MOTOROLA MC9S12B128VFU25 Microcontroller unit (mcu) Datasheet

DOCUMENT NUMBER
9S12B128DGV1/D
MC9S12B128
Device User Guide
V01.11
Covers also preliminary MC9S12B64 using
MC9S12B128 die
Original Release Date: 22 Nov 2002
Revised: 12 Aug 2004
Semiconductor Products Sector
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
©Motorola, Inc., 2001
1
DOCUMENT NUMBER
9S12B128DGV1/D
Revision History
Version Revision Effective
Number
Date
Date
Author
Description of Changes
V01.00
20 NOV
2002
20 NOV
2002
Initial version based on MC9S12DGJ64-1.10 Version.
V01.01
27 JAN
2003
01 FEB
2003
updated Table 0-1; added submodule configuration in Section 6 &
Section 11. Updated memory map $0118-$011B
V01.02
24 FEB
2003
24 FEB
2003
updated Table 0-1; updated section 2.2.28; Updated memory map
$0101.
V01.03
18MAR
2003
18 MAR
2003
added the IIC to the document; added for B64 more details in the
preface and the according “Memory Map out of Reset”
V01.04
05MAY
2003
05 MAY
2003
Updated bus frequency in Table A-4; updated numbers in A.3.1.2
and A.3.1.3
Updated B64 details. Corrected numbering in Table A-26.
Replaced references to HCS12 Core Guide by the individual
HCS12 Block guides.
Table 2-1 corrected pullrresistor reset state PE4-PE2.
Table A-1 corrected footnote on clamp of TEST pin.
V01.05
20 JUN
2003
20 JUN
2003
V01.06
01 SEP
2003
01 SEP
2003
V01.07
31 OCT
2003
31 OCT
2003
Added Table 0-2 and note at Section 8.1
V01.08
22 JAN
2004
22 JAN
2004
Updated Table 1-3
V01.09
24 FEB
2004
24 FEB
2004
Updated Table 0-5, row 6 of Table A-15
V01.10
17 MAR
2004
17 MAR
2004
Added Table 0-3, updated Figure 0-1 and Table 1-3
V01.11
13 AUG
2004
13 AUG
2004
Added Table 0-4; updated Table 1-3; added Note in Section 11;
row 5 & 6 of Table A-7; row 4 & 7 Table A-17; A.5.1.5; A.5.1.6;
Table A-20 row 13 & 14
Updated Section 11, Section 15, A.5.2 Oscillator
Table A-15 corrected Num 9 and 10.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
©Motorola, Inc., 2001
2
Device User Guide —9S12B128DGV1/D V01.11
Table of Contents
Section 1 Introduction
1.1
1.2
1.3
1.4
1.5
1.5.1
1.6
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
System Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Section 2 Signal Description
2.1
System Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
2.1.1
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
2.2
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.2.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.2.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.2.3
TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.2.4
VREGEN — Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.2.5
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.2.6
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .52
2.2.7
PAD[15:0] / AN[15:0] — Port AD Input Pins ATD . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.2.8
PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .53
2.2.9
PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .53
2.2.10 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
2.2.11 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
2.2.12 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
2.2.13 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
2.2.14 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.15 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.16 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.17 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.18 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.19 PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.20 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
3
Device User Guide — 9S12B128DGV1/D V01.11
2.2.21 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.22 PH3 / KWH3 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2.23 PH2 / KWH2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.24 PH1 / KWH1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.25 PH0 / KWH0 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.26 PJ7 / KWJ7 / SCL — Port J I/O Pins 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.27 PJ6 / KWJ6 / SDA — Port J I/O Pins 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.28 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.29 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.30 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.31 PM7 — Port M I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.32 PM6 — Port M I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.33 PM5 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.34 PM4 / MOSI0 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.35 PM3 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.36 PM2 / MISO0 — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.37 PM1 / TXCAN0 — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.38 PM0 / RXCAN0 — Port M I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.39 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
2.2.40 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.41 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.42 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.43 PP3 / KWP3 / PWM3 — Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.44 PP2 / KWP2 / PWM2 — Port P I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.45 PP1 / KWP1 / PWM1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.46 PP0 / KWP0 / PWM0 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.47 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.48 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.2.49 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.50 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.51 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.52 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.53 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.54 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.55 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.3
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4
Device User Guide —9S12B128DGV1/D V01.11
2.3.1
2.3.2
60
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
VDDX, VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . .60
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins . . . . . . . . . . . . . . .61
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .61
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .61
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .61
VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Section 3 System Clock Description
Section 4 Modes of Operation
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Section 5 Resets and Interrupts
5.1
5.2
5.2.1
5.3
5.3.1
5.3.2
5.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Section 6 HCS12 Core Block Description
6.1
CPU12 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
6.1.1
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
6.2
HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . . . .70
5
Device User Guide — 9S12B128DGV1/D V01.11
6.2.1
6.3
6.3.1
6.4
6.5
6.5.1
6.6
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . . . .70
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
HCS12 Background Debug (BDM) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . .71
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Section 7 Voltage Regulator (VREG3V3) Block Description
Section 8 Clock and Reset Generator (CRG) Block Description
8.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Section 9 Oscillator (OSC) Block Description
9.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Section 10 Standard Timer (TIM) Block Description
Section 11 Analog to Digital Converter (ATD) Block Description
Section 12 Inter-IC Bus (IIC) Block Description
Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Flash EEPROM 128K1 Block Description
Section 16 EEPROM 1K Block Description
Section 17 RAM Block Description
Section 18 MSCAN Block Description
Section 19 Pulse Width Modulator (PWM) Block Description
Section 20 Port Integration Module (PIM) Block Description
6
Device User Guide —9S12B128DGV1/D V01.11
Section 21 Printed Circuit Board Layout Proposals
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.2.1
ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.2.2
ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.2.3
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
A.2.4
ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
A.3.1
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
A.3.2
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.4 VREG_3V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
A.4.1
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
A.4.2
Chip Power-up and Voltage Drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
A.4.3
Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
A.5.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
A.5.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
A.5.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
A.7.1
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
A.7.2
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
A.8.1
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
7
Device User Guide — 9S12B128DGV1/D V01.11
Appendix B Package Information
B.1
B.2
B.3
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
8
Device User Guide —9S12B128DGV1/D V01.11
List of Figures
Figure 0-1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 21-1
Figure 21-2
Figure 21-3
Figure 21-4
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure B-1
Figure B-2
Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
MC9S12B128 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
MC9S12B128 Memory Map out of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
MC9S12B64 using MC9S12B128 die Memory Map out of Reset . . . . . . . . . . . .28
Pin Assignments in 112-pin LQFP for MC9S12B128 . . . . . . . . . . . . . . . . . . . . .48
Pin Assignments in 80-pin QFP for MC9S12B128 . . . . . . . . . . . . . . . . . . . . . . .49
PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Recommended PCB Layout 112LQFP Colpitts Oscillator. . . . . . . . . . . . . . . . . .75
Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .76
Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .77
Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .78
ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
VREG_3V3 - Chip Power-up and Voltage Drops (not scaled). . . . . . . . . . . . . 102
Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . 124
80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . . . . 125
9
Device User Guide — 9S12B128DGV1/D V01.11
10
Device User Guide —9S12B128DGV1/D V01.11
List of Tables
Table 0-1 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 0-2 Defects fixed on Maskset 1L80R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 0-3 Defects fixed on Maskset 2L80R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 0-4 Defects fixed on Maskset 3L80R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 0-5 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................29
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ...............................29
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) ............................................................30
$0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control) ...............................30
$0018 - $0018 Reserved ..................................................................................................30
$0019 - $0019 VREG3V3 (Voltage Regulator) ................................................................30
$001A - $001B Miscellaneous Peripherals (Device User Guide, Table 1-3) ....................30
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4) ..............30
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) ................30
$001F - $001F INT map 2 of 2 (HCS12 Interrupt) ............................................................31
$0020 - $0027 Reserved ..................................................................................................31
$0028 - $002F BKP (HCS12 Breakpoint) .........................................................................31
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ...............................31
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) ................31
$0034 - $003F CRG (Clock and Reset Generator) ..........................................................32
$0040 - $006F TIM (Timer 16 Bit 8 Channels) .................................................................32
$0070 - $007F Reserved .................................................................................................34
$0080 - $00AF ATD (Analog to Digital Converter 10 Bit 16 Channel) ..............................34
$00B0 - $00C7 Reserved .................................................................................................36
$00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................36
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................36
$00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................37
$00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................37
$00E8 - $00FF Reserved ..................................................................................................38
$0100 - $010F Flash Control Register (fts128k1) ............................................................38
$0110 - $011B EEPROM Control Register (eets1k) ........................................................39
$011C - $013F Reserved ..................................................................................................39
11
Device User Guide — 9S12B128DGV1/D V01.11
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ..............................................39
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout . . . . . . . . . . .40
$0180 - $01FF Reserved ..................................................................................................41
$0200 - $0227 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................42
$0228 - $023F Reserved ..................................................................................................43
$0240 - $027F PIM (Port Integration Module) ..................................................................43
$0280 - $03FF Reserved ..................................................................................................45
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 1-4 Memory Size Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 2-2 MC9S12B128 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . . .60
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Table 21-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Table A-7 3.3V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table A-8 Supply Current Characteristics at 25MHz Bus Frequency. . . . . . . . . . . . . . . . . . .88
Table A-9 Supply Current Characteristics at 16MHz Bus Frequency. . . . . . . . . . . . . . . . . . .89
Table A-10 ATD Operating Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Table A-11 ATD Operating Characteristics In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Table A-12 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Table A-13 ATD Conversion Performance In 5V Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Table A-14 ATD Conversion Performance In 3.3V Range . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Table A-15 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Table A-16 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Table A-17 VREG_3V3 - Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Table A-18 VREG_3V3 - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Table A-19 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Table A-20 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
12
Device User Guide —9S12B128DGV1/D V01.11
Table A-21
Table A-22
Table A-23
Table A-24
Table A-25
Table A-26
PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Expanded Bus Timing Characteristics In 5V Range . . . . . . . . . . . . . . . . . . . . . .121
13
Device User Guide — 9S12B128DGV1/D V01.11
14
Device User Guide —9S12B128DGV1/D V01.11
Derivative Differences and Document References
The Device User Guide provides information about the particular system made up of the MC9S12B128
and MC9S12B64.
Derivative Differences
Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about using
the HCS12 D family as a development platform for the HCS12B family refer also to engineering bulletin
EB388.
Table 0-1 Derivative Differences
Generic device
MC9S12B128
MC9S12B64
Packages
112LQFP, 80QFP
112LQFP, 80QFP
Mask Set
L80R
L80R
Temp Options
M, V, C
M, V, C
Package Codes
PV, FU
PV, FU
Bus Speed Options
25MHz, 16MHz
25MHz, 16MHz
Note
An errata exists
contact Sales office
An errata exists
contact Sales office
Table 0-2 shows the defects fixed on maskset 1L80R.
Table 0-2 Defects fixed on Maskset 1L80R
Errata Number
MUCts01096
Module affected
mscan
Brief Description
Data byte corrupted in receive buffer
Workaround
YES
Table 0-3 shows the defects fixed on maskset 2L80R.
Table 0-3 Defects fixed on Maskset 2L80R
Errata Number
MUCts01096
Module affected
mscan
MUCts01371
mscan
Brief Description
Data byte corrupted in receive buffer
Message erroneously accepted
if bus error in bit 6 of EOF
Workaround
YES
NO
Table 0-4 shows the defects fixed on maskset 3L80R.
Table 0-4 Defects fixed on Maskset 3L80R
Errata Number
MUCts01096
Module affected
mscan
MUCts01371
mscan
MUCts01534
vreg_3v3
Brief Description
Data byte corrupted in receive buffer
Message erroneously accepted
if bus error in bit 6 of EOF
Return from STOP malfunction
Workaround
YES
NO
NO
15
Device User Guide — 9S12B128DGV1/D V01.11
MC9S12 B128 C FU 25
Speed
Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU =
80QFP
PV = 112LQFP
Speed Options
25 = 25MHz bus
16 = 16MHz bus
Figure 0-1 Order Partnumber Example
The following items should be considered when using a derivative.
•
PreliminaryMC9S12B64 using MC9S12B128 die
The MC9S12B128 is tested only for MC9S12B64 functionality. For the preliminary
MC9S12B64 the upper 2K Bytes RAM of the MC9S12B128 are reserved and should not be
used. Also the pages $38-$3B of Flash are reserved and should not be used.
•
16
Pins not available in 80 pin QFP package
–
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
–
Port J[1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at
Base+$026C.
–
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefor care must be taken not to clear this bit.
–
Port M[7:6]
PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
Device User Guide —9S12B128DGV1/D V01.11
–
Port S[7:4]
PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
PAD[15:8] (ATD channels)
Out of reset the ATD channels to PAD[15:8] are disabled preventing current flows in the pins.
Do not modify the ATD registers for these channels!
Document References
The Device User Guide provides information about the MC9S12B128 device made up of standard HCS12
blocks and the HCS12 processor core.
This document is part of the customer documentation. A complete set of device manuals also includes all
the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module
specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
See Table 0-5 for names and versions of the referenced documents throughout the Device User Guide.
Table 0-5 Document References
Versi
on
Document Order Number
CPU12 Reference Manual
V02
S12CPU12V2/AD
User Guide
HCS12 Module Mapping Control (MMC) Block Guide
V04
S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide
V03
S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide
V01
S12INTV1/D
HCS12 Background Debug (BDM) Block Guide
V04
S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide
V01
S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide
V04
S12CRGV4/D
Oscillator (OSC) Block User Guide
V02
S12OSCV2/D
Input Capture/Output Compare Timer (TIM_16B8C) Block User Guide
V01
S12TIM16B8CV1/D
Analog to Digital Converter10 Bit 16 Channel (ATD_10B16C) Block User Guide
V03
S12ATD10B16CV3/D
Inter IC Bus (IIC) Block User Guide
V02
S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide
V02
S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide
V03
S12SPIV3/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide
V01
S12PWM8B8CV1/D
128K Byte Flash (FTS128K1) Block User Guide
V01
S12FTS128K1V1/D
1K Byte EEPROM (EETS1K) Block User Guide
V01
S12EETS1KV1/D
Motorola Scalable CAN (MSCAN) Block User Guide
V02
S12MSCANV2/D
Voltage Regulator (VREG3V3) Block User Guide
V02
S12VREG3V3V2/D
Port Integration Module (PIM_9B128) Block User Guide
V01
S12PIM9B128V1/D
17
Device User Guide — 9S12B128DGV1/D V01.11
18
Device User Guide —9S12B128DGV1/D V01.11
Section 1 Introduction
1.1 Overview
The MC9S12B128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (CPU12), 128K bytes of Flash EEPROM, 4K bytes
of RAM, 1K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), serial
peripheral interface (SPI), an input capture/output compare timer (TIM), 16- channel, 10-bit
analog-to-digital converter (ADC), an 8-channel pulse-width modulator (PWM), one CAN 2.0 A, B
software compatible module (MSCAN12) and an Inter-IC Bus. The MC9S12B128 has full 16-bit data
paths throughout, however, the external bus can operate in an 8-bit narrow mode so single 8-bit wide
memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power
consumption and performance to be adjusted to suit operational requirements. In addition to the I/O ports
available in each module, up to 22 I/O ports are available with Wake-Up capability from STOP or WAIT
mode.
