AD ADR01AR Ultracompact precision10 v/5 v/2.5 v/3.0 v voltage reference Datasheet

Ultracompact Precision
10 V/5 V/2.5 V/3.0 V Voltage References
ADR01/ADR02/ADR03/ADR06
PIN CONFIGURATIONS
APPLICATIONS
Precision data acquisition systems
High resolution converters
Industrial process control systems
Precision instruments
PCMCIA cards
SELECTION GUIDE
Part Number
ADR01
ADR02
ADR03
ADR06
Output Voltage
10.0 V
5.0 V
2.5 V
3.0 V
TEMP 1
GND 2
VIN 3
ADR01/
ADR02/
ADR03/
ADR06
5
TRIM
TOP VIEW
4 VOUT
(Not to Scale)
02747-F-001
Ultracompact SC70-5/TSOT-5
Low temperature coefficient
SOIC-8: 3 ppm/°C
SC70-5/TSOT-5: 9 ppm/°C
Initial accuracy ± 0.1%
No external capacitor required
Low noise 10 µV p-p (0.1 Hz to 10 Hz)
Wide operating range
ADR01: 12 V to 40 V
ADR02: 7 V to 40 V
ADR03: 4.5 V to 40 V
ADR06: 5.0 V to 40 V
High output current 10 mA
Wide temperature range: –40°C to +125°C
ADR01/ADR02/ADR03 pin compatible to industry-standard
REF01/REF02/REF031
Figure 1. 5-Lead SC70/TSOT Surface-Mount Packages
TP 1
VIN 2
TEMP 3
GND 4
ADR01/
ADR02/
ADR03/
ADR06
8 TP
7 NIC
6 VOUT
TOP VIEW 5 TRIM
(Not to Scale)
NIC = NO INTERNAL CONNECT
TP = TEST PIN (DO NOT CONNECT)
02747-F-002
FEATURES
Figure 2. 8-Lead SOIC Surface-Mount Package
GENERAL DESCRIPTION
The ADR01, ADR02, ADR03, and ADR06 are precision 10 V,
5 V, 2.5 V, and 3.0 V band gap voltage references featuring high
accuracy, high stability, and low power. The parts are housed in
tiny SC70-5 and TSOT-5 packages, as well as the SOIC-8
versions. The SOIC-8 versions of the ADR01, ADR02, and
ADR03 are drop-in replacements1 to the industry-standard
REF01, REF02, and REF03. The small footprint and wide
operating range make the ADR0x references ideally suited for
general-purpose and space-constraint applications.
With an external buffer and a simple resistor network, the
TEMP terminal can be used for temperature sensing and
approximation. A TRIM terminal is provided on the devices
for fine adjustment of the output voltage.
The ADR01, ADR02, ADR03, and ADR06 are compact, low drift
voltage references that provide an extremely stable output
voltage from a wide supply voltage range. They are available in
SC70-5, TSOT-5, and SOIC-8 packages with A and B grade
selections. All parts are specified over the extended industrial
(–40°C to +125°C) temperature range.
1
ADR01, ADR02, and ADR03 are component-level compatible with REF01,
REF02, and REF03, respectively. No guarantees for system-level compatibility
are implied. SOIC-8 versions of ADR01/ADR02/ADR03 are pin-to-pin
compatible with SOIC-8 versions of REF01/REF02/REF03, respectively, with
the additional temperature monitoring function.
