floating. Pulldown Non-inver ting differential LVPECL clock input. Inver ting differential LVPECL clock input. Pullup/Pulldown VCC/2 default when left floating. Positive supply pins. Pulldown Clock select input pins. LVCMOS/LVTTL interface levels. Input Pulldown Non-inver ting differential LVPECL clock input. nPCLK2 Input Pullup/Pulldown PCLK3 Input Pulldown 12 nPCLK3 Input 14, 15 nQ, Q Output Negative supply pin. Inver ting differential LVPECL clock input. VCC/2 default when left floating. Non-inver ting differential LVPECL clock input. Inver ting differential LVPECL clock input. Pullup/Pulldown VCC/2 default when left floating. Differential output pair. LVPECL interface levels. NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS Symbol Parameter RPULLDOWN Input Pulldown Resistor Test Conditions Minimum Typical 75 Maximum Units kΩ RVDD/2 Pullup/Pulldown Resistosr 50 kΩ TABLE 3. CLOCK INPUT FUNCTION TABLE Inputs Outputs SEL1 SEL0 Q/nQ 0 0 PCLK0/nPCLK0 0 1 PCLK1/nPCLK1 1 0 PCLK2/nPCLK2 1 1 PCLK3/nPCLK3 853054AG www.icst.com/products/hiperclocks.html 2 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER ABSOLUTE MAXIMUM RATINGS Inputs, VI (LVPECL mode) 4.6V (LVPECL mode, VEE = 0) NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage -4.6V (ECL mode, VCC = 0) to the device. These ratings are stress specifi-0.5V to V + 0.5V Inputs, VI (ECL mode) 0.5V to VEE - 0.5V Supply Voltage, VCC Negative Supply Voltage, VEE CC Outputs, IO Continuous Current Surge Current cations only. Functional operation of product at these conditions or any conditions beyond those 50mA 100mA listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maxi- Operating Temperature Range, TA -40°C to +85°C Storage Temperature, TSTG -65°C to 150°C Package Thermal Impedance, θJA 89°C/W (0 lfpm) mum rating conditions for extended periods may affect product reliability. (Junction-to-Ambient) TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375 TO 3.465V; VEE = 0V Symbol Parameter VCC Positive Supply Voltage Test Conditions ICC Power Supply Current Minimum Typical Maximum Units 2.375 3.3 3.465 V 61 mA TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 2.375 TO 3.465V; VEE = 0V Symbol Parameter VIH Input High Voltage VIL Input Low Voltage Test Conditions IIH Input High Current SEL0, SEL1 IIL Input Low Current SEL0, SEL1 Minimum Typical Maximum Units VCC = 3.3V 2 VCC + 0.3 V VCC = 2.5V 1.7 VCC + 0.3 V VCC = 3.3V -0.3 0.8 V VCC = 2.5V -0.3 0.7 V 150 µA VCC = VIN = 3.465V, VCC = VIN = 2.625V VCC = 3.465V, VIN = 0V, VCC = 2.625V, VIN = 0V -150 µA TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 2.375 TO 3.465V; VEE = 0V Symbol Parameter Test Conditions Typical Units 150 µA -10 µA nPCLK0:nPCLK3 VCC = 3.465V, VIN = 0V -150 µA 0.15 V Input High Current IIL Input Low Current VPP VOH Peak-to-Peak Input Voltage Common Mode Input Voltage; NOTE 1, 2 Output High Voltage Voltage; NOTE 3 VOL Output Low Voltage; NOTE 3 VCC = VIN = 3.465V 1.2 3.3 www.icst.com/products/hiperclocks.html 3 V VCC - 1.005 V VCC - 1.78 V VSWING Peak-to-Peak Output Voltage Swing 0.8 NOTE 1: Common mode voltage is defined as VIH. NOTE 2: For single ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V. NOTE 3: Outputs terminated with 50Ω to VCC - 2V. 853054AG Maximum VCC = 3.465V, VIN = 0V IIH VCMR Minimum PCLK0:PCLK3 nPCLK0:nPCLK3 PCLK0:PCLK3 V REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -3.465V TO -2.375V Symbol Parameter Test Conditions Minimum Typical Maximum Units VOH Output High Voltage; NOTE 1 -1.005 V VOL Output Low Voltage; NOTE 1 -1.78 V VIH Input High Voltage -1.225 -0.94 V VIL Input Low Voltage -1.87 -1.535 V VPP Peak-to-Peak Input Voltage Input High Voltage Common Mode Range; NOTE 2, 3 Input PCLK0:PCLK3 High Current nPCLK0:nPCLK3 PCLK0:PCLK3 Input Low Current nPCLK0:nPCLK3 VCMR IIH IIL 800 VEE + 1.2 mV 0 V 150 µA -10 µA -150 µA NOTE 1: Outputs terminated with 50Ω to VCC - 2V. NOTE 2: Common mode voltage is defined as VIH. NOTE 3: For single-ended applications, the maximum input voltage for PCLKx, nPCLKx is VCC + 0.3V. TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -3.465V TO -2.375V OR VCC = 2.375 TO 3.465V; VEE = 0V Symbol Parameter fMAX tPD Output Frequency Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section Propagation Delay; NOTE 1 tsk(pp) Par t-to-Par t Skew; NOTE 2, 3 tR / tF Output Rise/Fall Time t jit Test Conditions 155.52MHz, 12kHz - 20MHz Minimum Typical www.icst.com/products/hiperclocks.html 4 Units 3.2 GHz 0.238 ps 465 ps TBD ps 20% to 80% 200 VIN 1.6V to 2.4V, MUXISOLATION MUX Isolation -55 155.52MHz All parameters measured up to 1.3GHz unless noted otherwise. NOTE 1: Measured from the differential input crossing point to the differential output crossing point. NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. NOTE 3: This parameter is defined according with JEDEC Standard 65. 