1.2 Features
•
HCS12 Core
–
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. Instruction queue
iv. Enhanced indexed addressing
•
•
–
MEBI (Multiplexed External Bus Interface)
–
MMC (Module Mapping Control)
–
INT (Interrupt control)
–
BKP (Breakpoints)
–
BDM (Background Debug Mode)
CRG
–
Low current Colpitts or
–
Pierce oscillator,
–
PLL,
–
COP watchdog,
–
Real time interrupt,
–
Clock monitor
8-bit and 4-bit ports with interrupt functionality
19
Device User Guide — 9S12B128DGV1/D V01.11
•
•
•
•
•
20
–
Digital filtering
–
Programmable rising or falling edge trigger
Memory
–
128K Flash EEPROM
–
1K byte EEPROM
–
4K byte RAM
Analog-to-Digital Converter
–
16-channels for 112 Pin Package, 8 channels for 80 Pin package options
–
10-bit resolution
–
External conversion trigger capability
1M bit per second, CAN 2.0 A, B software compatible module
–
Five receive and three transmit buffers
–
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
–
Four separate interrupt channels for Rx, Tx, error and wake-up
–
Low-pass filter wake-up function
–
Loop-back for self test operation
Input Capture/Output Compare Timer (TIM)
–
16-bit Counter with 7-bit Prescaler
–
8 programmable input capture or output compare channels
–
16-bit Pulse Accumulators
–
Simple PWM Mode
–
Modulo Reset of Timer Counter
–
External Event Counting
–
Gated Time Accumulation
8 PWM channels
–
Programmable period and duty cycle
–
8-bit 8-channel or 16-bit 4-channel
–
Separate control for each pulse width and duty cycle
–
Center-aligned or left-aligned outputs
–
Programmable clock select logic with a wide range of frequencies
–
Fast emergency shutdown input
–
Usable as interrupt inputs
Device User Guide —9S12B128DGV1/D V01.11
•
•
•
•
Serial interfaces
–
Two asynchronous Serial Communications Interfaces (SCI)
–
Synchronous Serial Peripheral Interface (SPI)
Inter-IC Bus (IIC)
–
Compatible with I2C Bus standard
–
Multi-master operation
–
Software programmable for one of 256 different serial clock frequencies
Internal 2.5V Regulator
–
Supports an input voltage range from 2.97V to 5.5V
–
Low power mode capability
–
Includes low voltage reset (LVR) circuitry
–
Includes low voltage interrupt (LVI) circuitry
112-Pin LQFP or 80 QFP package
–
I/O lines with 5V input and drive capability
–
5V A/D converter inputs
–
Operation at 32 MHz equivalent to 16 MHz Bus Speed; Option 50MHz equivalent to 25MHz
Bus Speed
–
Development support
–
Single-wire background debug™ mode (BDM)
–
On-chip hardware breakpoints
1.3 Modes of Operation
User modes
•
•
Normal and Emulation Operating Modes
–
Normal Single-Chip Mode
–
Normal Expanded Wide Mode
–
Normal Expanded Narrow Mode
–
Emulation Expanded Wide Mode
–
Emulation Expanded Narrow Mode
Special Operating Modes
–
Special Single-Chip Mode with active Background Debug Mode
–
Special Test Mode (Motorola use only)
21
Device User Guide — 9S12B128DGV1/D V01.11
–
Special Peripheral Mode (Motorola use only)
Low power modes
•
Stop Mode
•
Pseudo Stop Mode
•
Wait Mode
22
Device User Guide —9S12B128DGV1/D V01.11
1.4 Block Diagram
Figure 1-1 shows a block diagram of the MC9S12B128 device.
23
Device User Guide — 9S12B128DGV1/D V01.11
Figure 1-1 MC9S12B128 Block Diagram
VRH
ATD
Multiplexed Address/Data Bus
PWM
DDRA
DDRB
PTA
PTB
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
RXD
TXD
RXD
TXD
SCI0
Internal Logic 2.5V
VDD1,2
VSS1,2
PLL 2.5V
VDDPLL
VSSPLL
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
I/O Driver 5V
VDDA
VSSA
Voltage Regulator 5V & I/O
VDDR
VSSR
24
KWJ0
KWJ1
VDDX
VSSX
A/D Converter 5V &
Voltage Regulator Reference
IIC
Pin
Interrupt
Logic
DDRK
AD
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
RxCAN
TxCAN
DDRM
Multiplexed
Narrow Bus
CAN0
MISO
MOSI
SCK
SS
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Multiplexed
Wide Bus
DATA15 ADDR15 PA7
DATA14 ADDR14 PA6
DATA13 ADDR13 PA5
DATA12 ADDR12 PA4
DATA11 ADDR11 PA3
DATA10 ADDR10 PA2
DATA9
ADDR9 PA1
DATA8
ADDR8 PA0
SCI1
SPI0
KWP0
KWP1
KWP2
KWP3
KWP4
KWP5
KWP6
KWP7
PTT
TEST
DDRT
Input Capture
Output Compare
Timer
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
PTP
XIRQ
IRQ
System
R/W
Integration
LSTRB
Module
ECLK
(SIM)
MODA
MODB
NOACC/XCLKS
DDRP
Periodic Interrupt
COP Watchdog
Clock Monitor
Breakpoints
PK0
PK1
PK2
PK3
PK4
PK5
PK7
PTS
PTE
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
Clock and
Reset
Generation
Module
DDRS
PLL
PIX0
PIX1
PIX2
PIX3
PIX4
PIX5
ECS
PPAGE
PAD08
PAD09
PAD10
PAD11
PAD12
PAD13
PAD14
PAD15
SDA
SCL
KWJ6
KWJ7
KWH0
KWH1
KWH2
KWH3
KWH4
KWH5
KWH6
KWH7
PTJ
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
CPU12
DDRJ
Single-wire Background
Debug Module
DDRE
BKGD
Voltage Regulator
AN08
AN09
AN10
AN11
AN12
AN13
AN14
AN15
PJ0
PJ1
PJ6
PJ7
PH0
PH1
PH2
PTH
VDDR
VSSR
VREGEN
VDD1,2
VSS1,2
PAD0
PAD1
PAD2
PAD3
PAD4
PAD5
PAD6
PAD7
AD
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
1K Byte EEPROM
PTM
4K Byte RAM
VRH
VRL
VDDA
VSSA
PTK
VRL
VDDA
VSSA
DDRH
128K Byte Flash EEPROM
PH3
PH4
PH5
PH6
PH7
XADDR14
XADDR15
XADDR16
XADDR17
XADDR18
XADDR19
ECS
Device User Guide —9S12B128DGV1/D V01.11
1.5 System Memory Map
Table 1-1 and Figure 1-2 show the device memory map of the MC9S12B128 after reset. The 1K
EEPROM is mapped twice in a 2K address space. Note that after reset the bottom 1k of the EEPROM
($0000 - $03FF) are hidden by the register space, and the 1K $0400 - $07FF is hidden by the RAM.
Table 1-1 Device Memory Map
Address
Module
Size
(Bytes)
$0000 - $000F
HCS12 Multiplexed External Bus Interface
$0010 - $0014
HCS12 Module Mapping Control
5
$0015 - $0016
16
HCS12 Interrupt
2
HCS12 Module Mapping Control
1
$0018
Reserved
1
$0019
Voltage Regulator (VREG)
1
$0017
$001A - $001B Device ID register (PARTID)
2
$001C - $001D HCS12 Module Mapping Control
2
$001E
HCS12 Multiplexed External Bus Interface
1
$001F
HCS12 Interrupt
1
$0020 - $0027
Reserved
8
$0028 - $002F
HCS12 Breakpoint
8
$0030 - $0031
HCS12 Module Mapping Control
2
$0032 - $0033
HCS12 Multiplexed External Bus Interface
2
$0034 - $003F
Clock and Reset Generator (PLL, RTI, COP)
12
$0040 - $006F
Standard Timer Module16-bit 8-channels (TIM)
48
$0070 - $007F
Reserved
16
$0080 - $00AF
Analog to Digital Converter 10-bit 16 channels (ATD)
48
$00B0 - $00C7 Reserved
$00C8 - $00CF Serial Communications Interface 0 (SCI0)
24
8
$00D0 - $00D7 Serial Communications Interface 1 (SCI1)
8
$00D8 - $00DF Serial Peripheral Interface (SPI0)
8
$00E0 - $00E7 Inter IC Bus (IIC)
8
$00E8 - $00FF Reserved
24
$0100- $010F
Flash Control Register
16
$0110 - $011B
EEPROM Control Register
12
$011C - $013F Reserved
36
$0140 - $017F
Motorola Scalable Can (CAN0)
64
$0180 - $01FF
Reserved
$0200 - $0227
PWM (Pulse Width Modulator 8 Bit 8 Channel)
40
$0228 - $023F
Reserved
24
$0240 - $027F
Port Integration Module (PIM)
64
128
$0280 - $03FF
Reserved
$0000 - $07FF
EEPROM array 1k Array mapped twice in the
address space
384
2048
$0000 - $0FFF
RAM array
4096
$0000 - $3FFF
Fixed Flash EEPROM array
16384
25
Device User Guide — 9S12B128DGV1/D V01.11
Table 1-1 Device Memory Map
Address
$4000 - $7FFF
26
Module
Fixed Flash EEPROM array
incl. 0.5K, 1K, 2K or 4K Protected Sector at start
Size
(Bytes)
16384
$8000 - $BFFF Flash EEPROM Page Window (eight 16k windows)
16384
Fixed Flash EEPROM array
$C000 - $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end
and 256 bytes of Vector Space at $FF80 - $FFFF
16384
Device User Guide —9S12B128DGV1/D V01.11
Figure 1-2 MC9S12B128 Memory Map out of Reset
$0000
$0000
$0400
$03FF
$0800
$1000
REGISTERS
(Mappable to any 2K
Boundary within the
first 32K)
$0000
1K Bytes EEPROM
$07FF
(Mappable to any 2K
Boundary; 1K mapped two
times in the 2K address
space)
$0000
4K Bytes RAM
(Mappable to any 4K
Boundary)
EXTERN
EXTERN
$0FFF
$0000
16K Fixed Flash
Page $3D = 61
$3FFF
(This is dependant on the
state of the ROMHM bit)
$0000-$0FFF hidden
$4000
16K Fixed Flash
Page $3E = 62
$4000
(This is dependant on the
state of the ROMHM bit)
$7FFF
$8000
$8000
16K Page Window
8 x 16K Flash EEPROM
pages
EXTERN
$BFFF
$C000
$C000
16K Fixed Flash
Page $3F = 63
$FFFF
$FF00
BDM
(if active)
$FF00
VECTORS
VECTORS
VECTORS
EXPANDED
NORMAL
SINGLE CHIP
SPECIAL
SINGLE CHIP
$FFFF
$FFFF
27
Device User Guide — 9S12B128DGV1/D V01.11
Figure 1-3 MC9S12B64 using MC9S12B128 die Memory Map out of Reset
$0000
$0000
$0400
$03FF
$0800
$1000
EXTERN
EXTERN
REGISTERS
(Mappable to any 2K
Boundary within the
first 32K)
$0000
1K Bytes EEPROM
$07FF
(Mappable to any 2K
Boundary; 1K mapped two
times in the 2K address
space)
$0000
4K Bytes RAM
$0FFF
$0000
(Mappable to any 4K
Boundary) upper 2K of
RAM are reserved
16K Fixed Flash
Page $3D = 61
$3FFF
(This is dependant on the
state of the ROMHM bit)
$0000-$0FFF hidden
$4000
16K Fixed Flash
Page $3E = 62
$4000
(This is dependant on the
state of the ROMHM bit)
$7FFF
$8000
$8000
EXTERN
$BFFF
16K Page Window
8 x 16K Flash EEPROM
pages
pages $38-$3B of Flash
EEPROM are reserved
$C000
$C000
16K Fixed Flash
Page $3F = 63
$FFFF
$FF00
BDM
(if active)
$FF00
VECTORS
VECTORS
VECTORS
EXPANDED
NORMAL
SINGLE CHIP
SPECIAL
SINGLE CHIP
$FFFF
28
$FFFF
Device User Guide —9S12B128DGV1/D V01.11
1.5.1 Detailed Register Map
$0000 - $000F
Address
Name
$0000
PORTA
$0001
PORTB
$0002
DDRA
$0003
DDRB
$0004
Reserved
$0005
Reserved
$0006
Reserved
$0007
Reserved
$0008
PORTE
$0009
DDRE
$000A
PEAR
$000B
MODE
$000C
PUCR
$000D
RDRIV
$000E
EBICTL
$000F
Reserved
$0010 - $0014
Address
Name
$0010
INITRM
$0011
INITRG
$0012
INITEE
$0013
MISC
$0014
Reserved
MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
NOACCE
Write:
Read:
MODC
Write:
Read:
PUPKE
Write:
Read:
RDPK
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
Bit 1
Bit 0
6
5
4
3
Bit 2
0
0
PIPOE
NECLK
LSTRE
RDWE
0
0
EMK
EME
PUPBE
PUPAE
RDPB
RDPA
0
MODB
MODA
0
0
0
0
0
0
0
0
0
IVIS
0
0
0
0
0
0
0
0
0
0
0
0
0
PUPEE
RDPE
ESTR
0
MMC map 1 of 4 (HCS12 Module Mapping Control)
Bit 7
Read:
RAM15
Write:
Read:
0
Write:
Read:
EE15
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
RAM14
RAM13
RAM12
RAM11
REG14
REG13
REG12
REG11
EE14
EE13
EE12
EE11
0
0
0
0
0
0
Bit 2
0
Bit 1
0
0
0
0
0
Bit 0
RAMHAL
0
EEON
EXSTR1 EXSTR0 ROMHM ROMON
0
0
0
0
29
Device User Guide — 9S12B128DGV1/D V01.11
$0015 - $0016
Address
INT map 1 of 2 (HCS12 Interrupt)
Name
$0015
ITCR
$0016
ITEST
Read:
Write:
Read:
Write:
$0017 - $0017
Address
$0017
Read:
Write:
$0018 - $0018
Address
$0018
Read:
Write:
$0019 - $0019
Address
$0019
Read:
Write:
$001A - $001B
Address
PARTIDH
$001B
PARTIDL
Read:
Write:
Read:
Write:
$001C - $001D
Address
Name
$001C
MEMSIZ0
$001D
MEMSIZ1
$001E
30
Bit 1
Bit 0
WRINT
ADR3
ADR2
ADR1
ADR0
INT8
INT6
INT4
INT2
INT0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 7
0
Bit 6
0
Bit 3
0
Bit 2
LVDS
Bit 1
Bit 0
LVIE
LVIF
Bit 5
0
Bit 4
0
Bit 7
ID15
Bit 6
ID14
Bit 5
ID13
Bit 4
ID12
Bit 3
ID11
Bit 2
ID10
Bit 1
ID9
Bit 0
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Bit 7
Bit 6
Bit 5
Bit 4
Read: reg_sw0
0
eep_sw1 eep_sw0
Write:
Read: rom_sw1 rom_sw0
0
0
Write:
Bit 3
0
0
Bit 2
Bit 1
Bit 0
ram_sw2 ram_sw1 ram_sw0
0
pag_sw1 pag_sw0
MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Name
INTCR
INTA
Bit 2
MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4)