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
www.analog.com
Tel: 781.329.4700
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
ADR01/ADR02/ADR03/ADR06
TABLE OF CONTENTS
Specifications..................................................................................... 3
Applying the ADR01/ADR02/ADR03/ADR06...................... 15
ADR01 Electrical Characteristics............................................... 3
Negative Reference..................................................................... 16
ADR02 Electrical Characteristics............................................... 4
Low Cost Current Source.......................................................... 16
ADR03 Electrical Characteristics............................................... 5
Precision Current Source with Adjustable Output ................ 16
ADR06 Electrical Characteristics............................................... 6
Programmable 4 to 20 mA Current Transmitter ................... 17
Dice Electrical Characteristics.................................................... 7
Outline Dimensions ....................................................................... 18
Absolute Maximum Ratings............................................................ 8
Ordering Guides ............................................................................. 19
Parameter Definitions ...................................................................... 9
ADR01 Ordering Guide ............................................................ 19
Notes............................................................................................... 9
ADR02 Ordering Guide ............................................................ 19
Typical Performance Characteristics ........................................... 10
ADR03 Ordering Guide ............................................................ 20
Applications..................................................................................... 15
ADR06 Ordering Guide ............................................................ 20
REVISION HISTORY
7/04—Data Sheet Changed from Rev. E to Rev. F
Changes to ADR02 Electrical Characteristics, Table 2................ 4
Changes to Ordering Guide .......................................................... 19
2/04—Data Sheet Changed from Rev. D to Rev. E
Added C grade ................................................................Universal
Changes to Outline Dimensions............................................... 19
Updated Ordering Guide........................................................... 20
8/03—Data Sheet Changed from Rev. C to Rev D
Added ADR06 Universal
Change to Figure 27 13
2/03—Data Sheet Changed from Rev. A to Rev. B
Added ADR03.....................................................................Universal
Added TSOT-5 (UJ) Package............................................Universal
Updated Outline Dimensions....................................................... 18
12/02—Data Sheet Changed from Rev. 0 to Rev. A
Changes to Features Section ........................................................1
Changes to General Description .................................................1
Table I deleted................................................................................1
Changes to ADR01 Specifications ..............................................2
Changes to ADR02 Specifications ..............................................3
Changes to Absolute Maximum Ratings Section .....................4
Changes to Ordering Guide.........................................................4
Updated Outline Dimensions .................................................. 12
6/03—Data Sheet Changed from Rev. B to Rev C
Changes to Features Section 1
Changes to General Description Section 1
Changes to Figure 2 1
Changes to Specifications Section 2
Addition of Dice Electrical Characteristics and Layout 6
Changes to Absolute Maximum Ratings Section 7
Updated SOIC (R-8) Outline Dimensions 19
Changes to Ordering Guide 20
Rev. F | Page 2 of 20
ADR01/ADR02/ADR03/ADR06
SPECIFICATIONS
ADR01 ELECTRICAL CHARACTERISTICS
VIN = 12 V to 40 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
Output Voltage
