AOSMD AOB430 N-channel enhancement mode field effect transistor Datasheet

AOB430
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOB430 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in high voltage
synchronous rectification , load switching and general
purpose applications. Standard product AOB430 is
Pb-free (meets ROHS & Sony 259 specifications).
AOB430L is a Green Product ordering option.
AOB430 and AOB430L are electrically identical.
VDS (V) = 60V
ID = 12A (Vgs=10V)
RDS(ON) < 63 mΩ (VGS =10V)
RDS(ON) < 85 mΩ (VGS = 6V)
TO-263
D2-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current G
Avalanche Current
C
C
Repetitive avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation B
Power Dissipation
Junction and Storage Temperature Range
Alpha Omega Semiconductor, Ltd.
V
A
12
IAR
12
A
EAR
23
mJ
30
50
2
W
1.3
TJ, TSTG
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
25
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A
Maximum Junction-to-Case B
±20
ID
IDM
PD
TC=100°C
TA=25°C
A
Units
V
12
TC=100°C
Pulsed Drain Current
Maximum
60
RθJA
RθJC
Typ
11.2
50
2.5
°C
Max
13.5
60
3
Units
°C/W
°C/W
°C/W
AOB430
Electrical Characteristics (T J=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=10mA, VGS=0V
1
TJ=55°C
5
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
Gate Threshold Voltage
VDS=VGS, ID=250µA
1
ID(ON)
On state drain current
VGS=10V, VDS=5V
30
VGS=10V, ID=12A
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A, VGS=0V
Maximum Body-Diode Continuous Current
TJ=125°C
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qg(4.5V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
tD(on)
tr
Turn-On Rise Time
2.2
3
V
53
63
A
95
60
VDS=5V, ID=12A
14
0.74
450
85
mΩ
mΩ
S
1
V
12
A
540
pF
VGS=0V, VDS=30V, f=1MHz
61
VGS=0V, VDS=0V, f=1MHz
1.35
2
Ω
7.5
10
nC
3.8
5
nC
pF
27
VGS=10V, VDS=30V, ID=12A
pF
nC
Gate Drain Charge
1.9
nC
Turn-On DelayTime
4.2
ns
3.4
ns
16
ns
2
ns
Turn-Off DelayTime
tf
Turn-Off Fall Time
Qrr
nA
1.2
tD(off)
trr
µA
100
VGS=4.5V, ID=6A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Units
V
VDS=48V, VGS=0V
RDS(ON)
Max
60
VGS(th)
IS
Typ
VGS=10V, VDS=30V, RL=2.5Ω,
RGEN=3Ω
IF=12A, dI/dt=100A/µs
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=12A, dI/dt=100A/µs
27.6
35
30
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature fo 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev0:Aug 2005
Alpha & Omega Semiconductor, Ltd.
AOB430
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
30
20
10V
25
7V
15
15
ID(A)
5V
20
ID (A)
VDS=5V
6V
4.5V
125°C
10
4V
10
25°C
5
3.5V
5
VGS=3V
0
0
1
2
3
4
0
5
2
VDS (Volts)
Fig 1: On-Region Characteristics
3.5
4
4.5
5
Normalized On-Resistance
2.2
70
RDS(ON) (mΩ)
3
VGS(Volts)
Figure 2: Transfer Characteristics
80
VGS=6V
60
VGS=10V
50
40
0
4
8
12
16
20
2
VGS=10V, 12A
1.8
1.6
1.4
VGS=4.5V,6A
1.2
1
0.8
0
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
25
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
160
1.0E+01
140
1.0E+00
ID=12A
125°C
120
125°C
IS (A)
RDS(ON) (mΩ)
2.5
100
1.0E-01
1.0E-02
80
25°C
25°C
60
1.0E-03
1.0E-04
40
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.0
AOB430
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
700
10
VDS=30V
ID=12A
600
Capacitance (pF)
VGS (Volts)
8
6
4
Ciss
500
400
300
Coss
200
Crss
2
100
0
0
0
2
4
6
8
0
5
15
20
25
VDS (Volts)
Figure 8: Capacitance Characteristics
Qg (nC)
Figure 7: Gate-Charge Characteristics
1000
10
30
200
TJ(Max)=175°C, TA=25°C
TJ(Max)=175°C
TA=25°C
160
100
RDS(ON)
limited
10
DC
Power (W)
ID (Amps)
10µs
100µs
120
80
1ms, DC
1
40
0
0.1
0.1
0.1
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
1
10
100
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TA+PDM.ZθJC.RθJC
RθJC=3°C/W
0.1
PD
0.01
Ton
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
T
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOB430
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
60
12
tA =
10
L ⋅ ID
BV − V DD
Power Dissipation (W)
ID(A), Peak Avalanche Current
14
8
6
TA=25°C
4
2
0
0.00001
50
40
30
20
10
0
0.0001
0.001
0
25
Time in avalanche, tA (s)
Figure 12: Single Pulse Avalanche capability
100
125
150
175
60
12
Power (W)
Current rating ID(A)
75
TCASE (°C)
Figure 13: Power De-rating (Note B)
16
8
40
20
4
0
0.001
0
0
25
50
75
100
125
150
10
1
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
175
TCASE (°C)
Figure 14: Current De-rating (Note B)
ZθJA Normalized Transient
Thermal Resistance
50
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=60°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Single Pulse
0.001
0.00001
0.0001
0.001
Ton
0.01
0.1
1
T
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000
Similar pages