$001E - $001E
Address
INTC
Bit 3
Miscellaneous Peripherals (Device User Guide, Table 1-3)
Name
$001A
INTE
Bit 4
VREG3V3 (Voltage Regulator)
Name
VREGCTRL
Bit 5
0
Reserved
Name
Reserved
Bit 6
0
MMC map 2 of 4 (HCS12 Module Mapping Control)
Name
Reserved
Bit 7
0
Read:
Write:
Bit 7
Bit 6
IRQE
IRQEN
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Device User Guide —9S12B128DGV1/D V01.11
$001F - $001F
Address
$001F
INT map 2 of 2 (HCS12 Interrupt)
Name
HPRIO
Read:
Write:
$0020 - $0027
Address
$0020 $0027
Read:
Write:
$0028 - $002F
Address
Name
$0028
BKPCT0
$0029
BKPCT1
$002A
BKP0X
$002B
BKP0H
$002C
BKP0L
$002D
BKP1X
$002E
BKP1H
$002F
BKP1L
PPAGE
$0031
Reserved
Read:
Write:
Read:
Write:
PORTK
$0033
DDRK
Bit 2
Bit 1
PSEL7
PSEL6
PSEL5
PSEL4
PSEL3
PSEL2
PSEL1
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 7
0
Bit 6
0
Bit 0
0
Bit 7
0
Bit 6
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Name
$0032
Bit 3
MMC map 4 of 4 (HCS12 Module Mapping Control)
$0032 - $0033
Address
Bit 4
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
0
0
0
0
BKEN
BKFULL BKBDM BKTAG
Write:
Read:
BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write:
Read:
0
0
BK0V5
BK0V4
BK0V3
BK0V2
BK0V1
BK0V0
Write:
Read:
Bit 15
14
13
12
11
10
9
Bit 8
Write:
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Write:
Read:
0
0
BK1V5
BK1V4
BK1V3
BK1V2
BK1V1
BK1V0
Write:
Read:
Bit 15
14
13
12
11
10
9
Bit 8
Write:
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Write:
Name
$0030
Bit 5
BKP (HCS12 Breakpoint)
$0030 - $0031
Address
Bit 6
Reserved
Name
Reserved
Bit 7
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
31
Device User Guide — 9S12B128DGV1/D V01.11
$0034 - $003F
Address
Name
$0034
SYNR
$0035
REFDV
$0036
CTFLG
test only
$0037
CRGFLG
$0038
CRGINT
$0039
CLKSEL
$003A
PLLCTL
$003B
RTICTL
$003C
COPCTL
$003D
$003E
$003F
FORBYP
test only
CTCTL
test only
ARMCOP
$0040 - $006F
32
Address
Name
$0040
TIOS
$0041
CFORC
$0042
OC7M
$0043
OC7D
$0044
TCNT (hi)
$0045
TCNT (lo)
$0046
TSCR1
$0047
TTOV
$0048
TCTL1
$0049
TCTL2
CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
RTIF
Write:
Read:
RTIE
Write:
Read:
PLLSEL
Write:
Read:
CME
Write:
Read:
0
Write:
Read:
WCOP
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Bit 7
Bit 6
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
0
0
0
0
PORF
LVRF
LOCKIF
0
0
PSTP
LOCKIE
SYSWAI ROAWAI
REFDV3 REFDV2 REFDV1 REFDV0
0
0
LOCK
TRACK
0
0
PLLWAI
CWAI
RTIWAI
COPWAI
PRE
PCE
SCME
RTR2
RTR1
RTR0
CR2
CR1
CR0
0
0
SCMIF
SCMIE
0
SCM
0
PLLON
AUTO
ACQ
RTR6
RTR5
RTR4
RTR3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0
RSBCK
TIM (Timer 16 Bit 8 Channels)
Bit 7
Read:
IOS7
Write:
0
Read:
Write: FOC7
Read:
OC7M7
Write:
Read:
OC7D7
Write:
Read: Bit 15
Write:
Bit 7
Read:
Write:
Read:
TEN
Write:
Read:
TOV7
Write:
Read:
OM7
Write:
Read:
OM3
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
FOC6
0
FOC5
0
FOC4
0
FOC3
0
FOC2
0
FOC1
0
FOC0
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
TSWAI
TSFRZ
TFFCA
0
0
0
0
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OL3
OM2
OL2
OM1
OL1
OM0
OL0
Device User Guide —9S12B128DGV1/D V01.11
Address
Name
$004A
TCTL3
$004B
TCTL4
$004C
TIE
$004D
TSCR2
$004E
TFLG1
$004F
TFLG2
$0050
TC0 (hi)
$0051
TC0 (lo)
$0052
TC1 (hi)
$0053
TC1 (lo)
$0054
TC2 (hi)
$0055
TC2 (lo)
$0056
TC3 (hi)
$0057
TC3 (lo)
$0058
TC4 (hi)
$0059
TC4 (lo)
$005A
TC5 (hi)
$005B
TC5 (lo)
$005C
TC6 (hi)
$005D
TC6 (lo)
$005E
TC7 (hi)
$005F
TC7 (lo)
$0060
PACTL
$0061
PAFLG
Bit 7
Read:
EDG7B
Write:
Read:
EDG3B
Write:
Read:
C7I
Write:
Read:
TOI
Write:
Read:
C7F
Write:
Read:
TOF
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
0
Read:
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
PAOVF
PAIF
33
Device User Guide — 9S12B128DGV1/D V01.11
Address
Name
$0062
PACNT (hi)
$0063
PACNT (lo)
$0064$006F
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
$0070 - $007F
$0070
- $007F
Reserved
$0080 - $00AF
Address
34
Name
$0080
ATDCTL0
$0081
ATDCTL1
$0082
ATDCTL2
$0083
ATDCTL3
$0084
ATDCTL4
$0085
ATDCTL5
$0086
ATDSTAT0
$0087
Reserved
$0088
ATDTEST0
$0089
ATDTEST1
$008A
ATDSTAT2
$008B
ATDSTAT1
$008C
ATDDIEN0
$008D
ATDDIEN1
$008E
PORTAD0
$008F
PORTAD1
$0090
ATDDR0H
$0091
ATDDR0L
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reserved
Read:
Write:
0
ATD (Analog to Digital Converter 10 Bit 16 Channel)
Bit 7
Read:
0
Write:
Read: ETRIGSEL
Write:
Read:
ADPU
Write:
Read:
0
Write:
Read:
SRES8
Write:
Read:
DJM
Write:
Read:
SCF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read: CCF15
Write:
Read: CCF7
Write:
Read:
IEN15
Write:
Read:
IEN7
Write:
Read: PTAD15
Write:
Read: PTAD7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
Bit 2
Bit 1
Bit 0
WRAP3
WRAP2
WRAP1
WRAP0
0
0
0
ETRIGC
H3
ETRIGC
H2
ETRIGC
H1
ETRIG
ASCIE
ETRIGC
H0
ASCIF
AFFC
AWAI
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CD
CC
CB
CA
ETORF
FIFOR
CC3
CC2
CC1
CC0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF14
CCF13
CCF12
CCF11
CCF10
CCF9
CCF8
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
IEN14
IEN13
IEN12
IEN11
IEN10
IEN9
IEN8
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
PTAD14
PTAD13
PTAD12
PTAD11
PTAD10
PTAD9
PTAD8
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
0
ETRIGLE ETRIGP
SC
Device User Guide —9S12B128DGV1/D V01.11
$0080 - $00AF
Address
ATD (Analog to Digital Converter 10 Bit 16 Channel)
Name
$0092
ATDDR1H
$0093
ATDDR1L
$0094
ATDDR2H
$0095
ATDDR2L
$0096
ATDDR3H
$0097
ATDDR3L
$0098
ATDDR4H
$0099
ATDDR4L
$009A
ATDDR5H
$009B
ATDDR5L
$009C
ATDDR6H
$009D
ATDDR6L
$009E
ATDDR7H
$009F
ATDDR7L
$00A0
ATDDR8H
$00A1
ATDDR8L
$00A2
ATDDR9H
$00A3
ATDDR9L
$00A4
ATDDR10H
$00A5
ATDDR10L
$00A6
ATDDR11H
$00A7
ATDDR11L
$00A8
ATDDR12H
$00A9
ATDDR12L
$00AA
ATDDR13H
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit15
Bit 6
14
Bit 5
13
Bit 4
12
Bit 3
11
Bit 2
10
Bit 1
9
Bit 0
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
35
Device User Guide — 9S12B128DGV1/D V01.11
$0080 - $00AF
Address
ATD (Analog to Digital Converter 10 Bit 16 Channel)
Name
$00AB
ATDDR13L
$00AC
ATDDR14H
$00AD
ATDDR14L
$00AE
ATDDR15H
$00AF
ATDDR15L
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00B0 - $00C7
$00B0
- $00C7
Reserved
$00C8 - $00CF
Address
Name
$00C8
SCI0BDH
$00C9
SCI0BDL
$00CA
SCI0CR1
$00CB
SCI0CR2
$00CC
SCI0SR1
$00CD
SCI0SR2
$00CE
SCI0DRH
$00CF
SCI0DRL
$00D0 - $00D7
Address
36
Name
$00D0
SCI1BDH
$00D1
SCI1BDL
$00D2
SCI1CR1
$00D3
SCI1CR2
Bit 7
Bit7
Bit 6
Bit6
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
0
0
0
0
0
0
Reserved
Read:
Write:
0
0
SCI0 (Asynchronous Serial Interface)
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Read: TDRE
TC
Write:
Read:
0
0
Write:
Read:
R8
T8
Write:
Read:
R7
R6
Write:
T7
T6
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
RDRF
IDLE
OR
NF
FE
PF
0
0
0
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
RAF
SCI1 (Asynchronous Serial Interface)
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
Device User Guide —9S12B128DGV1/D V01.11
$00D0 - $00D7
Address
SCI1 (Asynchronous Serial Interface)
Name
$00D4
SCI1SR1
$00D5
SCI1SR2
$00D6
SCI1DRH
$00D7
SCI1DRL
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00D8 - $00DF
Address
SPI0CR1
$00D9
SPI0CR2
$00DA
SPI0BR
$00DB
SPI0SR
$00DC
Reserved
$00DD
SPI0DR
$00DE
Reserved
$00DF
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00E0 - $00E7
Address
IBAD
$00E1
IBFD
$00E2
IBCR
$00E3
IBSR
$00E4
IBDR
Bit 5
RDRF
Bit 4
IDLE
Bit 3
OR
0
0
0
0
0
0
0
R5
T5
R4
T4
R8
R7
T7
T8
R6
T6
Bit 2
NF
Bit 1
FE
Bit 0
PF
BRK13
TXDIR
0
0
0
0
R3
T3
R2
T2
R1
T1
R0
T0
RAF
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 0
0
0
MODFEN BIDIROE
0
0
IIC (Inter IC Bus)
Name
$00E0
Bit 6
TC
SPI0 (Serial Peripheral Interface)
Name
$00D8
Bit 7
TDRE
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBEN
IBIE
MS/SL
TX/RX
TXAK
0
TCF
IAAS
IBB
0
0
RSTA
SRW
D7
D6
D5
D3
D2
IBAL
D4
IBIF
D1
IBC0
IBSWAI
RXAK
D0
37
Device User Guide — 9S12B128DGV1/D V01.11
$00E0 - $00E7
Address
IIC (Inter IC Bus)
Name
$00E5
Reserved
$00E6
Reserved
$00E7
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
$00E8 - $00FF
Address
$00E8 $00FF
$0100 - $010F
Address
38
Name
$0100
FCLKDIV
$0101
FSEC
$0102
Reserved
$0103
FCNFG
$0104
FPROT
$0105
FSTAT
$0106
FCMD
$0107
Reserved
$0108
FADDRHI
$0109
FADDRLO
$010A
FDATAHI
$010B
FDATALO
$010C $010F
Reserved
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 3
Bit 2
Bit 1
Bit 0
FDIV3
FDIV2
FDIV1
FDIV0
NV3
NV2
SEC1
SEC0
0
0
0
0
0
0
0
0
FPHS0
FPLDIS
FPLS1
FPLS0
0
0
Reserved
Name
Reserved
Bit 7
0
Read:
Write:
Bit 7
0
Flash Control Register (fts128k1)
Bit 7
Bit 6
Bit 5
Bit 4
Read: FDIVLD
PRDIV8
FDIV5
FDIV4
Write:
Read: KEYEN1 KEYEN0
NV5
NV4
Write:
Read:
0
0
0
0
Write:
Read:
0
CBEIE
CCIE
KEYACC
Write:
Read:
FPOPEN
NV6
FPHDIS FPHS1
Write:
Read:
CCIF
CBEIF
PVIOL ACCERR
Write:
Read:
0
0
CMDB6 CMDB5
Write:
Read:
0
0
0
0
Write:
Read:
Bit 15
Bit 14
13
12
Write:
Read:
Bit 7
6
5
4
Write:
Read:
Bit 15
14
13
12
Write:
Read:
Bit 7
6
5
4
Write:
Read:
0
0
0
0
Write:
0
0
BLANK
CMDB2
0
CMDB0
0
0
0
0
11
10
9
Bit 8
3
2
1
Bit 0
11
10
9
Bit 8
3
2
1
Bit 0
0
0
0
0
Device User Guide —9S12B128DGV1/D V01.11
$0110 - $011B
Address
Name
$0110
ECLKDIV
$0111
Reserved
$0112
Reserved
$0113
ECNFG
$0114
EPROT
$0115
ESTAT
$0116
ECMD
$0117
Reserved
$0118
EADDRHI
$0119
EADDRLO
$011A
EDATAHI
$011B
EDATALO
EEPROM Control Register (eets1k)
Bit 7
Bit 6
Read: EDIVLD
PRDIV8
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
CBEIE
CCIE
Write:
Read:
NV6
EPOPEN
Write:
Read:
CCIF
CBEIF
Write:
Read:
0
CMDB6
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
Bit7
6
Write:
Read:
Bit15
14
Write:
Read:
Bit7
6
Write:
$011C - $013F
Address
$011C $013F
$0140 - $017F
Address
Name
$0140
CAN0CTL0
$0141
CAN0CTL1
$0142
CAN0BTR0
$0143
CAN0BTR1
$0144
CAN0RFLG
$0145
CAN0RIER
$0146
CAN0TFLG
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NV5
NV4
EPDIS
EP2
EP1
EP0
PVIOL
ACCERR
0
BLANK
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4
3
2
1
Bit0
13
12
11
10
9
Bit8
5
4
3
2
1
Bit0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
CMDB5
CMDB2
0
CMDB0
0
Bit8
Reserved
Name
Reserved
Bit 5
Read:
Write:
Bit 7
0
Bit 6
0
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
RXACT
SYNCH
RXFRM
CSWAI
TIME
WUPE
SLPRQ INITRQ
Write:
Read:
0
SLPAK
INITAK
CANE CLKSRC LOOPB LISTEN
WUPM
Write:
Read:
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
Write:
Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
Read:
RSTAT1 RSTAT0 TSTAT1 TSTAT0
WUPIF
CSCIF
OVRIF
RXF
Write:
Read:
WUPIE
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE
RXFIE
Write:
Read:
0
0
0
0
0
TXE2
TXE1
TXE0
Write:
39
Device User Guide — 9S12B128DGV1/D V01.11
$0140 - $017F
Address
Name
$0147
CAN0TIER
$0148
CAN0TARQ
$0149
CAN0TAAK
$014A
CAN0TBSEL
$014B
CAN0IDAC
$014C
Reserved
$014D
Reserved
$014E
CAN0RXERR
$014F
CAN0TXERR
$0150 $0153
$0154 $0157
$0158 $015B
$015C $015F
$0160 $016F
$0170 $017F
CAN0IDAR0 CAN0IDAR3
CAN0IDMR0 CAN0IDMR3
CAN0IDAR4 CAN0IDAR7
CAN0IDMR4 CAN0IDMR7
CAN0RXFG
CAN0TXFG
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Read:
0
0
0
0
0
TXEIE2 TXEIE1
Write:
Read:
0
0
0
0
0
ABTRQ2 ABTRQ1
Write:
Read:
0
0
0
0
0