Initial Accuracy
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
9.990
Typ
10.000
Output Voltage
Initial Accuracy
VO
VOERR
B grade
B grade
9.995
10.000
Temperature Coefficient
TCVO
A grade, SOIC-8, –40°C < TA < +125°C
A grade, TSOT-5, –40°C < TA < +125°C
A grade, SC70-5, –40°C < TA < +125°C
B grade, SOIC-8, –40°C < TA < +125°C
B grade, TSOT-5, –40°C < TA < +125°C
B grade, SC70-5, –40°C < TA < +125°C
C grade, SOIC-8, –40°C < TA < +125°C
Supply Voltage Headroom
Line Regulation
Load Regulation
Quiescent Current
Voltage Noise
Voltage Noise Density
Turn-On Settling Time
Long-Term Stability1
Output Voltage Hysteresis
Ripple Rejection Ratio
Short Circuit to GND
Voltage Output at TEMP Pin
Temperature Sensitivity
1
VIN – VO
∆VO/∆VIN
∆VO/∆ILOAD
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RRR
ISC
VTEMP
TCVTEMP
3
1
10
Max
10.010
10
0.1
10.005
5
0.05
10
25
25
3
9
9
40
2
VIN = 12 V to 40 V, –40°C < TA < +125°C
ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN = 15 V
No load, –40°C < TA < +125°C
0.1 Hz to 10 Hz
1 kHz
1,000 hours
fIN = 10 kHz
7
40
0.65
20
510
4
50
70
−75
30
550
1.96
30
70
1
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 3 of 20
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/mA
mA
µV p-p
nV/√Hz
µs
ppm
ppm
dB
mA
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
ADR02 ELECTRICAL CHARACTERISTICS
VIN = 7 V to 40 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
Output Voltage
Initial Accuracy
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
4.995
Typ
5.000
Output Voltage
Initial Accuracy
VO
VOERR
B grade
B grade
4.997
5.000
Temperature Coefficient
TCVO
A grade, SOIC-8, –40°C < TA < +125°C
A grade, TSOT-5, –40°C < TA < +125°C
A grade, SC70-5, –40°C < TA < +125°C
A grade. SC70-5, -55oC < TA < +125oC
3
B grade, SOIC-8, –40°C < TA < +125°C
B grade, TSOT-5, –40°C < TA < +125°C
B grade, SC70-5, –40°C < TA < +125°C
C grade, SOIC-8, –40°C < TA < +125°C
1
Supply Voltage Headroom
Line Regulation
VIN – VO
∆VO/∆VIN
Load Regulation
∆VO/∆ILOAD
Quiescent Current
Voltage Noise
Voltage Noise Density
Turn-On Settling Time
Long-Term Stability1
Output Voltage Hysteresis
Ripple Rejection Ratio
Short Circuit to GND
Voltage Output at TEMP Pin
Temperature Sensitivity
1
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RRR
ISC
VTEMP
TCVTEMP
10
Max
5.005
5
0.1
5.003
3
0.06
10
25
25
30
3
9
9
40
7
7
40
30
40
70
45
0.65
10
230
4
50
70
80
–75
30
550
1.96
80
1
2
VIN = 7 V to 40 V, –40°C < TA < +125°C
VIN = 7 V to 40 V, –55°C < TA < +125°C
ILOAD = 0 to 10 mA, –40°C < TA < +125°C,
VIN = 10 V
ILOAD = 0 to 10 mA, –55°C < TA < +125°C,
VIN = 10 V
No load, –40°C < TA < +125°C
0.1 Hz to 10 Hz
1 kHz
1,000 hours
–55°C < TA < +125°C
fIN = 10 kHz
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 4 of 20
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/V
ppm/mA
ppm/mA
mA
µV p-p
nV/√Hz
µs
ppm
ppm
ppm
dB
mA
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
ADR03 ELECTRICAL CHARACTERISTICS
VIN = 4.5 V to 40 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
Output Voltage
Initial Accuracy
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
2.495
Typ
2.500
Output Voltage
Initial Accuracy
VO
VOERR
B grades
B grades
2.4975
2.5000
Temperature Coefficient
TCVO
A grade, SOIC-8, –40°C < TA < +125°C
A grade, TSOT-5, –40°C < TA < +125°C
A grade, SC70-5, –40°C < TA < +125°C
A grade, SC70-5, –55°C < TA < +125°C
B grade, SOIC-8, –40°C < TA < +125°C
B grade, TSOT-5, –40°C < TA < +125°C
B grade, SC70-5, –40°C < TA < +125°C
C grade, SOIC-8, –40°C < TA < +125°C
Supply Voltage Headroom
Line Regulation
VIN – VO
∆VO/∆VIN
Load Regulation
∆VO/∆ILOAD
Quiescent Current
Voltage Noise
Voltage Noise Density
Turn-On Settling Time
Long-Term Stability1
Output Voltage Hysteresis
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
Ripple Rejection Ratio
Short Circuit to GND
Voltage Output at TEMP Pin
Temperature Sensitivity
RRR
ISC
VTEMP
TCVTEMP
1
10
Max
2.505
5
0.2
2.5025
2.5
0.1
10
25
25
30
3
9
9
40
7
7
25
30
40
70
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/V
ppm/mA
45
80
ppm/mA
0.65
6
230
4
50
70
80
–75
30
550
1.96
1
mA
µV p-p
nV/√Hz
µs
ppm
ppm
ppm
dB
mA
mV
mV/°C
3
1
2
VIN = 7.5 V to 40 V, –40°C < TA < +125°C
VIN = 7.5 V to 40 V, –55°C < TA < +125°C
