IN74LV620 OCTAL 3-STATE INVERTING BUS TRANSCEIVER Microcircuits IN74LV620 are pin-to-pin compatible with microcircuits of series 74ALS620, 74HC620, 74HCT620. Input voltage levels are compatible with standard C-MOS levels Features: Output voltage levels are compatible with input levels CMOS, N-MOS and TTL microcircuits. Supply voltage range from 1.2 to 3.6 V. Maximum input current: 1.0 mkA; 0.1 mkA at Т = 25 °С. Consumption current 8 mA. ORDERING INFORMATION IN74LV620N Plastic IN74LV620D SOIC IZ74LV620 Chip TA = -40° ÷ 125° C for all packages Block diagram Truth table 01 02 03 04 05 06 07 08 09 OEB OEA Inputs OEB OEA L L H H L H H H 19 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 18 Inputs/Outputs А В A=B input input B=A Z Z A=B B=A Pinout 17 OEB 01 16 15 13 12 11 1 VCC A1 02 19 OEA A2 03 18 B1 A3 04 17 B2 A4 05 14 20 620 16 B3 A5 06 15 B4 A6 07 14 B5 A7 08 13 B6 A8 09 12 B7 GND 10 11 B8 IN74LV620 Absolute maximum ratings* Symbol Parameter VCC Supply voltage IIK *1 IOK *2 IO *3 ICC IGND PD Input diode current Output diode current Output current source-drain Supply output current Common output current Dissipation power at free air change, Plastic DIP *4 SOIC *4 Storage temperature Value from -0.5 to +5.0 ±20 ±50 ±35 ±70 ±70 Unit V mA mA mA mA mA mW 750 500 Tstg from -65 to °C +150 TL 260 °C * Under absolute maximum conditions operation of microcircuits is not guaranteed. Operation under maximum conditions is guaranteed. *1 If VI < -0.5V or VI > VCC + 0.5 V. *2 If VO < -0.5V or VO > VCC + 0.5 V. *3 If -0.5V < VO < VCC + 0.5 V. *4 Under operation in the temperature range from 65°С to 125°C value of dissipation power drops down - to 10 mW/°C for Plastic DIP - to 7 mW/°C for SOIC Maximum conditions Symbol VCC VIN VOUT TA tLH, tHL Parameter Supply voltage Input voltage Output voltage Operation temperature. For all packages Period of signal rise and VCC =1.2 В fall edges (Figure 1) VCC =2.0 В VCC =3.0 В VCC =3.6 В 2 Min Max Unit 1.2 0 0 -40 0 3.6 VCC VCC 125 1000 700 500 400 V V V °C ns IN74LV620 DC electrical characteristics Sym bol Parameter Test conditions VIH High input voltage VO = VCC-0.1 V VIL Low input voltage VO =0.1 V VOH High output voltage VI = VIH or VIL Io = -50 mkA VOL Low output voltage II IOZ ICC VCC, V 1.2 2.0 3.0 3.6 1.2 2.0 3.0 3.6 1.2 2.0 3.0 3.6 Value From 25°C 40°C to 85°C min max min max 0.9 0.9 1.4 1.4 2.1 2.1 2.5 2.5 0.3 0.3 0.6 0.6 0.9 0.9 1.1 1.1 1.1 1.11 1.9 1.91 2.9 2.91 3.5 3.51 - Unit From 40°C to 125°C min max 0.9 1.4 2.1 2.5 0.3 0.6 0.9 1.1 1.1 1.9 2.9 3.5 VI = VIH or VIL 3.0 2.48 2.34 - 2.20 Io = -8 mA 0.1 0.1 - 0.09 VI = VIH or VIL 1.2 0.1 0.1 - 0.09 Io = 50 mkA 2.0 0.1 0.1 - 0.09 3.0 0.1 0.1 - 0.09 3.6 VI = VIH or VIL Io = 8 mA Input current VI = VCC or 0 V Output current in «off» Outputs in the third state state VI = VIL or VIH VO =VCC or 0 V Consumption current VI =VCC or 0 V Io = 0 mkA 3 V V V V V 3.0 - 0.33 - 0.4 - 0.5 V 3.6 3.6 - ±0.1 ±0.5 - ±1.0 ±5 - ±1.0 ±10 uA uA 3.6 - 8.0 - 80 - 160 uA IN74LV620 AC electrical characteristics (CL=50 pF, tLH = tHL = 6.0 ns) Sym-bol tPHL, tPLH from A to B from B to A tPHZ tPLZ from OE to Y tPZH tPZL from OE to Y tTHL, tTLH CI CPD Parameter Propagation delay time in «on» and «off» states Propagation delay time when switching from high, low levels into «off» state Propagation delay time when switching from «off» state into high, low levels Test VCC, conditions V Fig.1 Fig.2 Fig.2 Fig.1 Transition time when switching on, off Input capacitance VI = 0 V or Dynamic capacitance (for VCC one channel) 1.2 2.0 3.0 1.2 2.0 3.0 25°C min max 100 23 14 120 30 20 - Value Unit From - From -40°C 40°C to to 125°C 85°C min max min max ns 140 125 34 28 21 18 160 140 43 37 28 24 - 1.2 2.0 3.0 - 120 28 17 - 140 35 21 - 160 43 26 1.2 2.0 3.0 3.0 3.0 - 60 16 10 7 50 - 75 20 13 - - 90 24 15 - 4 pF IN74LV620 - Time diagram of control of AC characteristics tPLH, tPHL tLH tHL 0.9 0.9 A, B VCC VI VI 0.1 tPH 0.1 tPL L H 0.9 GND VCC 0.9 VI B, A 0.1 tTHL VI 0.1 tTLH VI = 0.5VCC Fig.1 - Time diagram of control of AC characteristics tPLZ, tPHZ, tPZL, tPZH VCC VI OEB VI 0.1 GND VCC OEA VI VI GND tPZH 0.9 VI A, B VOH tPHZ 0V tPLZ A, B VCC VI tPZL 0.1 VOL VI = 0.5VCC Fig.2 5