ABTAK2 ABTAK1
Write:
Read:
0
0
0
0
0
TX2
TX1
Write:
Read:
0
0
0
IDHIT2
IDHIT1
IDAM1
IDAM0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1
Write:
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
FOREGROUND RECEIVE BUFFER see Table 1-2
Write:
Read:
FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:
Bit 0
TXEIE0
ABTRQ0
ABTAK0
TX0
IDHIT0
0
0
RXERR0
TXERR0
AC0
AM0
AC0
AM0
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$0160
$0161
$0162
$0163
$0164$016B
40
Name
Extended ID
Standard ID
CAN0RIDR0
Extended ID
Standard ID
CAN0RIDR1
Extended ID
Standard ID
CAN0RIDR2
Extended ID
Standard ID
CAN0RIDR3
CAN0RDSR0 CAN0RDSR7
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Write:
Bit 7
ID28
ID10
Bit 6
ID27
ID9
Bit 5
ID26
ID8
Bit 4
ID25
ID7
Bit 3
ID24
ID6
Bit 2
ID23
ID5
Bit 1
ID22
ID4
Bit 0
ID21
ID3
ID20
ID2
ID19
ID1
ID18
ID0
SRR=1
RTR
IDE=1
IDE=0
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Device User Guide —9S12B128DGV1/D V01.11
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
Name
$016C
CAN0RDLR
$016D
Reserved
$016E
CAN0RTSRH
$016F
CAN0RTSRL
$0170
$0171
$0172
$0173
Extended ID
CAN0TIDR0
Standard ID
Extended ID
CAN0TIDR1
Standard ID
Extended ID
CAN0TIDR2
Standard ID
Extended ID
CAN0TIDR3
Standard ID
$0174$017B
CAN0TDSR0 CAN0TDSR7
$017C
CAN0TDLR
$017D
CAN0TTBPR
$017E
CAN0TTSRH
$017F
CAN0TTSRL
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0180 - $01FF
Address
$0180 $01FF
Bit 6
Bit 5
Bit 4
Bit 3
DLC3
Bit 2
DLC2
Bit 1
DLC1
Bit 0
DLC0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID20
ID19
ID18
SRR=1
IDE=1
ID17
ID16
ID15
ID2
ID1
ID0
RTR
IDE=0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Reserved
Name
Reserved
Bit 7
Read:
Write:
Bit 7
0
Bit 6
0
41
Device User Guide — 9S12B128DGV1/D V01.11
$0200 - $0227
Address
$0200
$0201
$0202
$0203
$0204
$0205
$0206
$0207
$0208
$0209
$020A
$020B
$020C
$020D
$020E
$020F
$0210
$0211
$0212
$0213
$0214
$0215
$0216
$0217
$0218
42
Name
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
PWME
PWME7
Write:
Read:
PWMPOL
PPOL7
Write:
Read:
PWMCLK
PCLK7
Write:
Read:
0
PWMPRCLK
Write:
Read:
PWMCAE
CAE7
Write:
Read:
PWMCTL
CON67
Write:
Read:
0
PWMTST
Test Only
Write:
0
PWMPRSC Read:
Test Only
Write:
Read:
PWMSCLA
Bit 7
Write:
Read:
PWMSCLB
Bit 7
Write:
0
PWMSCNTA Read:
Test Only
Write:
0
PWMSCNTB Read:
Test Only
Write:
Read:
Bit 7
PWMCNT0
Write:
0
Read:
Bit 7
PWMCNT1
Write:
0
Read:
Bit 7
PWMCNT2
Write:
0
Read:
Bit 7
PWMCNT3
Write:
0
Read:
Bit 7
PWMCNT4
Write:
0
Read:
Bit 7
PWMCNT5
Write:
0
Read:
Bit 7
PWMCNT6
Write:
0
Read:
Bit 7
PWMCNT7
Write:
0
Read:
PWMPER0
Bit 7
Write:
Read:
PWMPER1
Bit 7
Write:
Read:
PWMPER2
Bit 7
Write:
Read:
PWMPER3
Bit 7
Write:
Read:
PWMPER4
Bit 7
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
PCLK6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB2
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
Device User Guide —9S12B128DGV1/D V01.11
$0200 - $0227
Address
Name
$0219
PWMPER5
$021A
PWMPER6
$021B
PWMPER7
$021C
PWMDTY0
$021D
PWMDTY1
$021E
PWMDTY2
$021F
PWMDTY3
$0220
PWMDTY4
$0221
PWMDTY5
$0222
PWMDTY6
$0223
PWMDTY7
$0224
PWMSDN
$0225$0227
Reserved
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
PWMIF
Write:
Read:
0
Write:
$0228 - $023F
Address
$0228 $023F
$0240 - $027F
Address
Name
$0240
PTT
$0241
PTIT
$0242
DDRT
$0243
RDRT
$0244
PERT
$0245
PPST
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
PWM7IN
PWMIE
0
PWMRSTRT
PWMLVL
PWM7INL PWM7ENA
0
0
0
0
0
0
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Reserved
Name
Reserved
Bit 6
Read:
Write:
Bit 7
0
PIM (Port Integration Module)
Bit 7
Read:
PTT7
Write:
Read: PTIT7
Write:
Read:
DDRT7
Write:
Read:
RDRT7
Write:
Read:
PERT7
Write:
Read:
PPST7
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
43
Device User Guide — 9S12B128DGV1/D V01.11
$0240 - $027F
Address
44
PIM (Port Integration Module)
Name
$0246
Reserved
$0247
Reserved
$0248
PTS
$0249
PTIS
$024A
DDRS
$024B
RDRS
$024C
PERS
$024D
PPSS
$024E
WOMS
$024F
Reserved
$0250
PTM
$0251
PTIM
$0252
DDRM
$0253
RDRM
$0254
PERM
$0255
PPSM
$0256
WOMM
$0257
MODRR
$0258
PTP
$0259
PTIP
$025A
DDRP
$025B
RDRP
$025C
PERP
$025D
PPSP
$025E
PIEP
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
DDRS7
DDRS7
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM7
DDRM7
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
0
0
0
0
0
0
0
PTP7
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PTIP7
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
DDRP7
DDRP7
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSS0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
MODRR4
Device User Guide —9S12B128DGV1/D V01.11
$0240 - $027F
Address
PIM (Port Integration Module)
Name
$025F
PIFP
$0260
PTH
$0261
PTIH
$0262
DDRH
$0263
RDRH
$0264
PERH
$0265
PPSH
$0266
PIEH
$0267
PIFH
$0268
PTJ
$0269
PTIJ
$026A
DDRJ
$026B
RDRJ
$026C
PERJ
$026D
PPSJ
$026E
PIEJ
$026F
PIFJ
$0270 $027F
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0280 - $03FF
Address
$0280 $03FF
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
DDRH7
DDRH7
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
PTJ7
PTJ6
0
0
0
0
PTJ1
PTJ0
PTIJ7
PTIJ6
0
0
0
0
PTIJ1
PTIJ0
DDRJ7
DDRJ7
0
0
0
0
DDRJ1
DDRJ0
RDRJ7
RDRJ6
0
0
0
0
RDRJ1
RDRJ0
PERJ7
PERJ6
0
0
0
0
PERJ1
PERJ0
PPSJ7
PPSJ6
0
0
0
0
PPSJ1
PPSJ0
PIEJ7
PIEJ6
0
0
0
0
PIEJ1
PIEJ0
PIFJ7
PIFJ6
0
0
0
0
PIFJ1
PIFJ0
0
0
0
0
0
0
0
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Reserved
Name
Reserved
Bit 7
Read:
Write:
Bit 7
0
45
Device User Guide — 9S12B128DGV1/D V01.11
1.6 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID number.
Table 1-3 Assigned Part ID Numbers
Device
Mask Set Number
MC9S12B128
MC9S12B128
MC9S12B128
MC9S12B128
0L80R
1L80R
2L80R
3L80R
Part ID1
$2100
$2101
$2102
$2103
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to HCS12 Module
Mapping Control (MMC) Block Guide for further details.
Table 1-4 Memory Size Registers
Register name
MEMSIZ0
MEMSIZ1
46
Value
$11
$C0
Device User Guide —9S12B128DGV1/D V01.11
Section 2 Signal Description
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties and detailed discussion of signals. It is built from the signal description sections of the Block
User Guides of the individual IP blocks on the device.
47
Device User Guide — 9S12B128DGV1/D V01.11
2.1 System Pinout
The MC9S12B128 is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat
pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. Figure
2-1 and Figure 2-2 show the pin assignments.
MC9S12B128
112LQFP
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VRH
VDDA
PAD15/AN15
PAD07/AN07
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
KWH7/PH7
KWH6/PH6
KWH5/PH5
KWH4/PH4
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
KWH3/PH3
KWH2/PH2
KWH1/PH1
KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
PWM3/KWP3/PP3
PWM2/KWP2/PP2
PWM1/KWP1/PP1
PWM0/KWP0/PP0
XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
XADDR19/PK5
XADDR18/PK4
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP6/KWP6/PWM6
PP7/KWP7/PWM7
PK7/ECS
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6/SDA
PJ7/KWJ7/SCL
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TxD1
PS2/RxD1
PS1/TxD0
PS0/RxD0
PM6
PM7
VSSA
VRL
Figure 2-1 Pin Assignments in 112-pin LQFP for MC9S12B128
Signals shown in Bold are not available on the 80 Pin Package
48
Device User Guide —9S12B128DGV1/D V01.11
MC9S12B128
80 QFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
PWM3/KWP3/PP3
PWM2/KWP2/PP2
PWM1/KWP1/PP1
PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP7/KWP7/PWM7
VDDX
VSSX
PM0/RxCAN0
PM1/TxCAN0
PM2/MISO
PM3/SS
PM4/MOSI
PM5/SCK
PJ6/KWJ6/SDA
PJ7/KWJ7/SCL
VREGEN
PS3/TxD1
PS2/RxD1
PS1/TxD0
PS0/RxD0
VSSA
VRL
Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12B128
49
Device User Guide — 9S12B128DGV1/D V01.11
2.1.1 Signal Properties Summary
Table 2-1 summarizes the pin functionality. Signals shown in bold are not available in the 80 pin
package.
Table 2-1 Signal Properties
Pin Name Pin Name Powered
Function Function
by
3
4
Pin Name
Function1
Pin Name
Function2
EXTAL
—
—
—
XTAL
—
—
—
Internal Pull
Resistor
CTRL
VDDPLL
Oscillator Pins
RESET
—
—
—
VDDR
TEST
—
—
—
N.A.
VREGEN
—
—
—
VDDX
XFC
—
—
—
VDDPLL
BKGD
TAGHI
MODC
—
VDDR
PAD[15:8]
AN[15:8]
—
—
PAD[07:00]
AN[07:00]
—
—
PA[7:0]
ADDR[15:8]/
DATA[15:8]
—
—
PB[7:0]
ADDR[7:0]/
DATA[7:0]
—
—
PUCR/
PUPBE
PE7
NOACC
XCLKS
—
PUCR/
PUPEE
PE6
IPIPE1
MODB
—
PE5
IPIPE0
MODA
—
PE4
ECLK
—
—
PE3
LSTRB
TAGLO
—
PE2
R/W
—
—
PE1
IRQ
—
—
PE0
XIRQ
—
—
VDDA
None
None
External Reset
Test Input
Voltage Regulator Enable Input
PLL Loop Filter
Always
Up
None
PUCR/
PUPAE
Up
None
PUCR/
PUPEE
Background Debug, Tag High, Mode
Input
Port AD Inputs, Analog Inputs
AN[15:8] of ATD
Port AD Inputs, Analog Inputs
AN[7:0] of ATD
Port A I/O, Multiplexed Address/Data
Disabled
Port B I/O, Multiplexed Address/Data
Up
While RESET pin
is low:
Down
VDDR
Description
Reset
State
Port E I/O, Access, Clock Select
Port E I/O, Pipe Status, Mode Input
Port E I/O, Pipe Status, Mode Input
Mode Port E I/O, Bus Clock Output
depende Port E I/O, Byte Strobe, Tag Low
nt1
Port E I/O, R/W in expanded modes
Up
Port E Input, Maskable Interrupt
Port E Input, Non Maskable Interrupt
PH7
KWH7
—
—
Port H I/O, Interrupt
PH6
KWH6
—
—
Port H I/O, Interrupt
PH5
KWH5
—
—
PH4
KWH4
—
—
PH3
KWH3
—
—
PH2
KWH2
—
—
Port H I/O, Interrupt
PERH/
PPSH
Disabled
Port H I/O, Interrupt
Port H I/O, Interrupt
Port H I/O, Interrupt
PH1
KWH1
—
—
Port H I/O, Interrupt
PH0
KWH0
—
—
Port H I/O, Interrupt
PJ7
KWJ7
SCL
—
PJ6
KWJ6
SDA
—
PJ[1:0]
KWJ[1:0]
—
—
50
Port J I/O, Interrupt, SCL of IIC,
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupt, SDA of IIC,
Port J I/O, Interrupts
Device User Guide —9S12B128DGV1/D V01.11
Pin Name Pin Name Powered
Function Function
by
3
4
Pin Name
Function1
Pin Name
Function2
PK7
ECS
ROMCTL
—
PK[5:0]
XADDR[19:14]
—
—
Internal Pull
Resistor
CTRL
Reset
State
PUCR/
PUPKE
Up
Description
Port K I/O, Emulation Chip Select,
ROM On Enable
Port K I/O, Extended Addresses
PM7
—
—
—
Port M I/O
PM6
—
—
—
Port M I/O
PM5
—
SCK
—
Port M I/O, SCK of SPI0
PM4
—
MOSI
—
PM3
—
SS0
—
PM2
—
MISO0
—
Port M I/O, MOSI of SPI0
PERM/
PPSM
Port M I/O, SS of SPI0
Port M I/O, MISO of SPI0
PM1
TXCAN0
—
—
Port M I/O, TX of CAN0
PM0
RXCAN0
—
—
Port M I/O, RX of CAN0
PP7
KWP7
PWM7
—
Disabled Port P I/O, Interrupt, Channel 7 of
PWM
PP6
KWP6
PWM6
—
PP5
KWP5
PWM5
—
PP4
KWP4
PWM4
—
PP3
KWP3
PWM3
—
Port P I/O, Interrupt, PWM Channel 3
PP2
KWP2
PWM2
—
Port P I/O, Interrupt, PWM Channel 2
PP1
KWP1
PWM1
—
Port P I/O, Interrupt, PWM Channel 1
PP0
KWP0
PWM0
—
Port P I/O, Interrupt, PWM Channel 0
PS7
SS0
—
—
Port S I/O, SS of SPI0
PS6
SCK0
—
—
Port S I/O, SCK of SPI0
PS5
MOSI0
—
—
Port S I/O, MOSI of SPI0
PS4
MISO0
—
—
PS3
TXD1
—
—
PS2
RXD1
—
—
Port S I/O, RXD of SCI1
PS1
TXD0
—
—
Port S I/O, TXD of SCI0
PS0
RXD0
—
—
PT[7:0]
IOC[7:0]
—
Port P I/O, Interrupt, PWM Channel
6
VDDX
—
Port P I/O, Interrupt, PWM Channel 5
PERP/
PPSP
PERS/
PPSS
Port P I/O, Interrupt, PWM Channel 4
Up
Port S I/O, MISO of SPI0
Port S I/O, TXD of SCI1
Port S I/O, RXD of SCI0
PERT/
PPST
Disabled Port T I/O, Timer channels
NOTES:
1. Refer to PEAR register description in HCS12 Multiplexed External Bus Interface (MEBI) Block Guide.
2.2 Detailed Signal Descriptions
2.2.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
51
Device User Guide — 9S12B128DGV1/D V01.11
2.2.2 RESET — External Reset Pin
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.
2.2.3 TEST — Test Pin
This input only pin is reserved for test.
NOTE:
The TEST pin must be tied to VSS in all applications.
2.2.4 VREGEN — Voltage Regulator Enable Pin
This input only pin enables or disables the on-chip voltage regulator.
2.2.5 XFC — PLL Loop Filter Pin
PLL loop filter. Please ask your Motorola representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.
XFC
R0
MCU
CP
CS
VDDPLL
VDDPLL
Figure 2-3 PLL Loop Filter Connections
2.2.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.
2.2.7 PAD[15:0] / AN[15:0] — Port AD Input Pins ATD
PAD15 - PAD0 are general purpose input pins and analog inputs AN[15:0] of the analog to digital
converter ATD.
52
Device User Guide —9S12B128DGV1/D V01.11
2.2.8 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.2.9 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.2.10 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.
The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this
pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an
external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured
on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left
floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.
EXTAL
CDC *
MCU
C1
Crystal or
ceramic resonator
XTAL
C2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
Please contact the crystal manufacturer for crystal DC
bias conditions and recommended capacitor value CDC.
Figure 2-4 Colpitts Oscillator Connections (PE7=1)
53
Device User Guide — 9S12B128DGV1/D V01.11
EXTAL
C3
MCU
XTAL
Crystal or
ceramic resonator
RB
RS
*
C4
VSSPLL
* Rs can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer’s data.
Figure 2-5 Pierce Oscillator Connections (PE7=0)
EXTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
(VDDPLL-Level)
MCU
XTAL
not connected
Figure 2-6 External Clock Connections (PE7=0)
2.2.11 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low.
2.2.12 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low.
2.2.13 PE4 / ECLK — Port E I/O Pin 4
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
54
Device User Guide —9S12B128DGV1/D V01.11
2.2.14 PE3 / LSTRB / TAGLO — Port E I/O Pin 3
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
2.2.15 PE2 / R/W — Port E I/O Pin 2
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.
2.2.16 PE1 / IRQ — Port E Input Pin 1
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.2.17 PE0 / XIRQ — Port E Input Pin 0
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.2.18 PH7 / KWH7 — Port H I/O Pin 7
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.19 PH6 / KWH6 — Port H I/O Pin 6
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.20 PH5 / KWH5 — Port H I/O Pin 5
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.21 PH4 / KWH4 — Port H I/O Pin 2
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.22 PH3 / KWH3 — Port H I/O Pin 3
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
55
Device User Guide — 9S12B128DGV1/D V01.11
2.2.23 PH2 / KWH2 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.24 PH1 / KWH1 — Port H I/O Pin 1
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.25 PH0 / KWH0 — Port H I/O Pin 0
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.2.26 PJ7 / KWJ7 / SCL — Port J I/O Pins 7
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module.
2.2.27 PJ6 / KWJ6 / SDA — Port J I/O Pins 6
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module.
2.2.28 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode.
2.2.29 PK7 / ECS / ROMCTL — Port K I/O Pin 7
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). While configurating MCU expanded modes this pin is used to
enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit. For a complete list of modes refer to 4.2 Chip Configuration
Summary.
2.2.30 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.
56
Device User Guide —9S12B128DGV1/D V01.11
2.2.31 PM7 — Port M I/O Pin 7
PM7 is a general purpose input or output pin.
2.2.32 PM6 — Port M I/O Pin 6
PM6 is a general purpose input or output pin.
2.2.33 PM5 / SCK0 — Port M I/O Pin 5
PM5 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
2.2.34 PM4 / MOSI0 — Port M I/O Pin 4
PM4 is a general purpose input or output pin. It can be configured as the master output (during master
mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0).
2.2.35 PM3 / SS0 — Port M I/O Pin 3
PM3 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.2.36 PM2 / MISO0 — Port M I/O Pin 2
PM2 is a general purpose input or output pin. It can be configured as the master input (during master mode)
or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).
2.2.37 PM1 / TXCAN0 — Port M I/O Pin 1
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0).
2.2.38 PM0 / RXCAN0 — Port M I/O Pin 0
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0).
2.2.39 PP7 / KWP7 / PWM7 — Port P I/O Pin 7
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output.
57
Device User Guide — 9S12B128DGV1/D V01.11
2.2.40 PP6 / KWP6 / PWM6 — Port P I/O Pin 6
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output.
2.2.41 PP5 / KWP5 / PWM5 — Port P I/O Pin 5
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.
2.2.42 PP4 / KWP4 / PWM4 — Port P I/O Pin 4
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.
2.2.43 PP3 / KWP3 / PWM3 — Port P I/O Pin 3
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output.
2.2.44 PP2 / KWP2 / PWM2 — Port P I/O Pin 2
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output.
2.2.45 PP1 / KWP1 / PWM1 — Port P I/O Pin 1
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output.
2.2.46 PP0 / KWP0 / PWM0 — Port P I/O Pin 0
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output.
2.2.47 PS7 / SS0 — Port S I/O Pin 7
PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.2.48 PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
58
Device User Guide —9S12B128DGV1/D V01.11
2.2.49 PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.2.50 PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.2.51 PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
2.2.52 PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).
2.2.53 PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).
2.2.54 PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).
2.2.55 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Timer (TIM).
2.3 Power Supply Pins
MC9S12B128 power and ground pins are described below.
NOTE:
All VSS pins must be connected together in the application.
59
Device User Guide — 9S12B128DGV1/D V01.11
Table 2-2 MC9S12B128 Power and Ground Connection Summary
Pin Number
112-pin QFP
Nominal
Voltage
VDD1, 2
13, 65
2.5V
VSS1, 2
14, 66
0V
VDDR
41
5.0V
VSSR
40
0V
VDDX
107
5.0V
VSSX
106
0V
VDDA
83
5.0V
VSSA
86
0V
VRL
85
0V
VRH
84
5.0V
VDDPLL
43
2.5V
VSSPLL
45
0V
VREGEN
97
5.0V
Mnemonic
Description
Internal power and ground generated by internal regulator
External power and ground, supply to pin drivers and internal
voltage regulator.
External power and ground, supply to pin drivers.
Operating voltage and ground for the analog-to-digital
converters and the reference for the internal voltage regulator,
allows the supply voltage to the A/D to be bypassed
independently.
Reference voltages for the analog-to-digital converter.
Provides operating voltage and ground for the Phased-Locked
Loop. This allows the supply voltage to the PLL to be
bypassed independently. Internal power and ground
generated by internal regulator.
Internal Voltage Regulator enable/disable
2.3.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
VDDX and VSSX are the supplies for Ports J, K, M, P, T and S.
2.3.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
VDDR and VSSR are the supplies for Ports A, B, E and H.
60
Device User Guide —9S12B128DGV1/D V01.11
2.3.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE:
No load allowed except for bypass capacitors.
2.3.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the two analog to
digital converters. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to ATD0/ATD1 and the reference voltage to be bypassed independently.
2.3.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.3.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by
the internal voltage regulator.
NOTE:
No load allowed except for bypass capacitors.
2.3.7 VREGEN — On Chip Voltage Regulator Enable
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be
supplied externally.
61
Device User Guide — 9S12B128DGV1/D V01.11
Section 3 System Clock Description
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules.
Consult the CRG Block User Guide for details on clock generation.
HCS12_CORE
Core Clock
BDM
CPU
MMC
MEBI
INT
BKP
Flash
RAM
EEPROM
TIM
EXTAL
ATD
OSC
CRG
Bus Clock
PWM
SCI0, SCI1
Oscillator Clock
XTAL
SPI0
CAN0
PIM
IIC
Figure 3-1 Clock Connections
62
Device User Guide —9S12B128DGV1/D V01.11
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12B128. Each mode has an
associated default memory map and external bus configuration.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA
pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting
of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the
memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin
is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC
PE6 =
MODB
PE5 =
MODA
PK7 =
ROMCTL
ROMON
Bit
0
0
0
X
1
0
0
1
0
1
1
0
0
1
0
X
0
0
1
1
0
X
1
0
0
1
1
X
1
0
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Special Test (Expanded Wide), BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Single Chip, BDM allowed
Normal Expanded Narrow, BDM allowed
Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used)
Normal Expanded Wide, BDM allowed
For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
1
Description
Colpitts Oscillator selected
63
Device User Guide — 9S12B128DGV1/D V01.11
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
0
Description
Pierce Oscillator/external clock selected
Table 4-3 Voltage Regulator VREGEN
VREGEN
Description
1
Internal Voltage Regulator enabled
0
Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
•
Protection of the contents of FLASH,
•
Protection of the contents of EEPROM,
•
Operation in single-chip mode,
•
Operation from external memory with internal FLASH and EEPROM disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
64
Device User Guide —9S12B128DGV1/D V01.11
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring
is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
65
Device User Guide — 9S12B128DGV1/D V01.11
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
66
Device User Guide —9S12B128DGV1/D V01.11
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and
interrupts.
5.2 Vectors
5.2.1 Vector Table
Table 5-1 lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Interrupt Source
CCR
Mask
Local Enable
HPRIO Value
to Elevate
$FFFE, $FFFF
External Reset, Power On Reset or Low
Voltage Reset (see CRG Flags Register
to determine reset source)
None
None
–
$FFFC, $FFFD
Clock Monitor fail reset
None
PLLCTL (CME, SCME)
–
$FFFA, $FFFB
COP failure reset
None
COP rate select
–
$FFF8, $FFF9
Unimplemented instruction trap
None
None
–
$FFF6, $FFF7
SWI
None
None
–
$FFF4, $FFF5
XIRQ
X-Bit
None
–
$FFF2, $FFF3
IRQ
I-Bit
IRQCR (IRQEN)
$F2
$FFF0, $FFF1
Real Time Interrupt
I-Bit
CRGINT (RTIE)
$F0
$FFEE, $FFEF
Standard Timer channel 0
I-Bit
TIE (C0I)
$EE
$FFEC, $FFED
Standard Timer channel 1
I-Bit
TIE (C1I)
$EC
$FFEA, $FFEB
Standard Timer channel 2
I-Bit
TIE (C2I)
$EA
$FFE8, $FFE9
Standard Timer channel 3
I-Bit
TIE (C3I)
$E8
$FFE6, $FFE7
Standard Timer channel 4
I-Bit
TIE (C4I)
$E6
$FFE4, $FFE5
Standard Timer channel 5
I-Bit
TIE (C5I)
$E4
$FFE2, $FFE3
Standard Timer channel 6
I-Bit
TIE (C6I)
$E2
$FFE0, $FFE1
Standard Timer channel 7
I-Bit
TIE (C7I)
$E0
$FFDE, $FFDF
Standard Timer overflow
I-Bit
TMSK2 (TOI)
$DE
$FFDC, $FFDD
Pulse accumulator A overflow
I-Bit
PACTL (PAOVI)
$DC
$FFDA, $FFDB
Pulse accumulator input edge
I-Bit
PACTL (PAI)
$DA
$FFD8, $FFD9
SPI0
I-Bit
SPICR1 (SPIE, SPTIE)
$D8
$FFD6, $FFD7
SCI0
I-Bit
SCICR2
(TIE, TCIE, RIE, ILIE)
$D6
$FFD4, $FFD5
SCI1
I-Bit
SCICR2
(TIE, TCIE, RIE, ILIE)
$D4
$FFD2, $FFD3
ATD
I-Bit
ATDCTL2 (ASCIE)
$D2
$FFD0, $FFD1
Reserved
I-Bit
Reserved
$D0
I-Bit
PIEJ
(PIEJ7, PIEJ6, PIEJ1, PIEJ0)
$CE
Vector Address
$FFCE, $FFCF
Port J
67
Device User Guide — 9S12B128DGV1/D V01.11
$FFCC, $FFCD
$FFCA, $FFCB
$FFC8, $FFC9
Port H
Reserved
$FFC6, $FFC7
CRG PLL lock
$FFC4, $FFC5
$FFC2, $FFC3
$FFC0, $FFC1
IIC Bus
$FFBE, $FFBF
$FFBC, $FFBD
$FFBA, $FFBB
I-Bit
PIEH (PIEH7-0)
I-Bit
Reserved
I-Bit
$CC
$CA
$C8
I-Bit
CRGINT (LOCKIE)
CRG Self Clock Mode
I-Bit
CRGINT (SCMIE)
$C4
Reserved
I-Bit
Reserved
$C2
I-Bit
IBCR (IBIE)
Reserved
EEPROM
I-Bit
Reserved
I-Bit
I-Bit
ECNFG (CCIE, CBEIE)
$C6
$C0
$BE
$BC
$BA
$FFB8, $FFB9
FLASH
I-Bit
FCNFG (CCIE, CBEIE)
$B8
$FFB6, $FFB7
CAN0 wake-up
I-Bit
CANRIER (WUPIE)
$B6
$FFB4, $FFB5
CAN0 errors
I-Bit
CANRIER (CSCIE, OVRIE)
$B4
$FFB2, $FFB3
CAN0 receive
I-Bit
CANRIER (RXFIE)
$B2
$FFB0, $FFB1
CAN0 transmit
I-Bit
CANTIER (TXEIE2-TXEIE0)
$B0
$FFAE, $FFAF
I-Bit
$AE
$FFAC, $FFAD
I-Bit
$AC
$FFAA, $FFAB
I-Bit
$AA
$FFA8, $FFA9
I-Bit
$A8
$FFA6, $FFA7
I-Bit
$A6
$FFA4, $FFA5
I-Bit
$A4
$FFA2, $FFA3
I-Bit
$A2
$FFA0, $FFA1
$FF9E, $FF9F
Reserved
I-Bit
I-Bit
Reserved
$A0
$9E
$FF9C, $FF9D
I-Bit
$9C
$FF9A, $FF9B
I-Bit
$9A
$FF98, $FF99
I-Bit
$98
$FF96, $FF97
I-Bit
$96
$FF94, $FF95
I-Bit
$94
$FF92, $FF93
I-Bit
$92
$FF90, $FF91
I-Bit
$FF8E, $FF8F
Port P
$FF8C, $FF8D
$FF8A, $FF8B
$FF80 to
$FF89
$90
I-Bit
PIEP (PIEP7-0)
$8E
PWM Emergency Shutdown
I-Bit
PWMSDN (PWMIE)
$8C
VREG LVI
I-Bit
CTRL0 (LVIE)
$8A
Reserved
5.3 Resets
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.