ILOAD = 0 mA to 10 mA, –40°C < TA < +125°C,
VIN = 7.0 V
ILOAD = 0 mA to 10 mA, –55°C < TA < +125°C,
VIN = 7.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10 Hz
1 kHz
1,000 hours
–55°C < TA < +125°C
fIN = 10 kHz
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 5 of 20
ADR01/ADR02/ADR03/ADR06
ADR06 ELECTRICAL CHARACTERISTICS
VIN = 5.0 V to 40 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
Output Voltage
Initial Accuracy
Symbol
VO
VOERR
Conditions
A and C grades
A and C grades
Min
2.994
Typ
3.000
Output Voltage
Initial Accuracy
VO
VOERR
B grade
B grade
2.997
3.000
Temperature Coefficient
TCVO
A grade, SOIC-8, –40°C < TA < +125°C
A grade, TSOT-5, –40°C < TA < +125°C
A grade, SC70-5, –40°C < TA < +125°C
B grade, SOIC-8, –40°C < TA < +125°C
B grade, TSOT-5, –40°C < TA < +125°C
B grade, SC70-5, –40°C < TA < +125°C
C grade, SOIC-8, –40°C < TA < +125°C
Supply Voltage Headroom
Line Regulation
Load Regulation
VIN – VO
∆VO/∆VIN
∆VO/∆ILOAD
Quiescent Current
Voltage Noise
Voltage Noise Density
Turn-On Settling Time
Long-Term Stability1
Output Voltage Hysteresis
Ripple Rejection Ratio
Short Circuit to GND
Voltage Output AT TEMP Pin
Temperature Sensitivity
IIN
eN p-p
eN
tR
∆VO
∆VO_HYS
RRR
ISC
VTEMP
TCVTEMP
1
10
Max
3.006
6
0.2
3.003
3
0.1
10
25
25
3
9
9
40
7
40
30
70
0.65
10
510
4
50
70
–75
30
550
1.96
1
3
1
2
VIN = 15 V to 40 V, –40°C < TA < +125°C
ILOAD = 0 to 10 mA, –40°C < TA < +125°C, VIN =
7.0 V
No load, –40°C < TA < +125°C
0.1 Hz to 10 Hz
1 kHz
1,000 hours
fIN = 10 kHz
The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. F | Page 6 of 20
Unit
V
mV
%
V
mV
%
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
ppm/°C
V
ppm/V
ppm/mA
mA
µV p-p
nV/√Hz
µs
ppm
ppm
dB
mA
mV
mV/°C
ADR01/ADR02/ADR03/ADR06
DICE ELECTRICAL CHARACTERISTICS
VIN = up to 40 V, TA = 25°C, unless otherwise noted.
Table 5.
Symbol
Conditions
Min
Typ
Max
Unit
VO
VO
TCVO
25°C
25°C
–40°C < TA < +125°C
9.995
4.997
10.004
5.002
10
10.005
5.003
V
V
ppm/°C
∆VO/∆VIN
∆VO/∆VIN
∆VO/∆ILOAD
IIN
eN p-p
VIN = 15 V to 40 V
VIN = 7 V to 40 V
ILOAD = 0 to 10 mA
No load
0.1 Hz to 10 Hz
7
7
40
0.65
25
TEMP
VIN
GND
TRIM
VOUT
(SENSE)
DIE SIZE: 0.83mm × 1.01mm
Figure 3. Die Layout
Rev. F | Page 7 of 20
VOUT
(FORCE)
02747-F-003
Parameter
Output Voltage
ADR01NBC
ADR02NBC
Temperature Coefficient
Line Regulation
ADR01NBC
ADR02NBC
Load Regulation
Quiescent Current
Voltage Noise
ppm/V
ppm/V
ppm/mA
mA
µV p-p
ADR01/ADR02/ADR03/ADR06
ABSOLUTE MAXIMUM RATINGS
Ratings at 25°C, unless otherwise noted.
Table 6.
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range: KS, UJ, and
R Packages
Lead Temperature Range (Soldering, 60 Sec)
Table 7. Thermal Resistance
Rating
40 V
Indefinite
–65°C to +150°C
–40°C to +125°C
–65°C to +150°C
300°C
Package Type
SC70-5 (KS-5)
TSOT-5 (UJ-5)
SOIC-8 (R-8)
1
θJA1
376
230
130
θJC
189
146
43
Unit
°C/W
°C/W
°C/W
θJA is specified for the worst-case conditions, that is, θJA is specified for
devices soldered in circuit boards for surface-mount packages.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although these products feature
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. F | Page 8 of 20
ADR01/ADR02/ADR03/ADR06
PARAMETER DEFINITIONS
Temperature Coefficient
Thermal Hysteresis
The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This
parameter is expressed in ppm/°C and can be determined by the
following equation:
Defined as the change of output voltage after the device is
cycled through temperature from +25°C to –40°C to +125°C
and back to +25°C. This is a typical value from a sample of parts
put through such a cycle.
TCVO [ ppm / °C ] =
VO (T2 ) − VO (T1 )
× 10 6
VO ( 25°C ) × T2 − T1
VO _ HYS = VO ( 25°C ) − VO _ TC
VO _ HYS [ ppm ] =
where:
VO(25°C) = VO at 25°C
VO(T1) = VO at Temperature 1
VO(T2) = VO at Temperature 2
Line Regulation
The change in output voltage due to a specified change in input
voltage. This parameter accounts for the effects of self-heating.
Line regulation is expressed in either percent per volt, partsper-million per volt, or microvolts per volt change in input
voltage.
Load Regulation
The change in output voltage due to a specified change in load
current. This parameter accounts for the effects of self-heating.
