ON MC100LVEL58DG 3.3v ecl 2:1 multiplexer Datasheet

MC100LVEL58
3.3VECL 2:1 Multiplexer
Description
The MC100LVEL58 is a 2:1 multiplexer. The device is pin and
functionally equivalent to the EL58 and works from a 3.3 V supply.
With AC performance similar to the EL58 device, the LVEL58 is ideal
for low voltage applications which require the ultimate in AC
performance.
http://onsemi.com
MARKING
DIAGRAMS*
Features
• 440 ps Typical Propagation Delays
• ESD Protection: > 4 kV Human Body Model,
•
•
•
•
•
•
•
•
8
1
>200 V Machine Model
The 100 Series Contains Temperature Compensation
PECL Mode Operating Range: VCC = 3.0 V to 3.8 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = −3.0 V to −3.8 V
Internal Input Pulldown Resistors
Q Output will Default LOW with Inputs Open or at VEE
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
Moisture Sensitivity Level 1
For Additional Information, see Application Note AND8003/D
Flammability Rating: UL 94 V−0 @ 0.125 in,
Oxygen Index: 28 to 34
Transistor Count = 93 devices
Pb−Free Packages are Available
KVL58
ALYW
G
SO−8
D SUFFIX
CASE 751
1
8
8
1
TSSOP−8
DT SUFFIX
CASE 948R
1
KV58
ALYWG
G
4H M G
G
•
•
8
1
4
DFN8
MN SUFFIX
CASE 506AA
A
L
Y
W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2006
November, 2006 − Rev. 5
1
Publication Order Number:
MC100LVEL58/D
MC100LVEL58
NC
1
Da
2
1
8
VCC
7
Q
6
Q
5
VEE
MUX
Db
3
SEL
4
0
Figure 1. Logic Diagram and Pinout Assignment
Table 1. PIN DESCRIPTION
PIN
Table 2. TRUTH TABLE
FUNCTION
Da, Db
Q, Q
SEL
VCC
VEE
NC
EP
SEL
Data
H
L
a
b
ECL Data Inputs
ECL Differential Data Outputs
ECL Select Input
Positive Supply
Negative Supply
No Connect
Exposed pad must be connected to a sufficient
thermal conduit. Electrically connect to the most
negative supply or leave floating open.
Table 3. MAXIMUM RATINGS
Symbol
Parameter
Condition 1
Condition 2
Rating
Units
VCC
PECL Mode Power Supply
VEE = 0 V
8 to 0
V
VEE
NECL Mode Power Supply
VCC = 0 V
−8 to 0
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6 to 0
−6 to 0
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
8 SOIC
8 SOIC
190
130
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
8 SOIC
41 to 44 ± 5%
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
8 TSSOP
8 TSSOP
185
140
°C/W
°C/W
qJC
Thermal Resistance (Junction−to−Case)
Standard Board
8 TSSOP
41 to 44 ± 5%
°C/W
qJA
Thermal Resistance (Junction−to−Ambient)
0 lfpm
500 lfpm
DFN8
DFN8
129
84
°C/W
°C/W
Tsol
Wave Solder
265
265
°C
Pb
Pb−Free
VI VCC
VI VEE
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
http://onsemi.com
2
MC100LVEL58
Table 4. LVPECL DC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V (Note 1)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
21
28
Min
85°C
Typ
Max
21
28
Min
Typ
Max
Unit
23
30
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 2)
2215
2295
2420
2275
2345
2420
2275
2345
2420
mV
VOL
Output LOW Voltage (Note 2)
1470
1605
1745
1490
1595
1680
1490
1595
1680
mV
VIH
Input HIGH Voltage
2135
2420
2135
2420
2135
2420
mV
VIL
Input LOW Voltage
1490
1825
1490
1825
1490
1825
mV
IIH
Input HIGH Current
150
mA
IIL
Input LOW Current
150
150
0.5
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
Table 5. LVNECL DC CHARACTERISTICS VCC = 0.0 V; VEE = −3.3 V (Note 3)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
21
28
−1085
−1005
−880
Output LOW Voltage (Note 4)
−1830
−1695
VIH
Input HIGH Voltage
VIL
Input LOW Voltage
IIH
Input HIGH Current
IIL
Input LOW Current
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 4)
VOL
Min
85°C
Typ
Max
21
28
−1025
−955
−880
−1555
−1810
−1705
−1165
−880
−1810
−1475
Typ
Max
Unit
23
30
mA
−1025
−955
−880
mV
−1620
−1810
−1705
−1620
mV
−1165
−880
−1165
−880
mV
−1810
−1475
−1810
−1475
mV
150
mA
150
0.5
Min
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
3. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
4. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
Table 6. AC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.3 V (Note 5)
−40°C
Symbol
Characteristic
fmax
Maximum Toggle Frequency
tPLH
tPHL
Propagation
Delay
tr
tf
Output Rise/Fall Times
(20% − 80%)
Min
25°C
Typ
Max
Min
TBD
D to Q
SEL to Q
340
350
Q
100
Typ
85°C
Max
Min
TBD
435
455
560
570
350
360
320
100
440
460
Typ
Max
TBD
570
580
370
380
320
100
450
470
Unit
GHz
590
600
ps
320
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
5. VEE can vary ±0.3 V.
http://onsemi.com
3
MC100LVEL58
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 3.0 V
Figure 2. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
ORDERING INFORMATION
Device
MC100LVEL58D
Package
Shipping †
SO−8
98 Units / Rail
MC100LVEL58DG
SO−8
(Pb−Free)
98 Units / Rail
MC100LVEL58DR2
SO−8
2500 / Tape & Reel
MC100LVEL58DR2G
SO−8
(Pb−Free)
2500 / Tape & Reel
MC100LVEL58DT
TSSOP−8
100 Units / Rail
MC100LVEL58DTG
TSSOP−8
(Pb−Free)
100 Units / Rail
MC100LVEL58DTR2
TSSOP−8
2500 / Tape & Reel
MC100LVEL58DTR2G
TSSOP−8
(Pb−Free)
2500 / Tape & Reel
MC100LVEL58MNR4G
DFN8
(Pb−Free)
1000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
http://onsemi.com
4
MC100LVEL58
PACKAGE DIMENSIONS
SO−8 NB
CASE 751−07
ISSUE AH
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
H
0.10 (0.004)
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC100LVEL58
PACKAGE DIMENSIONS
TSSOP−8
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948R−02
ISSUE A
8x
0.15 (0.006) T U
0.10 (0.004)
S
2X
L/2
L
8
5
1
PIN 1
IDENT
0.15 (0.006) T U
K REF
S
M
T U
V
S
0.25 (0.010)
B
−U−
4
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE −W−.
S
M
A
−V−
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
http://onsemi.com
6
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
MC100LVEL58
PACKAGE DIMENSIONS
DFN8
CASE 506AA−01
ISSUE D
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994 .
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
A
B
PIN ONE
REFERENCE
2X
0.10 C
2X
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
0.10 C
TOP VIEW
0.08 C
SEATING
PLANE
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.00 BSC
1.10
1.30
2.00 BSC
0.70
0.90
0.50 BSC
0.20
−−−
0.25
0.35
A
0.10 C
8X
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
E
(A3)
SIDE VIEW
A1
C
D2
e
e/2
4
1
8X
L
E2
K
8
5
8X
b
0.10 C A B
0.05 C
NOTE 3
BOTTOM VIEW
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC100LVEL58/D
Similar pages