For details on the different kind of resets refer to the HCS12 Interrupt, CRG and VREG_3V3 Block User
Guides.
68
Device User Guide —9S12B128DGV1/D V01.11
5.3.1 I/O pins
Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin
configuration of port A, B, E and K out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
NOTE:
For devices assembled in 80-pin QFP packages all non-bonded out pins should be
configured as outputs after reset in order to avoid current drawn from floating
inputs. Refer to Table 2-1 for affected pins.
5.3.2 Memory
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.
The RAM array is not automatically initialized out of reset.
5.4 Interrupts
For details on the different kind of interrupts refer to the HCS12 Interrupt Block User Guide and according
module Block User Guides.
69
Device User Guide — 9S12B128DGV1/D V01.11
Section 6 HCS12 Core Block Description
6.1 CPU12 Block Description
Consult the CPU12 Reference Manual for information on the CPU.
6.1.1 Device-specific information
When the CPU12 Reference Manual refers to cycles this is equivalent to Bus Clock periods. So 1 cycle is
equivalent to 1 Bus Clock period.
6.2 HCS12 Module Mapping Control (MMC) Block Description
Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module.
6.2.1 Device-specific information
•
•
•
INITEE
–
Reset state: $01
–
Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special
modes".
PPAGE
–
Reset state: $00
–
Register is "Write anytime in all modes"
For Memory Size Registers see Table 1-4.
6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description
Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module.
6.3.1 Device-specific information
•
PUCR
–
Reset state: $90
6.4 HCS12 Interrupt (INT) Block Description
Consult the INT Block Guide for information on the HCS12 Interrupt module.
70
Device User Guide —9S12B128DGV1/D V01.11
6.5 HCS12 Background Debug (BDM) Block Description
Consult the BDM Block Guide for information on the HCS12 Background Debug module.
6.5.1 Device-specific information
When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock.
6.6 HCS12 Breakpoint (BKP) Block Description
Consult the BKP Block Guide for information on the HCS12 Breakpoint module.
Section 7 Voltage Regulator (VREG3V3) Block Description
Consult the VREG3V3 Block User Guide for information about the dual output linear voltage regulator.
VREGEN is accessible externally.
Section 8 Clock and Reset Generator (CRG) Block
Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
8.1 Device-specific information
The Low Voltage Reset feature of the CRG is available on this device.
NOTE:
If the voltage regulator is shut downed by connecting VREGEN to the
corresponding ground pin then the LVRF flag in the CRG Flags Register
(CRGFLG) is undefined.
Section 9 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
9.1 Device-specific information
The XCLKS input signal is active low (see 2.2.10 PE7 / NOACC / XCLKS — Port E I/O Pin 7).
Section 10 Standard Timer (TIM) Block Description
71
Device User Guide — 9S12B128DGV1/D V01.11
Consult the TIM_16B8C Block User Guide for information about the Standard Timer module. When the
TIM_16B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode.
Section 11 Analog to Digital Converter (ATD) Block
Description
Consult the ATD_10B16C Block User Guide for information about the Analog to Digital Converter
module. When the ATD_10B16C Block User Guide refers to freeze mode this is equivalent to active BDM
mode. The ETRIG pin option is not available, but the external trigger feature is available on ATD channels.
NOTE:
In QFP80 package ATDIEN0 should be set always to $00.
Section 12 Inter-IC Bus (IIC) Block Description
Consult the IIC Block User Guide for information about the Inter-IC Bus module.
Section 13 Serial Communications Interface (SCI) Block
Description
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12B128
device. Consult the SCI Block User Guide for information about each Serial Communications Interface
module.
Section 14 Serial Peripheral Interface (SPI) Block
Description
Consult the SPI Block User Guide for information about the Serial Peripheral Interface module.
Section 15 Flash EEPROM 128K1 Block Description
Consult the FTS128K1 Block User Guide for information about the flash module.
The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into
the flash memory of this device during manufacture. This LRAE program will provide greater
programming flexibility to the end users by allowing the device to be programmed directly using CAN or
SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if
not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and
its implementation, please see the S12 LREA Application Note (AN2546/D).
72
Device User Guide —9S12B128DGV1/D V01.11
Section 16 EEPROM 1K Block Description
Consult the EETS1K Block User Guide for information about the EEPROM module.
Section 17 RAM Block Description
This module supports single-cycle misaligned word accesses.
Section 18 MSCAN Block Description
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
Section 19 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.
When the PWM_8B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode.
Section 20 Port Integration Module (PIM) Block Description
Consult the PIM_9B128 Block User Guide for information about the Port Integration Module.
73
Device User Guide — 9S12B128DGV1/D V01.11
Section 21 Printed Circuit Board Layout Proposals
Table 21-1 Suggested External Component Values
Component
Purpose
Type
Value
C1
VDD1 filter cap
ceramic X7R
100 .. 220nF
C2
VDD2 filter cap
ceramic X7R
100 .. 220nF
C3
VDDA filter cap
ceramic X7R
100nF
C4
VDDR filter cap
X7R/tantalum
>=100nF
C5
VDDPLL filter cap
ceramic X7R
100nF
C6
VDDX filter cap
X7R/tantalum
>=100nF
C7
OSC load cap
C8
OSC load cap
C9 / CS
PLL loop filter cap
C10 / CP
PLL loop filter cap
C11 / CDC
DC cutoff cap
Colpitts mode only, if recommended by
quartz manufacturer
R1
PLL loop filter res
See PLL specification chapter
R2 / RB
OSC res
R3 / RS
OSC res
Q1
Quartz
See PLL specification chapter
See PLL specification chapter
Pierce mode only
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins(C1 - C6).
•
Central point of the ground star should be the VSSR pin.
•
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
•
VSSPLL must be directly connected to VSSR.
•
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
•
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
•
Central power input should be fed in at the VDDA/VSSA pins.
74
Device User Guide —9S12B128DGV1/D V01.11
Figure 21-1 Recommended PCB Layout 112LQFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
C4
C7
C8
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
75
Device User Guide — 9S12B128DGV1/D V01.11
Figure 21-2 Recommended PCB Layout for 80QFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSR
C4
C5
VDDR
C7
C8
C11
Q1
C10
C9
R1
76
VSSPLL
VDDPLL
Device User Guide —9S12B128DGV1/D V01.11
Figure 21-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
VSSPLL
C4
R3
C5
VDDR
R2
Q1
C7
C8
C10
C9
VDDPLL
R1
77
Device User Guide — 9S12B128DGV1/D V01.11
Figure 21-4 Recommended PCB Layout for 80QFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
VDDPLL
C7
78
C8
C10
C9
R1
VSSPLL
Device User Guide —9S12B128DGV1/D V01.11
Appendix A Electrical Characteristics
A.1 General
NOTE:
The part is specified and tested over the 5V and 3.3V ranges. For the intermediate
range, generally the electrical specifications for the 3.3V range apply, but the part
is not tested in production test in the intermediate range.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE:
This classification is shown in the column labeled “C” in the parameter tables
where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.
T:
Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within
this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12B128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL
and internal logic.
The VDDA, VSSA pair supplies the A/D converter and the internal voltage regulator.
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.
79
Device User Guide — 9S12B128DGV1/D V01.11
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the internal logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of
the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.
A.1.3.2 Analog Reference
This group is made up by the VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.3.5 VREGEN
This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
80
Device User Guide —9S12B128DGV1/D V01.11
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings1
Num
Rating
Symbol
Min
Max
Unit
1
I/O, Regulator and Analog Supply Voltage
VDD5
-0.3
6.5
V
2
Internal Logic Supply Voltage 2
VDD
-0.3
3.0
V
3
PLL Supply Voltage 2
VDDPLL
-0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
-0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
-0.3
0.3
V
6
Digital I/O Input Voltage
VIN
-0.3
6.5
V
7
Analog Reference
VRH, VRL
-0.3
6.5
V
8
XFC, EXTAL, XTAL inputs
VILV
-0.3
3.0
V
9
TEST input
VTEST
-0.3
10.0
V
10
Instantaneous Maximum Current
Single pin limit for all digital I/O pins 3
ID
-25
+25
mA
11
Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL4
I
DL
-25
+25
mA
12
Instantaneous Maximum Current
Single pin limit for TEST 5
IDT
-0.25
0
mA
15
Storage Temperature Range
T
– 65
155
°C
stg
NOTES:
1. Beyond absolute maximum ratings device might be damaged.
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4. Those pins are internally clamped to VSSPLL and VDDPLL.
5. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications.
81
Device User Guide — 9S12B128DGV1/D V01.11
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model
Human Body
Machine
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ohm
Storage Capacitance
C
100
pF
Number of Pulse per pin
positive
negative
-
3
3
Series Resistance
R1
0
Ohm
Storage Capacitance
C
200
pF
Number of Pulse per pin
positive
negative
-
3
3
Minimum input voltage limit
-2.5
V
Maximum input voltage limit
7.5
V
Latch-up
Table A-3 ESD and Latch-Up Protection Characteristics
Num C
Rating
Symbol
Min
Max
Unit
1
T Human Body Model (HBM)
VHBM
2000
-
V
2
T Machine Model (MM)
VMM
200
-
V
3
T Charge Device Model (CDM)
VCDM
500
-
V
4
Latch-up Current at TA = 125°C
T positive
negative
ILAT
+100
-100
-
mA
5
Latch-up Current at TA = 27°C
T positive
negative
ILAT
+200
-200
-
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
82
Device User Guide —9S12B128DGV1/D V01.11
NOTE:
Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.
Table A-4 Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
I/O, Regulator and Analog Supply Voltage
VDD5
2.97
5
5.5
V
Internal Logic Supply Voltage 1
VDD
2.35
2.5
2.75
V
PLL Supply Voltage 1
VDDPLL
2.35
2.5
2.75
V
Voltage Difference VDDX to VDDR and VDDA
∆VDDX
-0.1
0
0.1
V
Voltage Difference VSSX to VSSR and VSSA
∆VSSX
-0.1
0
0.1
V
fbus
0.252
-
253
MHz
Operating Junction Temperature Range
T
J
-40
-
100
°C
Operating Ambient Temperature Range 4
T
A
-40
27
85
°C
Operating Junction Temperature Range
TJ
-40
-
120
°C
Operating Ambient Temperature Range 4
TA
-40
27
105
°C
Operating Junction Temperature Range
TJ
-40
-
140
°C
Operating Ambient Temperature Range 4
TA
-40
27
125
°C
Bus Frequency
MC9S12B128C
MC9S12B128V
MC9S12B128M
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. This
applies when this regulator is disabled and the device is powered from an external source.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.
3. See bus speed option at Table 0-1 Derivative Differences
4. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
83
Device User Guide — 9S12B128DGV1/D V01.11
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I IO
i
i
∑
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
V OL
R DSON = ------------ ;for outputs driven low
I OL
respectively
V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
2
P IO =
R DSON ⋅ I IO
i
i
∑
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
84
Device User Guide —9S12B128DGV1/D V01.11
Table A-5 Thermal Package Characteristics1
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
T Thermal Resistance LQFP112, single sided PCB2
θJA
–
–
54
o
2
T
Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
θJA
–
–
41
o
3
T Junction to Board LQFP112
θJB
–
–
31
oC/W
4
T Junction to Case LQFP112
θJC
–
–
11
o
5
T Junction to Package Top LQFP112
ΨJT
–
–
2
o
6
T Thermal Resistance QFP 80, single sided PCB
θJA
–
–
51
oC/W
7
T
θJA
–
–
41
oC/W
8
T Junction to Board QFP80
θJB
–
–
27
oC/W
9
T Junction to Case QFP80
θJC
–
–
14
oC/W
10
T Junction to Package Top QFP80
ΨJT
–
–
3
oC/W
Thermal Resistance QFP 80, double sided PCB with
2 internal planes
C/W
C/W
C/W
C/W
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-3
3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.
85
Device User Guide — 9S12B128DGV1/D V01.11
Table A-6 5V I/O Characteristics
Conditions are 4.5< VDDX <5.5V Termperature from -40¯C to +140¯C, unless otherwise noted
Num C
Rating
Symbol
1
P Input High Voltage
V
2
P Input Low Voltage
V
3
C Input Hysteresis
4
Input Leakage Current (pins in high impedance input
P mode)
V =V
or VSS5
in
DD5
5
Output High Voltage (pins in output mode)
P Partial Drive IOH = –2mA
Full Drive IOH = –10mA
V
6
Output Low Voltage (pins in output mode)
P Partial Drive IOL = +2mA
Full Drive IOL = +10mA
7
IH
IL
Min
Typ
Max
Unit
0.65*VDD5
-
VDD5 + 0.3
V
VSS5 - 0.3
-
0.35*VDD5
V
V
250
HYS
mV
–1
-
1
µA
VDD5 – 0.8
-
-
V
V
OL
-
-
0.8
V
Internal Pull Up Device Current,
P tested at V Max.
IPUL
-
-
–130
µA
Internal Pull Up Device Current,
C tested at V Min.
IPUH
-10
-
-
µA
Internal Pull Down Device Current,
P tested at V Min.
IPDH
-
-
130
µA
Internal Pull Down Device Current,
C tested at V Max.