Load regulation is expressed in either microvolts per milliampere,
parts-per-million per milliampere, or ohms of dc output
resistance.
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts
subjected to a test of 1,000 hours at 25°C:
∆VO = VO (t0 ) − VO (t1 )
∆VO [ ppm] =
VO (t0 ) − VO (t1 )
× 10 6
VO (t0 )
where:
VO(t0) = VO at 25°C at Time 0
VO(t1) = VO at 25°C after 100 hours of operation at 25°C
VO ( 25°C ) − VO _ TC
VO ( 25°C )
× 10 6
where:
VO(25°C) = VO at 25°C
VO_TC = VO at 25°C after temperature cycle at +25°C to –40°C to
+125°C and back to +25°C
NOTES
Input Capacitor
Input capacitors are not required on the ADR01/ADR02/
ADR03/ADR06. There is no limit for the value of the capacitor
used on the input, but a 1 µF to 10 µF capacitor on the input
improves transient response in applications where the supply
suddenly changes. An additional 0.1 µF in parallel also helps to
reduce noise from the supply.
Output Capacitor
The ADR01/ADR02/ADR03/ADR06 do not require output
capacitors for stability under any load condition. An output
capacitor, typically 0.1 µF, filters out any low level noise voltage
and does not affect the operation of the part. On the other hand,
the load transient response can be improved with an additional
1 µF to 10 µF output capacitor in parallel. A capacitor here acts
as a source of stored energy for a sudden increase in load
current. The only parameter that degrades by adding an output
capacitor is the turn-on time, and it depends on the size of the
capacitor chosen.
The majority of the shift is seen in the first 200 hours, and,
as time goes by, the drift decreases significantly. So for the
subsequent 1,000 hours’ time points, this drift is much smaller
than the first.
Rev. F | Page 9 of 20
ADR01/ADR02/ADR03/ADR06
TYPICAL PERFORMANCE CHARACTERISTICS
10.010
3.002
10.005
10.000
VOUT (V)
VOUT (V)
3.001
9.995
3.000
2.999
–10
5
20
35
50
65
80
95
110
125
o
TEMPERATURE ( C)
2.998
–40
5.004
0.7
SUPPLY CURRENT (mA)
5.000
20
35
50
65
80
95
110
125
TEMPERATURE (oC)
50
65
80
95
110
125
o
+125 C
0.6
+25oC
–40oC
0.5
12
16
20
24
28
32
INPUT VOLTAGE (V)
36
40
Figure 8. ADR01 Supply Current vs. Input Voltage
Figure 5. ADR02 Typical Output Voltage vs. Temperature
0.8
2.501
0.7
INPUT CURRENT (mA)
2.502
2.500
+125oC
+25oC
0.6
o
–40 C
0.5
2.499
2.498
–40
–25
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (oC)
02747-F-006
VOUT (V)
35
0.4
02747-F-005
4.996
5
20
Figure 6. ADR03 Typical Output Voltage vs. Temperature
0.4
8
12
16
20
24
28
32
36
INPUT VOLTAGE (V)
Figure 9. ADR02 Supply Current vs. Input Voltage
Rev. F | Page 10 of 20
40
02747-F-009
VOUT (V)
0.8
–10
5
Figure 7. ADR06 Typical Output Voltage vs. Temperature
5.008
–25
–10
TEMPERATURE (oC)
Figure 4. ADR01 Typical Output Voltage vs. Temperature
4.992
–40
–25
02747-F-008
–25
02747-F-004
9.985
–40
02747-F-007
9.990
ADR01/ADR02/ADR03/ADR06
50
0.85
IL = 0mA TO 5mA
0.80
LOAD REGULATION (ppm/mA)
40
SUPPLY CURRENT (mA)
0.75
0.70
o
+125 C
0.65
o
+25 C
0.60
0.55