853054AG Maximum ps dB REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER ADDITIVE PHASE JITTER the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a dBc value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot. The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the dBc Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in 0 -10 Additive Phase Jitter, RMS -20 @ 155.52MHz = <0.238ps typical -30 -40 -50 SSB PHASE NOISE dBc/HZ -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 1k 10k 100k 1M 10M 100M OFFSET FROM CARRIER FREQUENCY (HZ) As with most timing specifications, phase noise measurements have issues. The primary issue relates to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The de- 853054AG vice meets the noise floor of what is shown, but can actually be lower. The phase noise is dependant on the input source and measurement equipment. www.icst.com/products/hiperclocks.html 5 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER PARAMETER MEASUREMENT INFORMATION 2V VCC Qx V CC SCOPE nPCLK0:3 LVPECL V Cross Points PP V CMR PCLK0:3 nQx VEE VEE -1.465V to -0.375V OUTPUT LOAD AC TEST CIRCUIT DIFFERENTIAL INPUT LEVEL nPCLK0:3 nQx PART 1 Qx PCLK0:3 nQ nQy PART 2 Qy Q tPD tsk(pp) PROPAGATION DELAY PART-TO-PART SKEW 80% 80% VOD Clock Outputs 20% 20% tR tF OUTPUT RISE/FALL TIME 853054AG www.icst.com/products/hiperclocks.html 6 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = VCC/2 is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and VCC= 3.3V, V_REF should be 1.25V and R2/R1 = 0.609. VCC R1 1K Single Ended Clock Input PCLK V_REF nPCLK C1 0.1u R2 1K FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT RECOMMENDATIONS FOR UNUSED INPUT PINS INPUTS: SELECT PINS: All select pins have internal pull-ups and pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resister can be used. PCLK/nPCLK INPUT: For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a 1kΩ resister can be tied from PCLK to ground. 853054AG www.icst.com/products/hiperclocks.html 7 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER LVPECL CLOCK INPUT INTERFACE gested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements. The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both VSWING and VOH must meet the VPP and VCMR input requirements. Figures 2A to 2E show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common driver types. The input interfaces sug- 2.5V 3.3V 3.3V 3.3V 2.5V 3.3V R1 50 CML R3 120 R2 50 SSTL Zo = 50 Ohm R4 120 Zo = 60 Ohm PCLK PCLK Zo = 60 Ohm Zo = 50 Ohm nPCLK nPCLK HiPerClockS PCLK/nPCLK R1 120 FIGURE 2A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A CML DRIVER HiPerClockS PCLK/nPCLK R2 120 FIGURE 2B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY AN SSTL IN DRIVER 3.3V 3.3V 3.3V 3.3V 3.3V R3 125 3.3V R4 125 Zo = 50 Ohm Zo = 50 Ohm C1 LVDS R3 1K R4 1K PCLK PCLK R5 100 Zo = 50 Ohm nPCLK LVPECL R1 84 C2 nPCLK Zo = 50 Ohm HiPerClockS Input R1 1K R2 84 FIGURE 2C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER HiPerClockS PCL K/n PC LK R2 1K FIGURE 2D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER 3.3V 3.3V 3.3V 3.3V LVPECL Zo = 50 Ohm C1 Zo = 50 Ohm C2 R3 84 R4 84 PCLK nPCLK R5 100 - 200 R6 100 - 200 R1 125 HiPerClockS PCLK/nPCLK R2 125 FIGURE 2E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE 853054AG www.icst.com/products/hiperclocks.html 8 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. TERMINATION FOR ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER 3.3V LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 3A and 3B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to 3.3V Zo = 50Ω 125Ω FOUT FIN Zo = 50Ω Zo = 50Ω FOUT 50Ω 1 RTT = Z ((VOH + VOL) / (VCC – 2)) – 2 o FIN 50Ω Zo = 50Ω VCC - 2V RTT 84Ω FIGURE 3A. LVPECL OUTPUT TERMINATION 853054AG 125Ω 84Ω FIGURE 3B. LVPECL OUTPUT TERMINATION www.icst.com/products/hiperclocks.html 9 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. TERMINATION FOR ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER 2.5V LVPECL OUTPUT Figure 4A and Figure 4B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to ground level. The R3 in Figure 4B can be eliminated and the termination is shown in Figure 4C. 2.5V VCC=2.5V 2.5V 2.5V VCC=2.5V R1 250 Zo = 50 Ohm R3 250 + Zo = 50 Ohm + Zo = 50 Ohm - Zo = 50 Ohm 2,5V LVPECL Driv er - R1 50 2,5V LVPECL Driv er R2 62.5 R2 50 R4 62.5 R3 18 FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE 2.5V VCC=2.5V Zo = 50 Ohm + Zo = 50 Ohm 2,5V LVPECL Driv er R1 50 R2 50 FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE 853054AG www.icst.com/products/hiperclocks.html 10 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS853054. Equations and example calculations are also provided. 1. Power Dissipation. The total power dissipation for the ICS853054 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for VCC = 3.3V ± 5% = 3.465V, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. • • Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 61mA = 211.37mW Power (outputs)MAX = 27.83mW/Loaded Output pair Total Power_MAX (3.465V, with all outputs switching) = 211.37mW + 27.83mW = 239.2mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C. The equation for Tj is as follows: Tj = θJA * Pd_total + TA Tj = Junction Temperature θJA = junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air flow of 200 meters per second and a multi-layer board, the appropriate value is 81.8°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.239W * 81.8°C/W = 104.6°C. This is well below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). TABLE 6. THERMAL RESISTANCE θJA FOR 16-PIN TSSOP FORCED CONVECTION θJA by Velocity (Meters per Second) Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 137.1°C/W 89.0°C/W 118.2°C/W 81.8°C/W 106.8°C/W 78.1°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. 853054AG www.icst.com/products/hiperclocks.html 11 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVPECL output driver circuit and termination are shown in Figure 5. VCC Q1 VOUT RL 50 VCC - 2V FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V - 2V. CC • For logic high, VOUT = V OH_MAX (V CC_MAX • -V OH_MAX OL_MAX CC_MAX -V OL_MAX CC_MAX – 1.005V ) = 1.005 For logic low, VOUT = V (V =V =V CC_MAX – 1.78V ) = 1.78V Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. Pd_H = [(V OH_MAX – (V CC_MAX - 2V))/R ] * (V CC_MAX L -V OH_MAX ) = [(2V - (V CC_MAX -V OH_MAX ))/R ] * (V CC_MAX L -V OH_MAX )= [(2V - 1.005V)/50Ω] * 1.005V = 20mW Pd_L = [(V OL_MAX – (V CC_MAX - 2V))/R ] * (V L CC_MAX -V OL_MAX ) = [(2V - (V CC_MAX -V OL_MAX ))/R ] * (V L CC_MAX -V OL_MAX )= [(2V - 1.78V)/50Ω] * 1.78V = 7.83mW Total Power Dissipation per output pair = Pd_H + Pd_L = 27.83mW 853054AG www.icst.com/products/hiperclocks.html 12 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER RELIABILITY INFORMATION TABLE 7. θJAVS. AIR FLOW TABLE FOR 16 LEAD TSSOP θJA by Velocity (Linear Feet per Minute) Single-Layer PCB, JEDEC Standard Test Boards Multi-Layer PCB, JEDEC Standard Test Boards 0 200 500 137.1°C/W 89.0°C/W 118.2°C/W 81.8°C/W 106.8°C/W 78.1°C/W NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. TRANSISTOR COUNT The transistor count for ICS853054 is: 326 853054AG www.icst.com/products/hiperclocks.html 13 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. PACKAGE OUTLINE - G SUFFIX FOR ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER 16 LEAD TSSOP TABLE 8. PACKAGE DIMENSIONS Millimeters SYMBOL Minimum N Maximum 16 A -- 1.20 A1 0.05 0.15 A2 0.80 1.05 b 0.19 0.30 c 0.09 0.20 D 4.90 E E1 5.10 6.40 BASIC 4.30 e 4.50 0.65 BASIC L 0.45 α 0° 8° aaa -- 0.10 0.75 Reference Document: JEDEC Publication 95, MO-153 853054AG www.icst.com/products/hiperclocks.html 14 REV. A JANUARY 5, 2006 PRELIMINARY Integrated Circuit Systems, Inc. ICS853054 4:1, DIFFERENTIAL-TO-3.3V OR 2.5V LVPECL/ECL CLOCK MULTIPLEXER TABLE 9. ORDERING INFORMATION Part/Order Number Marking Package Shipping Packaging Temperature ICS853054AG 853054AG 16 Lead TSSOP tube -40°C to 85°C ICS853054AGT 853054AG 16 Lead TSSOP 2500 tape & reel -40°C to 85°C ICS853054AGLF 853054AL 16 Lead "Lead-Free" TSSOP tube -40°C to 85°C ICS853054AGLFT 853054AL 16 Lead "Lead-Free" TSSOP 2500 tape & reel -40°C to 85°C NOTE: Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant. The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments. 853054AG www.icst.com/products/hiperclocks.html 15 REV. A JANUARY 5, 2006