ILD1/2/5 QUAD CHANNEL ILQ1/2/5 DUAL CHANNEL PHOTOTRANSISTOR OPTOCOUPLER FEATURES • Current Transfer Ratio at IF=10 mA ILD/Q1, 20% Min. ILD/Q2, 100% Min. ILD/Q5, 50% Min. • High Collector-Emitter Voltage ILD/Q1: BVCEO=50 V ILD/Q2, ILD/Q5: BVCEO=70 V • Field-Effect Stable by TRansparent IOn Shield (TRIOS) Isolation Test Voltage, 5300 VACRMS • Underwriters Lab File #E52744 V • VDE 0884 Available with Option 1 D E Maximum Ratings (Each Channel) Emitter Reverse Voltage ................................................6 V Forward Current ...........................................60 mA Surge Current ................................................. 2.5 A Power Dissipation.......................................100 mW Derate Linearly from 25°C..................... 1.3 mW/°C Detector Collector-Emitter Reverse Voltage ILD/Q1 ........................................................... 50 V ILD/Q2, ILD/Q5...............................................70 V Collector Current .......................................... 50 mA Collector Current (t<1 ms)...........................400 mA Power Dissipation.......................................200 mW Derate Linearly from 25°C......................2.6 mW/°C Package Isolation Test Voltage (between emitter and detector referred to standard climate 23°C/50%RH, DIN 50014) .................................... 5300 VACRMS Creepage ............................................... min. 7 mm Clearance............................................... min. 7 mm Isolation Resistance VIO=500 V, TA=25°C ......................... RIO=1012 Ω VIO=500 V, TA=100°C ....................... RIO=1011 Ω Package Power Dissipation ...................... 250 mW Derate Linearly from 25°C..................... 3.3 mW/°C Storage Temperature................... –40°C to +150°C Operating Temperature ................–40°C to +100°C Junction Temperature.................................... 100°C Soldering Temperature (2 mm from case bottom) .......................... 260°C Dimensions in inches (mm) Dual Channel Pin One I.D. 4 3 2 1 Anode 1 .268 (6.81) .255 (6.48) 5 6 7 8 Emitter Cathode 2 7 Collector Cathode 3 6 Collector 8 Anode 4 .390 (9.91) .379 (9.63) .045 (1.14) .030 (.76) 5 Emitter .305 Typ. (7.75) Typ. .150 (3.81) .130 (3.30) 4° Typ. .135 (3.43) .115 (2.92) 10° Typ. .040 (1.02) .030 (.76 ) .022 (.56) .018 (.46) .100 (2.54) Typ. 3°–9° .012 (.30) .008 (.20) Quad Channel Pin One I.D. .268 (6.81) .255 (6.48) .790 (20.07) .779 (19.77 ) .045 (1.14) .030 (.76) 15 Collector Cathode 3 14 Collector Anode 4 13 Emitter Anode 5 12 Emitter Cathode 6 11 Collector Cathode 7 10 Collector 9 Emitter Anode 8 .150 (3.81) .130 (3.30) .305 Typ. (7.75) Typ. .135 (3.43) .115 (2.92) 4° Typ. .022 (.56) .018 (.46) 16 Emitter Anode 1 Cathode 2 10° Typ. .040 (1.02) .030 (.76 ) .100 (2.54) Typ. 3°–9° .012 (.30) .008 (.20) DESCRIPTION The ILD/Q1/2/5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The ILD/Q1/2/5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. Also these couplers can be used to replace relays and transformers in many digital interface applications such as CRT modulation. The ILD1/2/5 has two isolated channels in a single DIP package and the ILQ1/2/5 has four isolated channels per package. See Appnote 45, “How to Use Optocoupler Normalized Curves.” 