Siemens ILD2 Phototransistor optocoupler Datasheet

ILD1/2/5
QUAD CHANNEL ILQ1/2/5
DUAL CHANNEL
PHOTOTRANSISTOR
OPTOCOUPLER
FEATURES
• Current Transfer Ratio at IF=10 mA
ILD/Q1, 20% Min.
ILD/Q2, 100% Min.
ILD/Q5, 50% Min.
• High Collector-Emitter Voltage
ILD/Q1: BVCEO=50 V
ILD/Q2, ILD/Q5: BVCEO=70 V
• Field-Effect Stable by TRansparent IOn
Shield (TRIOS) Isolation Test Voltage, 5300
VACRMS
• Underwriters Lab File #E52744
V
•
VDE 0884 Available with Option 1
D E
Maximum Ratings (Each Channel)
Emitter
Reverse Voltage ................................................6 V
Forward Current ...........................................60 mA
Surge Current ................................................. 2.5 A
Power Dissipation.......................................100 mW
Derate Linearly from 25°C..................... 1.3 mW/°C
Detector
Collector-Emitter Reverse Voltage
ILD/Q1 ........................................................... 50 V
ILD/Q2, ILD/Q5...............................................70 V
Collector Current .......................................... 50 mA
Collector Current (t<1 ms)...........................400 mA
Power Dissipation.......................................200 mW
Derate Linearly from 25°C......................2.6 mW/°C
Package
Isolation Test Voltage (between
emitter and detector referred to
standard climate 23°C/50%RH,
DIN 50014) .................................... 5300 VACRMS
Creepage ............................................... min. 7 mm
Clearance............................................... min. 7 mm
Isolation Resistance
VIO=500 V, TA=25°C ......................... RIO=1012 Ω
VIO=500 V, TA=100°C ....................... RIO=1011 Ω
Package Power Dissipation ...................... 250 mW
Derate Linearly from 25°C..................... 3.3 mW/°C
Storage Temperature................... –40°C to +150°C
Operating Temperature ................–40°C to +100°C
Junction Temperature.................................... 100°C
Soldering Temperature
(2 mm from case bottom) .......................... 260°C
Dimensions in inches (mm)
Dual Channel
Pin One I.D.
4
3
2
1
Anode 1
.268 (6.81)
.255 (6.48)
5
6
7
8 Emitter
Cathode 2
7 Collector
Cathode 3
6 Collector
8
Anode 4
.390 (9.91)
.379 (9.63)
.045 (1.14)
.030 (.76)
5 Emitter
.305 Typ.
(7.75) Typ.
.150 (3.81)
.130 (3.30)
4° Typ.
.135 (3.43)
.115 (2.92)
10° Typ.
.040 (1.02)
.030 (.76 )
.022 (.56)
.018 (.46)
.100 (2.54) Typ.
3°–9°
.012 (.30)
.008 (.20)
Quad Channel
Pin One I.D.
.268 (6.81)
.255 (6.48)
.790 (20.07)
.779 (19.77 )
.045 (1.14)
.030 (.76)
15 Collector
Cathode 3
14 Collector
Anode 4
13 Emitter
Anode 5
12 Emitter
Cathode 6
11 Collector
Cathode 7
10 Collector
9 Emitter
Anode 8
.150 (3.81)
.130 (3.30)
.305 Typ.
(7.75) Typ.
.135 (3.43)
.115 (2.92)
4° Typ.
.022 (.56)
.018 (.46)
16 Emitter
Anode 1
Cathode 2
10° Typ.
.040 (1.02)
.030 (.76 )
.100 (2.54) Typ.
3°–9°
.012 (.30)
.008 (.20)
DESCRIPTION
The ILD/Q1/2/5 are optically coupled isolated pairs employing GaAs infrared
LEDs and silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the drive while maintaining a high degree of
electrical isolation between input and output. The ILD/Q1/2/5 are especially
designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. Also these couplers can be
used to replace relays and transformers in many digital interface applications such as CRT modulation. The ILD1/2/5 has two isolated channels in a
single DIP package and the ILQ1/2/5 has four isolated channels per package.
See Appnote 45, “How to Use Optocoupler Normalized Curves.”
5–1
Characteristics
Symbol
Min.
Typ.
Max.
Unit
Condition
Emitter
Forward Voltage
VF
1.25
1.65
V
IF=60 mA
Reverse Current
IR
0.01
10
µA
VR=6 V
Capacitance
C0
25
pF
VR=0 V, f=1 MHz
Thermal Resistance, Junction to Lead
RTHJL
750
°C/W
Capacitance
CCE
6.8
pF
VCE=5 V, f=1 MHz
Leakage Current, Collector-Emitter
ICEO
5
50
nA
VCE=10 V
Saturation Voltage, Collector-Emitter
VCESAT
0.25
0.4
ICE=1 mA, IB=20 µA
DC Forward Current Gain
HFE
200
650
1800
VCE= 10 V, IB=20 µA
Saturated DC Forward Current Gain
HFESAT
120
400
600
VCE= 0.4 V, IB=20 µA
Thermal Resistance, Junction to Lead
RTHJL
Detector
°C/W
500
Package Transfer Characteristics (Each Channel)
Symbol
Min.
Typ.
Max.