–40oC
0.50
30
VIN = 40V
20
10
0
VIN = 8V
–10
5
10
20
15
30
25
40
35
INPUT VOLTAGE (V)
–20
02747-F-010
0.40
–40
0
85
25
125
TEMPERATURE (oC)
02747-F-013
0.45
Figure 13. ADR02 Load Regulation vs. Temperature
Figure 10. ADR03 Supply Current vs. Input Voltage
0.80
60
IL = 0mA TO 10mA
0.75
LOAD REGULATION (ppm/mA)
0.70
o
+125 C
0.65
+25oC
0.60
o
–40 C
0.55
0.50
VIN = 7V
40
VIN = 40V
30
20
5
10
15
20
30
25
35
40
INPUT VOLTAGE (V)
0
–40 –25
02747-F-011
0.40
–10
5
20
35
95
110
125
Figure 14. ADR03 Load Regulation vs. Temperature
40
40
IL = 0mA TO 10mA
IL = 0mA TO 10mA
30
30
LOAD REGULATION (ppm/mA)
VIN = 40V
20
10
0
VIN = 14V
–10
–20
VIN = 40V
20
10
0
VIN = 7V
–10
–20
–30
0
25
50
85
o
TEMPERATURE ( C)
125
02747-F-012
LOAD REGULATION (ppm/mA)
80
o
Figure 11. ADR06 Supply Current vs. Input Voltage
–40
–40
65
50
TEMPERATURE ( C)
02747-F-014
10
0.45
–30
–40 –25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (oC)
Figure 15. ADR06 Load Regulation vs. Temperature
Figure 12. ADR01 Load Regulation vs. Temperature
Rev. F | Page 11 of 20
125
02747-F-015
SUPPLY CURRENT (mA)
50
ADR01/ADR02/ADR03/ADR06
2
10
VIN = 14V TO 40V
VIN = 6V TO 40V
8
LINE REGULATION (ppm/V)
–2
–4
–6
–8
4
2
0
–2
–25
–10
5
20
35
50
65
80
95
110
125
o
TEMPERATURE ( C)
–4
–40
02747-F-016
–10
–40
6
–25
–10
5
35
20
50
65
80
95
110
125
TEMPERATURE (oC)
Figure 16. ADR01 Line Regulation vs. Temperature
02747-F-019
LINE REGULATION (ppm/V)
0
Figure 19. ADR06 Line Regulation vs. Temperature
8
5
0
–4
–8
–40 –25
–10
5
20
35
50
65
80
95
110
125
o
TEMPERATURE ( C)
4
3
+125oC
2
o
–40 C
o
1
+25 C
0
0
2
4
6
8
10
LOAD CURRENT (mA)
Figure 17. ADR02 Line Regulation vs. Temperature
02747-F-020
DIFFERENTIAL VOLTAGE ( V)
4
02747-F-017
LINE REGULATION (ppm/V)
VIN = 8V TO 40V
Figure 20. ADR01 Minimum Input-Output
Voltage Differential vs. Load Current
8
4
DIFFERENTIAL VOLTAGE (V)
2
0
–2
4
+125oC
–40oC
2
o
–4
–40
–25
–10
5
20
35
50
65
80
95
110
o
TEMPERATURE ( C)
125
0
0
2
4
6
8
LOAD CURRENT (mA)
Figure 21. ADR02 Minimum Input-Output
Voltage Differential vs. Load Current
Figure 18. ADR03 Line Regulation vs. Temperature
Rev. F | Page 12 of 20
10
02747-F-021
+25 C
02747-F-018
LINE REGULATION (ppm/mV)
VIN = 5V TO 40V
ADR01/ADR02/ADR03/ADR06
6
4
1µV/DIV
DIFFERENTIAL VOLTAGE ( V)
5
+125oC
3
+25oC
2
o
–40 C
0
2
4
6
8
10
LOAD CURRENT (mA)
02747-F-025
0
02747-F-022
1
TIME (1s/DIV)
Figure 25. ADR02 Typical Noise Voltage 0.1 Hz to 10 Hz
Figure 22. ADR03 Minimum Input-Output
Voltage Differential vs. Load Current
4.5
3.5
+25oC
+125oC
3.0
2.5
50µV/DIV
DIFFERENTIAL VOLTAGE ( V)
4.0
–40oC
2.0
1.5
1.0
0
2
4
6
8
10
LOAD CURRENT (mA)
TIME (1ms/DIV)
02747-F-023
0
02747-F-026
0.5
Figure 26. ADR02 Typical Noise Voltage 10 Hz to 10 KHz
Figure 23. ADR06 Minimum Input-Output
Voltage Differential vs. Load Current
0.70
o
TA = 25 C
10V
VOUT 5V/DIV
0.60
0.55
0.50
0
2
4
6
8
LOAD CURRENT (mA)
10
Figure 24. ADR01 Quiescent Current vs. Load Current
TIME (2.00ms/DIV)
Figure 27. ADR02 Line Transient Response
