IRF6775MTRPbF DIGITAL AUDIO MOSFET Features • Latest MOSFET Silicon technology • Key parameters optimized for Class-D audio amplifier applications • Low RDS(on) for improved efficiency • Low Qg for better THD and improved efficiency • Low Qrr for better THD and lower EMI • Low package stray inductance for reduced ringing and lower EMI • Can deliver up to 250W per channel into 4Ω Load in Half-Bridge Configuration Amplifier • Dual sided cooling compatible · Compatible with existing surface mount technologies · RoHS compliant containing no lead or bromide ·Lead-Free (Qualified up to 260°C Reflow) Key Parameters 150 VDS RDS(on) typ. @ VGS = 10V Qg typ. RG(int) max. 47 25.0 3.0 V m: nC 5 & ) & 5 DirectFET ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details) SQ SX ST SH MQ MX MT MN MZ Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI. The IRF6775MPbF device utilizes DirectFETTM packaging technology. DirectFETTM packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFETTM package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFETTM package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 150 V VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 ID @ TC = 25°C ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 28 4.9 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 3.9 IDM Pulsed Drain Current 39 PD @TC = 25°C Maximum Power Dissipation 89 PD @TA = 25°C Power Dissipation 2.8 PD @TA = 70°C EAS Single Pulse Avalanche Energy IAR Avalanche Current c e Power Dissipation e c TJ TSTG Storage Temperature Range RθJA Junction-to-Ambient W 1.8 d 33 e Linear Derating Factor Operating Junction and A mJ 5.6 A 0.022 -40 to + 150 W/°C °C Thermal Resistance Parameter RθJC ek Junction-to-Ambient hk Junction-to-Ambient ik Junction-to-Case jk RθJ-PCB Junction-to-PCB Mounted RθJA RθJA Typ. Max. Units ––– 45 °C/W 12.5 ––– 20 ––– ––– 1.4 1.4 ––– Notes through are on page 2 1 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 150 ––– ––– V ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.17 ––– V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 5.6A RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current ––– IGSS RG(int) ––– 47 56 3.0 ––– 5.0 V ––– ––– 20 μA ––– 250 VGS = 0V, ID = 250μA f VDS = VGS, ID = 100μA VDS = 150V, VGS = 0V VDS = 120V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 nA Internal Gate Resistance ––– ––– 3.0 Ω VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units gfs Forward Transconductance Parameter 11 ––– ––– S Qg Conditions VDS = 50V, ID = 5.6A Total Gate Charge ––– 25 36 VDS = 75V Qgs1 Pre-Vth Gate-to-Source Charge ––– 5.8 ––– VGS = 10V Qgs2 Post-Vth Gate-to-Source Charge ––– 1.4 ––– Qgd Gate-to-Drain Charge ––– 6.6 ––– Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 11 ––– Qsw ––– 8.0 ––– td(on) Turn-On Delay Time ––– 5.9 ––– tr Rise Time ––– 7.8 ––– td(off) Turn-Off Delay Time ––– 5.8 ––– tf Fall Time ––– 15 ––– VGS = 10V ID = 5.6A nC See Fig. 6 and 17 VDD = 75V ID = 5.6A ns RG = 6.0Ω f Ciss Input Capacitance ––– 1411 ––– VGS = 0V Coss Output Capacitance ––– 193 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 40 ––– Coss Output Capacitance ––– 1557 ––– Coss Output Capacitance ––– 93 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 175 ––– VGS = 0V, VDS = 0V to 120V Min. Typ. Max. ––– ––– 28 ––– ––– 39 pF ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz g Diode Characteristics Parameter IS Continuous Source Current (Body Diode) Pulsed Source Current ISM c Conditions Units MOSFET symbol A D showing the integral reverse G p-n junction diode. (Body Diode) VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 5.6A, VGS = 0V trr Reverse Recovery Time ––– 62 ––– ns TJ = 25°C, IF = 5.6A, VDD = 25V Qrr Reverse Recovery Charge ––– 164 ––– nC di/dt = 100A/μs Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.53mH, RG = 25Ω, IAS = 11.2A. Surface mounted on 1 in. square Cu board. Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 2 www.irf.com © 2014 International Rectifier f f Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Submit Datasheet Feedback February 26, 2014 S IRF6775MTRPbF 100 100 BOTTOM VGS 15V 10V 9.0V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 9.0V 8.0V 7.0V 6.5V 6.0V 5.5V 10 5.5V BOTTOM 10 5.5V ≤ 60μs PULSE WIDTH Tj = 150°C ≤ 60μs PULSE WIDTH Tj = 25°C 1 1 0.1 1 10 0.1 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 100 Fig 1. Typical Output Characteristics VDS = 25V ≤ 60μs PULSE WIDTH 10 1 TJ = 150°C TJ = 25°C 0.1 TJ = -40°C 0.01 3.0 4.0 5.0 6.0 7.0 ID = 5.6A VGS = 10V 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 100000 40 60 80 100 120 140 160 20 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 1000 20 Fig 4. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) 10 VDS, Drain-to-Source Voltage (V) 100 Coss 100 Crss ID= 5.6A VDS= 120V VDS= 75V VDS= 30V 16 12 8 4 0 10 1 10 100 0 1000 Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com © 2014 International Rectifier 10 20 30 40 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 3 1 VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF 100 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 100 10 TJ = 150°C TJ = 25°C 1 TJ = -40°C OPERATION IN THIS AREA LIMITED BY R DS(on) 100μsec 10 1msec DC 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 0.1 1.5 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 30 VGS(th) Gate threshold Voltage (V) 5.0 25 ID , Drain Current (A) 10msec 20 15 10 5 0 ID = 100μA 4.5 ID = 250μA 4.0 3.5 3.0 2.5 2.0 25 50 75 100 125 150 -75 -50 -25 TC , CaseTemperature (°C) 0 25 50 75 100 125 TJ , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τA τ2 τ1 τ2 τ3 τ3 τ4 τA τ4 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 τi (sec) 1.2801 0.000322 8.7256 0.164798 21.750 2.25760 13.251 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 150 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 140 ID = 5.6A 120 100 TJ = 125°C 80 60 TJ = 25°C 40 4 6 8 10 12 14 100 RDS (on) , Drain-to-Source On Resistance (mΩ) ( Ω) RDS (on), Drain-to -Source On Resistance m IRF6775MTRPbF VGS = 10V 90 TJ = 125°C 80 70 60 TJ = 25°C 50 40 16 0 5 VGS, Gate-to-Source Voltage (V) D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp Fig 15a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) DRIVER L VDS 15 20 Fig 13. On-Resistance vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage 15V 10 ID , Drain Current (A) 140 I D 1.1A 1.4A BOTTOM 11A 120 TOP 100 80 60 40 20 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current I AS Fig 15b. Unclamped Inductive Waveforms VDS VGS RD VDS 90% D.U.T. RG + - VDD 10% 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 16a. Switching Time Test Circuit 5 www.irf.com © 2014 International Rectifier VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 17b. Gate Charge Waveform Fig 17a. Gate Charge Test Circuit Driver Gate Drive D.U.T P.W. + + - RG * • • • • ** P.W. Period D.U.T. ISD Waveform + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test D= *** Reverse Recovery Current VDD Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Qgs2 Qgs1 Qgd + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs 6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF DirectFET™ Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 7 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P DirectFET Part Marking MIN 6.25 4.80 3.85 0.35 0.68 0.68 0.93 0.63 0.28 1.13 2.53 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 0.97 0.67 0.32 1.26 2.66 0.676 0.080 0.17 IMPERIAL MAX 0.246 0.189 0.152 0.014 0.027 0.027 0.037 0.025 0.011 0.044 0.100 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.038 0.026 0.013 0.050 0.105 0.0274 0.0031 0.007 GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6775TRPBF). For 1000 parts on 7" reel, order IRF6775TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX CODE MIN MIN MIN MIN MAX MAX MAX 6.9 12.992 N.C A 330.0 177.77 N.C N.C N.C 0.75 0.795 N.C B 20.2 19.06 N.C N.C N.C 0.50 C 0.53 0.504 12.8 13.5 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.47 0.488 N.C 12.4 11.9 0.567 12.01 14.4 H 0.47 0.469 N.C 11.9 11.9 0.606 12.01 15.4 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 11.90 12.30 0.484 0.215 5.45 0.219 5.55 0.201 5.10 5.30 0.209 0.256 6.50 6.70 0.264 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014 IRF6775MTRPbF Revision History Date 2/26/2014 Comments • Updated SOA curve figure 8 to extend x axis to 150V because this device is 150V, on page 4. • Updated datasheet with new IR corporate template. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback February 26, 2014