IPDL
10
-
-
µA
11
D Input Capacitance
Cin
7
-
pF
12
Injection current1
T Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
-
2.5
25
mA
13
P Port H, J, P Interrupt Input Pulse filtered2
tpign
3
µs
14
P Port H, J, P Interrupt Input Pulse passed2
tpval
IL
8
IH
9
IH
10
IL
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
2. Parameter only applies in STOP or Pseudo STOP mode.
86
Iin
OH
-2.5
-25
10
µs
Device User Guide —9S12B128DGV1/D V01.11
Table A-7 3.3V I/O Characteristics
Conditions are VDDX=3.3V +/-10% Termperature from -40¯C to +140¯C, unless otherwise noted
Num C
Rating
Symbol
1
P Input High Voltage
V
2
P Input Low Voltage
V
3
C Input Hysteresis
4
Input Leakage Current (pins in high impedance input
P mode)
V =V
or VSS5
in
DD5
5
Output High Voltage (pins in output mode)
P Partial Drive IOH = –0.75mA
Full Drive IOH = –4.0mA
V
6
Output Low Voltage (pins in output mode)
P Partial Drive IOL = +0.9mA
Full Drive IOL = +4.75mA
7
IH
IL
Min
Typ
Max
Unit
0.65*VDD5
-
VDD5 + 0.3
V
VSS5 - 0.3
-
0.35*VDD5
V
V
250
HYS
mV
–1
-
1
µA
VDD5 – 0.4
-
-
V
V
OL
-
-
0.4
V
Internal Pull Up Device Current,
P tested at V Max.
IPUL
-
-
–60
µA
Internal Pull Up Device Current,
C tested at V Min.
IPUH
-6
-
-
µA
Internal Pull Down Device Current,
P tested at V Min.
IPDH
-
-
60
µA
Internal Pull Down Device Current,
C tested at V Max.
IPDL
6
-
-
µA
11
D Input Capacitance
Cin
7
-
pF
12
Injection current1
T Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
-
2.5
25
mA
13
P Port H, J, P Interrupt Input Pulse filtered2
tpign
3
µs
14
P Port H, J, P Interrupt Input Pulse passed2
tpval
IL
8
IH
9
IH
10
IL
Iin
OH
-2.5
-25
10
µs
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
2. Parameter only applies in STOP or Pseudo STOP mode.
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
87
Device User Guide — 9S12B128DGV1/D V01.11
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz or 16Mhz bus frequency using a 4MHz
oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL
input.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Table A-8 Supply Current Characteristics at 25MHz Bus Frequency
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Run supply currents
Single Chip, Internal regulator enabled
IDD5
55
IDDW
35
7
1
P
2
P
P
All modules enabled, PLL on
only RTI enabled 1
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
C
C
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled) 1, 2
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
Min
Typ
Max
Unit
mA
Wait Supply current
3
4
IDDPS
IDDPS
370
400
450
550
600
650
800
850
1200
mA
500
1600
µA
2100
5000
570
600
650
750
850
1200
1500
µA
Stop Current 2
5
88
C
P
C
C
P
C
P
C
P
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
IDDS
12
25
100
130
160
200
350
400
600
100
1200
1700
5000
µA
Device User Guide —9S12B128DGV1/D V01.11
NOTES:
1. PLL off
2. At those low power dissipation levels TJ = TA can be assumed
Table A-9 Supply Current Characteristics at 16MHz Bus Frequency
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Run supply currents
Single Chip, Internal regulator enabled
IDD5
55
IDDW
35
7
1
P
2
P
P
All modules enabled, PLL on
only RTI enabled 1
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
C
C
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled) 1, 2
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
Min
Typ
Max
Unit
mA
Wait Supply current
3
4
IDDPS
IDDPS
370
400
450
550
600
650
800
850
1200
mA
500
1600
µA
2100
5000
570
600
650
750
850
1200
1500
µA
Stop Current 2
5
C
P
C
C
P
C
P
C
P
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
IDDS
12
25
100
130
160
200
350
400
600
100
1200
µA
1700
5000
NOTES:
1. PLL off
2. At those low power dissipation levels TJ = TA can be assumed
89
Device User Guide — 9S12B128DGV1/D V01.11
90
Device User Guide —9S12B128DGV1/D V01.11
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the
ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.
A.2.1 ATD Operating Characteristics In 5V Range
The Table A-10 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-10 ATD Operating Characteristics In 5V Range
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 5V-10% <= VDDA <=5V+10%
Num C
Rating
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
5.25
V
Reference Potential
1
D
Low
High
2
C Differential Reference Voltage1
VRH-VRL
4.75
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
14
7
28
14
Cycles
µs
12
6
26
13
Cycles
µs
5.00
ATD 10-Bit Conversion Period
Clock Cycles2 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
4
D
5
D
6
D Recovery Time (VDDA=5.0 Volts)
tREC
20
µs
7
P Reference Supply current
IREF
0.750
mA
ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.2 ATD Operating Characteristics In 3.3V Range
The Table A-11 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
91
Device User Guide — 9S12B128DGV1/D V01.11
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-11 ATD Operating Characteristics In 3.3V Range
Conditions are shown in Table A-4 unless otherwise noted. Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%
Num C
Rating
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
3.6
V
Reference Potential
1
D
Low
High
2
C Differential Reference Voltage1
VRH-VRL
3.0
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
4
D
14
7
28
14
Cycles
µs
5
D
12
6
26
13
Cycles
µs
6
D Recovery Time (VDDA=3.3 Volts)
tREC
20
µs
7
P Reference Supply current
IREF
0.500
mA
3.3
ATD 10-Bit Conversion Period
Clock Cycles2 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 3.0V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.3 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influence on the
accuracy of the ATD.
A.2.3.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.3.2 Source Capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN).
92
Device User Guide —9S12B128DGV1/D V01.11
A.2.3.3 Current Injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive condition.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table A-12 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
RS
-
-
1
KΩ
10
22
pF
2.5
mA
1
C Max input Source Resistance
2
Total Input Capacitance
T Non Sampling
Sampling
3
C Disruptive Analog Input Current
INA
4
C Coupling Ratio positive current injection
Kp
10-4
A/A
5
C Coupling Ratio negative current injection
Kn
10-2
A/A
CINN
CINS
-2.5
93
Device User Guide — 9S12B128DGV1/D V01.11
A.2.4 ATD accuracy
A.2.4.1 5V Range
Table A-13 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table A-13 ATD Conversion Performance In 5V Range
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Supply Voltage 5V-10% <= VDDA <=5V+10%
Num C
Rating
Symbol
Min
1
P 10-Bit Resolution
LSB
2
P 10-Bit Differential Nonlinearity
DNL
–1
3
P 10-Bit Integral Nonlinearity
INL
–2.5
4
P 10-Bit Absolute Error1
AE
-3
5
P 8-Bit Resolution
LSB
6
P 8-Bit Differential Nonlinearity
DNL
–0.5
7
P 8-Bit Integral Nonlinearity
INL
–1.0
8
P 8-Bit Absolute Error1
AE
-1.5
Typ
5
Unit
mV
1
Counts
±1.5
2.5
Counts
±2.0
3
Counts
20
mV
0.5
Counts
±0.5
1.0
Counts
±1.0
1.5
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
94
Max
Device User Guide —9S12B128DGV1/D V01.11
A.2.4.2 3.3V Range
Table A-14 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance and source resistance.
Table A-14 ATD Conversion Performance In 3.3V Range
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV
fATDCLK = 2.0MHz
Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%
Num C
Rating
Symbol
Min
1
P 10-Bit Resolution
LSB
2
P 10-Bit Differential Nonlinearity
DNL
–1.5
3
P 10-Bit Integral Nonlinearity
INL
–3.5
4
P 10-Bit Absolute Error1
AE
-5
5
P 8-Bit Resolution
LSB
6
P 8-Bit Differential Nonlinearity
DNL
–0.5
7
P 8-Bit Integral Nonlinearity
INL
–1.5
8
P 8-Bit Absolute Error1
AE
-2.0
Typ
Max
3.25
Unit
mV
1.5
Counts
±1.5
3.5
Counts
±2.5
5
Counts
13
mV
0.5
Counts
±1.0
1.5
Counts
±1.5
2.0
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
A.2.4.3 ATD Accuracy Definitions
For the following definitions see also Figure A-1.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
i=1
Vn – V0
DNL ( i ) = -------------------- – n
1LSB
95
Device User Guide — 9S12B128DGV1/D V01.11
DNL
10-Bit Absolute Error Boundary
LSB
Vi-1
Vi
$3FF
8-Bit Absolute Error Boundary
$3FE
$3FD
$3FC
$FF
$3FB
$3FA
$3F9
$3F8
$FE
$3F7
$3F6
$3F4
8-Bit Resolution
10-Bit Resolution
$3F5
$FD
$3F3
9
Ideal Transfer Curve
8
2
7
10-Bit Transfer Curve
6
5
4
1
3
8-Bit Transfer Curve
2
1
0
5
10
15
20
25
30
35
40
45
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin
mV
Figure A-1 ATD Accuracy Definitions
NOTE:
96
Figure A-1 shows only definitions, for specification values refer to Table A-13.
Device User Guide —9S12B128DGV1/D V01.11
A.3 NVM, Flash and EEPROM
NOTE:
Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in Table A-15 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.
1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
A.3.1.2 Row Programming
This applies only to the Flash where up to 64 words in a row can be programmed consecutively by keeping
the command pipeline filled. The time to program a consecutive word can be calculated as:
1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
The time to program a whole row is:
t brpgm = t swpgm + 63 ⋅ t bwpgm
Row programming is more than 2 times faster than single word programming.
97
Device User Guide — 9S12B128DGV1/D V01.11
A.3.1.3 Sector Erase
Erasing a 1024 byte Flash sector or a 4 byte EEPROM sector takes:
1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.4 Mass Erase
Erasing a NVM block takes:
1
t mass ≈ 20000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-15 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
50 1
MHz
1
D External Oscillator Clock
fNVMOSC
0.5
2
D Bus frequency for Programming or Erase Operations
fNVMBUS
1
3
D Operating Frequency
fNVMOP
150
200
kHz
4
P Single Word Programming Time
tswpgm
46 2
74.5 3
µs
5
D Flash Burst Programming consecutive word 4
tbwpgm
20.4 2
31 3
µs
6
D Flash Burst Programming Time for 64 Words 4
tbrpgm
1331.2 2
2027.5 3
µs
7
P Sector Erase Time
tera
20 5
26.7 3
ms
8
P Mass Erase Time
tmass
100 5
133 3
ms
9
D Blank Check Time Flash per block
tcheck
11 6
65546 7
tcyc
10
D Blank Check Time EEPROM per block
tcheck
11 6
5227
tcyc
MHz
NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
98
Device User Guide —9S12B128DGV1/D V01.11
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
4. Burst Programming operations are not applicable to EEPROM
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
6. Minimum time, if first word in the array is not blank
7. Maximum time to complete check on an erased block
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at the operating conditions
noted.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
Table A-16 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
Data Retention at an average junction temperature of
TJavg = 70°C
tNVMRET
15
Years
nFLPE
10,000
Cycles
1
C
2
C Flash number of Program/Erase cycles
3
C
EEPROM number of Program/Erase cycles
(–40°C ≤ TJ ≤ 0°C)
nEEPE
10,000
Cycles
4
C
EEPROM number of Program/Erase cycles
(0°C < TJ ≤ 140°C)
nEEPE
100,000
Cycles
99
Device User Guide — 9S12B128DGV1/D V01.11
100
Device User Guide —9S12B128DGV1/D V01.11
A.4 VREG_3V3
A.4.1 Operating Conditions
Table A-17 VREG_3V3 - Operating Conditions
Conditions are shown in Table A-4 unless otherwise noted
Num
C
1
P
Input Voltages
P
Output Voltage Core
Full Performance Mode
Reduced Power Mode
Shutdown Mode
P
Output Voltage PLL
Full Performance Mode
Reduced Power Mode2
Reduced Power Mode3
Shutdown Mode
7
P
Low Voltage Interrupt5
Assert Level
Deassert Level
8
P
9
C
3
4
Characteristic
Symbol
Min
Typical
Max
Unit
VVDDR,A
2.97
—
5.5
V
VDD
2.35
1.6
—
2.5
2.5
—1
2.75
2.75
—
V
V
V
2.35
1.7
1.4
—
2.5
2.5
2.5
—4
2.75
2.75
2.75
—
V
V
V
VLVIA
VLVID
4.0
4.15
4.37
4.52
4.66
4.77
V
V
Low Voltage Reset6
Assert Level
VLVRA
2.25
—
—
V
Power-on Reset7
Assert Level
Deassert Level
VPORA
VPORD
0.97
—
—
—
—
2.05
V
V
VDDPLL
NOTES:
1. High Impedance Output
2. Current IDDPLL = 0.5mA (Colpitts Oscillator)
3. Current IDDPLL = 3mA (Pierce Oscillator)
4. High Impedance Output
5. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to
low supply voltage.
6. Monitors VDD, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure A-2)
7. Monitors VDD. Active in all modes.
A.4.2 Chip Power-up and Voltage Drops
VREG_3V3 sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage reset)
handle chip power-up or drops of the supply voltage. Their function is described in Figure A-2.
101
Device User Guide — 9S12B128DGV1/D V01.11
Figure A-2 VREG_3V3 - Chip Power-up and Voltage Drops (not scaled)
V
VDDA
VLVID
VLVIA
VDD
VLVRD
VLVRA
VPORD
t
LVI
LVI enabled
LVI disabled due to LVR
POR
LVR
A.4.3 Output Loads
A.4.3.1 Resistive Loads
On-chip voltage regulator VREG_3V3 intended to supply the internal logic and oscillator circuits allows
no external DC loads.
A.4.3.2 Capacitive Loads
The capacitive loads are specified in Table A-18. Ceramic capacitors with X7R dielectricum are required.
102
Device User Guide —9S12B128DGV1/D V01.11
Table A-18 VREG_3V3 - Capacitive Loads
Num
Characteristic
1
VDD external capacitive load
3
VDDPLL external capacitive load
Symbol
Min
Typical
Max
Unit
CDDext
200
440
12000
nF
CDDPLLext
90
220
5000
nF
103
Device User Guide — 9S12B128DGV1/D V01.11
104
Device User Guide —9S12B128DGV1/D V01.11
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.5.1 Startup
Table A-19 summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-19 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
PWRSTL
2
nRST
192
PWIRQ
20
Typ
Max
Unit
tosc
1
D Reset input pulse width, minimum input time
2
D Startup from Reset
3
D Interrupt pulse width, IRQ edge-sensitive mode
4
D Wait recovery startup time
tWRS
14
tcyc
5
T Voltage Regulator Return from Pseudo Stop
tvup
100
µs
196
nosc
ns
A.5.1.1 POR
The release level VPORD (see Table A-17) and the assert level VPORA (see Table A-17) are derived from
the VDD Supply. They are also valid if the device is powered externally. After releasing the POR reset the
oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected, the
MCU will start using the internal self clock. The fastest startup time possible is given by nuposc.
A.5.1.2 LVR
The assert level VLVRA (see Table A-17) is derived from the VDD Supply. After releasing the LVR reset
the oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected,
the MCU will start using the internal self clock. The fastest startup time possible is given by nuposc.