Rev. F | Page 13 of 20
02747-F-027
NO LOAD CAPACITOR
NO INPUT CAPACITOR
02747-F-024
QUIESCENT CURRENT (mA)
8V
0.65
ADR01/ADR02/ADR03/ADR06
CIN = 0.01µF
NO LOAD CAPACITOR
NO LOAD CAPACITOR
VIN 5V/DIV
LOAD OFF
VIN 10V/DIV
LOAD ON
VOUT 100mV/DIV
VOUT 5V/DIV
TIME (1.00ms/DIV)
02747-F-031
02747-F-028
LOAD = 5mA
TIME (4µs/DIV)
Figure 31. ADR02 Turn-On Response
Figure 28. ADR02 Load Transient Response
CLOAD = 100nF
VIN 5V/DIV
CL = 0.01µF
VIN 10V/DIV
NO INPUT CAPACITOR
LOAD OFF
LOAD ON
VOUT 100mV/DIV
VOUT 5V/DIV
02747-F-032
TIME (1.00ms/DIV)
02747-F-029
LOAD = 5mA
TIME (4µs/DIV)
Figure 32. ADR02 Turn-Off Response
Figure 29. ADR02 Load Transient Response
VIN 10V/DIV
VIN 10V/DIV
CL = 0.01µF
CIN = 0.01µF
NO INPUT CAPACITOR
NO LOAD CAPACITOR
VOUT 5V/DIV
Figure 30. ADR02 Turn-Off Response
TIME (4µs/DIV)
Figure 33. ADR02 Turn-On Response
Rev. F | Page 14 of 20
02747-F-033
02747-F-030
TIME (4µs/DIV)
VOUT 5V/DIV
ADR01/ADR02/ADR03/ADR06
APPLICATIONS
These devices are standard band gap references. The band gap
cell contains two NPN transistors (Q18 and Q19) that differ in
emitter area by 2×. The difference in their VBE produces a
proportional-to-absolute temperature current (PTAT) in R14,
and, when combined with the VBE of Q19, produces a band gap
voltage, VBG, that is almost constant in temperature. With an
internal op amp and the feedback network of R5 and R6, VO is set
precisely at 10 V, 5 V, 2.5 V, and 3.0 V for the ADR01, ADR02,
ADR06, and ADR03, respectively. Precision laser trimming of
the resistors and other proprietary circuit techniques are used to
further enhance the initial accuracy, temperature curvature, and
drift performance of the ADR01/ADR02/ADR03/ADR06.
VIN
R2
R3
R4
Q23
Q2
Q1
Q7
Q8
Q9
Q3
D1
Q10
D2
Q4
U1
ADR01/
ADR02/
ADR03/
ADR06
C1
0.1µF
R12
Q12
Q13
The ADR01/ADR02/ADR03/ADR06 trim terminal can be used
to adjust the output voltage over a nominal voltage. This feature
allows a system designer to trim system errors by setting the
reference to a voltage other than 10 V/5 V/2.5 V/3.0 V. For finer
adjustment, a series resistor of 470 kΩ can be added. With the
configuration shown in Figure 36, the ADR01 can be adjusted
from 9.70 V to 10.05 V, the ADR02 can be adjusted from 4.95 V
to 5.02 V, the ADR06 can be adjusted from 2.8 V to 3.3 V, and
the ADR03 can be adjusted from 2.3 V to 2.8 V. Adjustment of
the output does not significantly affect the temperature performance of the device, provided the temperature coefficients of
the resistors are relatively low.
U1
R5
I1
VIN
Q14 Q15
R27
TEMP
R14
VBG
1X
Q19
Q16
Q20
R41
VO
VOUT
TRIM
R1
470kΩ
pot
10kΩ
R2
1kΩ
R6
R24
R11
VIN
Q17
R32
R17
ADR01/
ADR02/
ADR03/
ADR06
TEMP TRIM
GND
R20
R42
GND
02747-F-034
2X
Q18
TEMP TRIM
GND
VO
C2
0.1µF
Figure 35. Basic Configuration
C1
R13
VOUT
Output Adjustment
VO
D3
VIN
VIN
02747-F-036
R1
to the input and output pins of the device. An optional 1 µF to
10 µF bypass capacitor can also be applied at the VIN node to
maintain the input under transient disturbance.