Unit
Condition
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE=10 V
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE=10 V
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE =10 V
ILD/Q1
Saturated Current Transfer Ratio (Collector-Emitter)
CTRCESAT
Current Transfer Ratio (Collector-Emitter)
CTRCE
75
20
90
300
ILD/Q2
Saturated Current Transfer Ratio (Collector-Emitter)
CTRCESAT
Current Transfer Ratio (Collector-Emitter)
CTRCE
170
100
200
500
ILD/Q5
Saturated Current Transfer Ratio (Collector-Emitter)
CTRCESAT
Current Transfer Ratio (Collector-Emitter)
CTRCE
100
50
130
400
Isolation and Insulation
Common Mode Rejection, Output High
CMH
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=0 mA
Common Mode Rejection, Output Low
CML
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=10 mA
Common Mode Coupling Capacitance
CCM
0.01
pF
Package Capacitance
CIO
0.8
pF
VIO=0 V, f=1 MHz
ILD/Q1/2/5
5–2
Typical Switching Times
Figure 1. Non-saturated switching timing
VCC=5 V
IF=10 mA
VO
RL=75 Ω
F=10 KHz,
DF=50%
Figure 2. Non-saturated switching timing
IF
VO
t PHL
t PLH
tS
50%
tF
tR
tD
Figure 3. Saturated switching timing
F=10 KHz,
DF=50%
VCC=5 V
ILD/Q1
IF=20 mA
ILD/Q2
IF=5 mA
ILD/Q5
IF=10 mA
Unit
Delay, tD
0.8
1.7
1.7
µs
Rise time, tR
1.9
2.6
2.6
µs
Storage, tS
0.2
0.4
0.4
µs
Fall Time, tF
1.4
2.2
2.2
µs
Propagation
H-L, tPHL
0.7
1.2
1.1
µs
Propagation
L-H, tPLH
1.4
2.3
2.5
µs
Characteristic
ILD/Q1
IF=20 mA
ILD/Q2
IF=5 mA
ILD/Q5
IF=10 mA
Unit
Delay, tD
0.8
1
1.7
µs
Rise time, tR
1.2
2
7
µs
Storage, tS
7.4
5.4
4.6
µs
Fall Time, tF
7.6
13.5
20
µs
Propagation
H-L, tPHL
1.6
5.4
2.6
µs
Propagation
L-H, tPLH
8.6
7.4
7.2
µs
Condition
VCE=5 V
RL=75 kΩ
50% of VPP
Condition
VCE=0.4 V
RL=1 kΩ
VCC=5 V
VTH=1.5 V
Figure 5. Normalized non-saturated and saturated
CTR at TA=25°C versus LED current
RL
IF=10 mA
Characteristic
1.4
Vf-Forward Voltage - V
VO
Figure 4. Saturated switching timing
IF
1.3
Ta = -55°C
1.2
1.1
Ta = 25°C
1.0
0.9
Ta = 100°C
0.8
0.7
.1
tD
VTH =1.5 V
tS
tF
CTRNF - Normalized CTR Factor
t PLH
t PHL
10
100
Figure 6. Normalized non-saturated and saturated
CTR at TA=25°C versus LED current
tR
VO
1
If - Forward Current - mA
1.5
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
CTRce(sat) Vce = 0.4V
1.0
0.5
NCTR(SAT)
NCTR
0.0
.1
1
10
100
IF - LED Current - mA
ILD/Q1/2/5
5–3
Figure 10. Collector-emitter current versus temperature and LED current
Figure 7. Normalized non-saturated and saturated
CTR at TA=50°C versus LED current
35
Ice - Collector Current - mA
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
1.0
Ta = 50°C
0.5
NCTR(SAT)
NCTR
30
25
50°C
20
15
85°C
10
5
0
0
0.0
.1
1
10
IF - LED Current - mA
100
Iceo - Collector-Emitter - nA
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
CTRce(sat) Vce = 0.4V
60
10 4
10 3
10 2
Vce = 10V
10 1
TYPICAL
10 0
0.5
Ta = 70°C
NCTR(SAT)
NCTR
10 -1
10 -2
-20
0.0
.1
1
10
IF - LED Current - mA
100
tPLH - Propagation Low-High - µs
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
0.5
0.0
.1
Ta = 85°C
NCTR(SAT)
NCTR
1
10
IF - LED Current - mA
20
40
60
80
1000
1.5
1.0
0
100
Ta - Ambient Temperature - °C
Figure 12. Propagation delay versus collector load
resistor
Figure 9. Normalized non-saturated and saturated
CTR at TA=85°C versus LED current
NCTR - Normalized CTR
50
10 5
1.5
CTR - Normalized CTR Factor
10
20
30
40
IF - LED Current - mA
Figure 11. Collector-emitter leakage current versus
temperature
Figure 8. Normalized non-saturated and saturated
CTR at TA=70°C versus LED current
1.0
70°C
25°C
100
2.5
Ta = 25°C, IF = 10mA
Vcc = 5V, Vth = 1.5V
tPLH
100
2.0
10
1.5
tPHL
1
.1
1
10
1.0
100
tPHL - Propagation High-Low - µs
CTRNF - Normalized CTR Factor
1.5
RL - Collector Load Resistor - KΩ
ILD/Q1/2/5
5–4
Similar pages