5–1 Characteristics Symbol Min. Typ. Max. Unit Condition Emitter Forward Voltage VF 1.25 1.65 V IF=60 mA Reverse Current IR 0.01 10 µA VR=6 V Capacitance C0 25 pF VR=0 V, f=1 MHz Thermal Resistance, Junction to Lead RTHJL 750 °C/W Capacitance CCE 6.8 pF VCE=5 V, f=1 MHz Leakage Current, Collector-Emitter ICEO 5 50 nA VCE=10 V Saturation Voltage, Collector-Emitter VCESAT 0.25 0.4 ICE=1 mA, IB=20 µA DC Forward Current Gain HFE 200 650 1800 VCE= 10 V, IB=20 µA Saturated DC Forward Current Gain HFESAT 120 400 600 VCE= 0.4 V, IB=20 µA Thermal Resistance, Junction to Lead RTHJL Detector °C/W 500 Package Transfer Characteristics (Each Channel) Symbol Min. Typ. Max. Unit Condition % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE=10 V % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE=10 V % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE =10 V ILD/Q1 Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT Current Transfer Ratio (Collector-Emitter) CTRCE 75 20 90 300 ILD/Q2 Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT Current Transfer Ratio (Collector-Emitter) CTRCE 170 100 200 500 ILD/Q5 Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT Current Transfer Ratio (Collector-Emitter) CTRCE 100 50 130 400 Isolation and Insulation Common Mode Rejection, Output High CMH 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=0 mA Common Mode Rejection, Output Low CML 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=10 mA Common Mode Coupling Capacitance CCM 0.01 pF Package Capacitance CIO 0.8 pF VIO=0 V, f=1 MHz ILD/Q1/2/5 5–2 Typical Switching Times Figure 1. Non-saturated switching timing VCC=5 V IF=10 mA VO RL=75 Ω F=10 KHz, DF=50% Figure 2. Non-saturated switching timing IF VO t PHL t PLH tS 50% tF tR tD Figure 3. Saturated switching timing F=10 KHz, DF=50% VCC=5 V ILD/Q1 IF=20 mA ILD/Q2 IF=5 mA ILD/Q5 IF=10 mA Unit Delay, tD 0.8 1.7 1.7 µs Rise time, tR 1.9 2.6 2.6 µs Storage, tS 0.2 0.4 0.4 µs Fall Time, tF 1.4 2.2 2.2 µs Propagation H-L, tPHL 0.7 1.2 1.1 µs Propagation L-H, tPLH 1.4 2.3 2.5 µs Characteristic ILD/Q1 IF=20 mA ILD/Q2 IF=5 mA ILD/Q5 IF=10 mA Unit Delay, tD 0.8 1 1.7 µs Rise time, tR 1.2 2 7 µs Storage, tS 7.4 5.4 4.6 µs Fall Time, tF 7.6 13.5 20 µs Propagation H-L, tPHL 1.6 5.4 2.6 µs Propagation L-H, tPLH 8.6 7.4 7.2 µs Condition VCE=5 V RL=75 kΩ 50% of VPP Condition VCE=0.4 V RL=1 kΩ VCC=5 V VTH=1.5 V Figure 5. Normalized non-saturated and saturated CTR at TA=25°C versus LED current RL IF=10 mA Characteristic 1.4 Vf-Forward Voltage - V VO Figure 4. Saturated switching timing IF 1.3 Ta = -55°C 1.2 1.1 Ta = 25°C 1.0 0.9 Ta = 100°C 0.8 0.7 .1 tD VTH =1.5 V tS tF CTRNF - Normalized CTR Factor t PLH t PHL 10 100 Figure 6. Normalized non-saturated and saturated CTR at TA=25°C versus LED current tR VO 1 If - Forward Current - mA 1.5 Normalized to: Vce = 10V, IF = 10mA Ta = 25°C CTRce(sat) Vce = 0.4V 1.0 0.5 NCTR(SAT) NCTR 0.0 .1 1 10 100 IF - LED Current - mA ILD/Q1/2/5 5–3 Figure 10. Collector-emitter current versus temperature and LED current Figure 7. Normalized non-saturated and saturated CTR at TA=50°C versus LED current 35 Ice - Collector Current - mA Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 1.0 Ta = 50°C 0.5 NCTR(SAT) NCTR 30 25 50°C 20 15 85°C 10 5 0 0 0.0 .1 1 10 IF - LED Current - mA 100 Iceo - Collector-Emitter - nA Normalized to: Vce = 10V, IF = 10mA Ta = 25°C CTRce(sat) Vce = 0.4V 60 10 4 10 3 10 2 Vce = 10V 10 1 TYPICAL 10 0 0.5 Ta = 70°C NCTR(SAT) NCTR 10 -1 10 -2 -20 0.0 .1 1 10 IF - LED Current - mA 100 tPLH - Propagation Low-High - µs Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 0.5 0.0 .1 Ta = 85°C NCTR(SAT) NCTR 1 10 IF - LED Current - mA 20 40 60 80 1000 1.5 1.0 0 100 Ta - Ambient Temperature - °C Figure 12. Propagation delay versus collector load resistor Figure 9. Normalized non-saturated and saturated CTR at TA=85°C versus LED current NCTR - Normalized CTR 50 10 5 1.5 CTR - Normalized CTR Factor 10 20 30 40 IF - LED Current - mA Figure 11. Collector-emitter leakage current versus temperature Figure 8. Normalized non-saturated and saturated CTR at TA=70°C versus LED current 1.0 70°C 25°C 100 2.5 Ta = 25°C, IF = 10mA Vcc = 5V, Vth = 1.5V tPLH 100 2.0 10 1.5 tPHL 1 .1 1 10 1.0 100 tPHL - Propagation High-Low - µs CTRNF - Normalized CTR Factor 1.5 RL - Collector Load Resistor - KΩ ILD/Q1/2/5 5–4