A.5.1.3 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.5.1.4 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
105
Device User Guide — 9S12B128DGV1/D V01.11
A.5.1.5 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system. The fastest startup time possible is given by nuposc.
A.5.1.6 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. In Pseudo Stop Mode the voltage regulator is switched to Reduced Performance Mode to
reduce power consumption. The returning out of pseudo stop to Full Perfomance takes tvup if the voltage
regulator is enabled.
The controller can be woken up by internal or external interrupts. After twrs in Wait or tvup+twrs in Pseudo
Stop the CPU starts fetching the interrupt vector.
106
Device User Guide —9S12B128DGV1/D V01.11
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset. Pierce
oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum
oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is
asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA.
Table A-20 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1a
C Crystal oscillator range (Colpitts)
fOSC
0.5
16
MHz
1b
C Crystal oscillator range (Pierce) 1
fOSC
0.5
40
MHz
2
P Startup Current
iOSC
100
3
C Oscillator start-up time (Colpitts)
tUPOSC
4
D Clock Quality check time-out
tCQOUT
0.45
5
P Clock Monitor Failure Assert Frequency
fCMFA
50
6
P External square wave input frequency 4
fEXT
0.5
7
D External square wave pulse width low 4
tEXTL
9.5
ns
8
D External square wave pulse width high4
tEXTH
9.5
ns
9
D External square wave rise time4
tEXTR
1
ns
10
D External square wave fall time4
tEXTF
1
ns
11
D Input Capacitance (EXTAL, XTAL pins)
12
C
13
P EXTAL Pin Input High Voltage4
VIH,EXTAL
T EXTAL Pin Input High Voltage4
VIH,EXTAL
VDDPLL + 0.3
V
P EXTAL Pin Input Low Voltage4
VIL,EXTAL
0.25*VDDPLL
V
T EXTAL Pin Input Low Voltage4
VIL,EXTAL
14
15
DC Operating Bias in Colpitts Configuration on
EXTAL Pin
C EXTAL Pin Input Hysteresis4
µA
82
100
1003
ms
2.5
s
200
KHz
50
MHz
CIN
7
pF
VDCBIAS
1.1
V
0.75*VDDPLL
V
VSSPLL - 0.3
VHYS,EXTAL
V
250
mV
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. Only valid if Pierce oscillator/external clock mode is selected
107
Device User Guide — 9S12B128DGV1/D V01.11
A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.5.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Cp
VDDPLL
R
Phase
Cs
fosc
fref
1
refdv+1
∆
fcmp
XFC Pin
VCO
KΦ
KV
fvco
Detector
Loop Divider
1
synr+1
1
2
Figure A-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table A-21.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
KV = K1 ⋅ e
( f 1 – f vco )
----------------------K 1 ⋅ 1V
= – 100 ⋅ e
( 60 – 50 )
-----------------------– 100
= -90.48MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
ich is the current in tracking mode.
108
= 316.7Hz/Ω
Device User Guide —9S12B128DGV1/D V01.11
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10
π ⋅ ζ + 1 + ζ 
fC < 25kHz


And finally the frequency relationship is defined as
f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref
= 50
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:
2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ
KΦ
The capacitance Cs can now be calculated as:
2
0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
A.5.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.
109
Device User Guide — 9S12B128DGV1/D V01.11
1
0
2
3
N-1
N
tmin1
tnom
tmax1
tminN
tmaxN
Figure A-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
t min ( N ) 
t max ( N )

J ( N ) = max  1 – --------------------- , 1 – --------------------- 
N ⋅ t nom
N ⋅ t nom 

For N < 100, the following equation is a good fit for the maximum jitter:
j1
J ( N ) = -------- + j 2
N
J(N)
1
5
10
20
N
Figure A-5 Maximum bus clock jitter approximation
110
Device User Guide —9S12B128DGV1/D V01.11
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table A-21 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Self Clock Mode frequency
fSCM
1
5.5
MHz
2
D VCO locking range
fVCO
8
50
MHz
3
D
|∆trk|
3
4
%1
4
D Lock Detection
|∆Lock|
0
1.5
%(1)
5
D Un-Lock Detection
|∆unl|
0.5
2.5
%(1)
6
D
|∆unt|
6
8
%(1)
7
C PLLON Total Stabilization delay (Auto Mode) 2
tstab
0.5
ms
8
D PLLON Acquisition mode stabilization delay (2)
tacq
0.3
ms
9
D PLLON Tracking mode stabilization delay (2)
tal
0.2
ms
10
D Fitting parameter VCO loop gain
K1
-100
MHz/V
11
D Fitting parameter VCO loop frequency
f1
60
MHz
12
D Charge pump current acquisition mode
| ich |
38.5
µA
13
D Charge pump current tracking mode
| ich |
3.5
µA
14
C Jitter fit parameter 1(2)
j1
1.1
%
15
C Jitter fit parameter 2(2)
j2
0.13
%
Lock Detector transition from Acquisition to Tracking
mode
Lock Detector transition from Tracking to Acquisition
mode
NOTES:
1. % deviation from target frequency
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.
111
Device User Guide — 9S12B128DGV1/D V01.11
112
Device User Guide —9S12B128DGV1/D V01.11
A.6 MSCAN
Table A-22 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
1
P MSCAN Wake-up dominant pulse filtered
tWUP
2
P MSCAN Wake-up dominant pulse pass
tWUP
Min
5
Typ
Max
Unit
2
µs
µs
113
Device User Guide — 9S12B128DGV1/D V01.11
114
Device User Guide —9S12B128DGV1/D V01.11
A.7 SPI
This section provides electrical parametrics and ratings for the SPI.
In Table A-23 the measurement conditions are listed.
Table A-23 Measurement Conditions
Description
Value
Unit
full drive mode
—
50
pF
(20% / 80%) VDDX
V
Drive mode
Load capacitance CLOAD,
on all outputs
Thresholds for delay
measurement points
A.7.1 Master Mode
In Figure A-6 the timing diagram for master mode with transmission format CPHA=0 is depicted.
SS1
(OUTPUT)
2
1
SCK
(CPOL = 0)
(OUTPUT)
13
12
13
3
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
10
MOSI
(OUTPUT)
12
4
BIT 6 . . . 1
LSB IN
9
MSB OUT2
BIT 6 . . . 1
11
LSB OUT
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-6 SPI Master Timing (CPHA=0)
In Figure A-7 the timing diagram for master mode with transmission format CPHA=1 is depicted.
115
Device User Guide — 9S12B128DGV1/D V01.11
SS1
(OUTPUT)
1
2
12
13
12
13
3
SCK
(CPOL = 0)
(OUTPUT)
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
LSB IN
11
9
MOSI
(OUTPUT) PORT DATA
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-7 SPI Master Timing (CPHA=1)
In Table A-24 the timing characteristics for master mode are listed.
Table A-24 SPI Master Mode Timing Characteristics
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
SCK Frequency
fsck
1/2048
—
1/2
fbus
1
SCK Period
tsck
2
—
2048
tbus
2
Enable Lead Time
tlead
—
1/2
—
tsck
3
Enable Lag Time
tlag
—
1/2
—
tsck
4
Clock (SCK) High or Low Time
twsck
—
1/2
—
tsck
5
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
Data Hold Time (Inputs)
thi
8
—
—
ns
9
Data Valid after SCK Edge
tvsck
—
—
30
ns
10
Data Valid after SS fall (CPHA=0)
tvss
—
—
15
ns
11
Data Hold Time (Outputs)
tho
20
—
—
ns
12
Rise and Fall Time Inputs
trfi
—
—
8
ns
Rise and Fall Time Outputs
trfo
—
—
8
ns
13
116
Device User Guide —9S12B128DGV1/D V01.11
A.7.2 Slave Mode
In Figure A-8 the timing diagram for slave mode with transmission format CPHA=0 is depicted.
SS
(INPUT)
1
12
13
12
13
3
SCK
(CPOL = 0)
(INPUT)
4
2
4
SCK
(CPOL = 1)
(INPUT) 10
8
7
MISO
(OUTPUT)
9
see
note
SLAVE MSB
5
MOSI
(INPUT)
BIT 6 . . . 1
11
11
SLAVE LSB OUT
SEE
NOTE
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure A-8 SPI Slave Timing (CPHA=0)
In Figure A-9 the timing diagram for slave mode with transmission format CPHA=1 is depicted.
117
Device User Guide — 9S12B128DGV1/D V01.11
SS
(INPUT)
3
1
2
12
13
12
13
SCK
(CPOL = 0)
(INPUT)
4
4
SCK
(CPOL = 1)
(INPUT)
see
note
SLAVE
7
MSB OUT
5
MOSI
(INPUT)
8
11
9
MISO
(OUTPUT)
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure A-9 SPI Slave Timing (CPHA=1)
In Table A-25 the timing characteristics for slave mode are listed.
Table A-25 SPI Slave Mode Timing Characteristics
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
SCK Frequency
fsck
DC
—
1/4
fbus
1
SCK Period
tsck
4
—
∞
tbus
2
Enable Lead Time
tlead
4
—
—
tbus
3
Enable Lag Time
tlag
4
—
—
tbus
4
Clock (SCK) High or Low Time
twsck
4
—
—
tbus
5
Data Setup Time (Inputs)
tsu
8
—
—
ns
6
Data Hold Time (Inputs)
thi
8
—
—
ns
Slave Access Time (time to data active)
ta
—
—
20
ns
Slave MISO Disable Time
tdis
—
—
22
7
8
ns
1
ns
9
Data Valid after SCK Edge
tvsck
—
—
30 + tbus
10
Data Valid after SS fall
tvss
—
—
30 + tbus 1
ns
11
Data Hold Time (Outputs)
tho
20
—
—
ns
12
Rise and Fall Time Inputs
trfi
—
—
8
ns
13
Rise and Fall Time Outputs
trfo
—
—
8
ns
NOTES:
1. tbus added due to internal synchronization delay
118
Device User Guide —9S12B128DGV1/D V01.11
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-10 with the actual timing
values shown on Table A-26 in 5V range. All major bus signals are included in the diagram. While both
a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
119
Device User Guide — 9S12B128DGV1/D V01.11
1, 2
3
4
ECLK
PE4
5
9
Addr/Data
(read)
PA, PB
6
data
16
15
7
data
8
14
13
data
addr
17
11
data
addr
12
Addr/Data
(write)
PA, PB
10
19
18
Non-Multiplexed
Addresses
PK5:0
20
21
22
23
ECS
PK7
24
25
26
27
28
29
30
31
32
33
34
R/W
PE2
LSTRB
PE3
NOACC
PE7
35
36
IPIPO0
IPIPO1, PE6,5
Figure A-10 General External Bus Timing
120
Device User Guide —9S12B128DGV1/D V01.11
Table A-26 Expanded Bus Timing Characteristics In 5V Range
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF.
Supply Voltage 5V-10% <= VDDX <=5V+10%
Num C
Rating
Symbol
Min
Typ
Max
Unit
fo
0
25.0
MHz
tcyc
40
ns
1
P Frequency of operation (E-clock)
2
P Cycle time
3
D Pulse width, E low
PWEL
19
ns
4
D Pulse width, E high1
PWEH
19
ns
5
D Address delay time
tAD
6
D Address valid time to E rise (PWEL–tAD)
tAV
11
ns
7
D Muxed address hold time
tMAH
2
ns
8
D Address hold to data valid
tAHDS
7
ns
9
D Data hold to address
tDHA
2
ns
10
D Read data setup time
tDSR
13
ns
11
D Read data hold time
tDHR
0
ns
12
D Write data delay time
tDDW
13
D Write data hold time
tDHW
2
ns
14
D Write data setup time1 (PWEH–tDDW)
tDSW
12
ns
15
D Address access time1 (tcyc–tAD–tDSR)
tACCA
19
ns
16
D E high access time1 (PWEH–tDSR)
tACCE
6
ns
20
D Chip select delay time
tCSD
21
D Chip select access time1 (tcyc–tCSD–tDSR)
tACCS
11
ns
22
D Chip select hold time
tCSH
2
ns
23
D Chip select negated time
tCSN
8
ns
24
D Read/write delay time
tRWD
25
D Read/write valid time to E rise (PWEL–tRWD)
tRWV
14
ns
26
D Read/write hold time
tRWH
2
ns
27
D Low strobe delay time
tLSD
28
D Low strobe valid time to E rise (PWEL–tLSD)
tLSV
14
ns
29
D Low strobe hold time
tLSH
2
ns
30
D NOACC strobe delay time
tNOD
31
D NOACC valid time to E rise (PWEL–tNOD)
tNOV
14
ns
32
D NOACC hold time
tNOH
2
ns
33
D IPIPO[1:0] delay time
tP0D
2
8
7
16
7
7
7
7
ns
ns
ns
ns
ns
ns
ns
121
Device User Guide — 9S12B128DGV1/D V01.11
Table A-26 Expanded Bus Timing Characteristics In 5V Range
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF.
Supply Voltage 5V-10% <= VDDX <=5V+10%
Num C
Rating
Symbol
Min
34
D IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
11
35
D IPIPO[1:0] delay time1 (PWEH-tP1V)
tP1D
2
36
D IPIPO[1:0] valid time to E fall
tP1V
11
Typ
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
122
Max
Unit
ns
25
ns
ns
Device User Guide —9S12B128DGV1/D V01.11
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12B128 packages.
123
Device User Guide — 9S12B128DGV1/D V01.11
B.2 112-pin LQFP package
0.20 T L-M N
4X
PIN 1
IDENT
0.20 T L-M N
4X 28 TIPS
112
J1
85
4X
P
J1
1
CL
84
VIEW Y
108X
G
X
X=L, M OR N
VIEW Y
B
L
V
M
B1
28
57
29
F
D
56
0.13
N
T L-M N
SECTION J1-J1
S1
A
S
C2
VIEW AB
θ2
0.050
0.10 T
112X
SEATING
PLANE
θ3
T
θ
R
R2
R
0.25
R1
GAGE PLANE
(K)
C1
E
(Y)
(Z)
VIEW AB
M
θ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13 °
11 °
11 °
13 °
Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)
124
BASE
METAL
ROTATED 90 ° COUNTERCLOCKWISE
A1
C
AA
J
V1
Device User Guide —9S12B128DGV1/D V01.11
B.3 80-pin QFP package
L
60
41
61
D
S
M
V
P
B
C A-B
D
0.20
M
B
B
-A-,-B-,-D-
0.20
L
H A-B
-B-
0.05 D
-A-
S
S
S
40
DETAIL A
DETAIL A
21
80
1
0.20
A
H A-B
M
S
F
20
-DD
S
0.05 A-B
J
S
0.20
C A-B
M
S
D
S
D
M
E
DETAIL C
C
-H-
-C-
DATUM
PLANE
0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10
H
SEATING
PLANE
N
M
G
U
T
DATUM
PLANE
-H-
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF
Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B)
125
Device User Guide — 9S12B128DGV1/D V01.11
126
Device User Guide —9S12B128DGV1/D V01.11
Device User Guide End Sheet
127
Device User Guide — 9S12B128DGV1/D V01.11
FINAL PAGE OF
128
PAGES
128
Similar pages