02747-F-035
The ADR01/ADR02/ADR03/ADR06 are high precision, low
drift 10 V, 5 V, 2.5 V, and 3.0 V voltage references available in an
ultracompact footprint. The SOIC-8 version of the devices is a
drop-in replacement of the REF01/REF02/ REF03 sockets with
improved cost and performance.
Figure 36. Optional Trim Adjustment
Temperature Monitoring
As described previously, the ADR01/ADR02/ADR03/ADR06
provide a TEMP output (Pin 3) that varies linearly with temperature. This output can be used to monitor the temperature
change in the system. The voltage at VTEMP is approximately
550 mV at 25°C, and the temperature coefficient is approximately
1.96 mV/°C (see Figure 37). A voltage change of 39.2 mV at the
TEMP pin corresponds to a 20°C change in temperature.
Figure 34. Simplified Schematic Diagram
The PTAT voltage is made available at the TEMP pin of the
ADR01/ADR02/ADR03/ADR06. It has a stable 1.96 mV/°C
temperature coefficient, such that users can estimate the
temperature change of the device by knowing the voltage
change at the TEMP pin.
APPLYING THE ADR01/ADR02/ADR03/ADR06
The devices can be used without any external components to
achieve the specified performance. Because of the internal op
amp amplifying the band gap cell to 10 V/5 V/2.5 V/3.0 V,
power supply decoupling helps the transient response of the
ADR01/ADR02/ADR03/ADR06. As a result, a 0.1 µF ceramic
type decoupling capacitor should be applied as close as possible
Rev. F | Page 15 of 20
ADR01/ADR02/ADR03/ADR06
LOW COST CURRENT SOURCE
0.80
Unlike most references, the ADR01/ADR02/ADR03/ADR06
employ an NPN Darlington in which the quiescent current
remains constant with respect to the load current, as shown in
Figure 24. As a result, a current source can be configured as
shown in Figure 40 where ISET = (VOUT – VL)/RSET. IL is simply
the sum of ISET and IQ. Although simple, IQ varies typically from
0.55 to 0.65 mA, limiting this circuit to general-purpose
applications.
0.70
0.60
∆VTEMP /∆T 1.96mV/ C
o
0.55
0.50
0.45
VIN
25
0
–25
50
75
100
125
o
TEMPERATURE ( C)
IIN
02747-F-037
0.40
–50
ADR01/
ADR02/
ADR03/
ADR06
Figure 37. Voltage at TEMP Pin vs. Temperature
The TEMP function is provided as a convenience rather than a
precise feature. Because the voltage at the TEMP node is
acquired from the band gap core, current pulling from this pin
has a significant effect on VOUT. Care must be taken to buffer the
TEMP output with a suitable low bias current op amp, such as
the AD8601, AD820, or OP1177, all of which would result in
less than a 100 µV change in ∆VOUT (see Figure 38). Without
buffering, even tens of microamps drawn from the TEMP pin
can cause VOUT to fall out of specification.
VIN
V+
VTEMP
1.9mV/ oC
OP1177
VOUT
VIN
GND
VL
IQ 0.6mA
RL
Figure 40. Low Cost Current Source
VO
TEMP TRIM
GND
02747-F-038
IL =
Figure 38. Temperature Monitoring
NEGATIVE REFERENCE
Without using any matching resistors, a negative reference can
be configured as shown in Figure 39. For the ADR01, the voltage difference between VOUT and GND is 10 V. Because VOUT is
at virtual ground, U2 closes the loop by forcing the GND pin to
be the negative reference node. U2 should be a precision op
amp with a low offset voltage characteristic.
(1)
U1
ADR01/
ADR02/
ADR03/
ADR06
+12V
VIN
VOUT
0V TO (5V + VL)
B
AD5201
TEMP TRIM
GND
ADR01/
ADR02/
ADR03/
ADR06
5V TO 15V
V REF × D
R SET
where D is the decimal equivalent of the digital potentiometer
input code.
U1
VIN
IL = ISET + IQ
A precision current source, on the other hand, can be
implemented with the circuit shown in Figure 41. By adding a
mechanical or digital potentiometer, this circuit becomes an
adjustable current source. If a digital potentiometer is used, the
load current is simply the voltage across terminals B to W of the
digital potentiometer divided by RSET.
V–
U2
ISET = 10V/RSET
RSET
PRECISION CURRENT SOURCE WITH
ADJUSTABLE OUTPUT
U1
ADR01/
ADR02/
ADR03/
ADR06
15V
VOUT
W
100kΩ
A
+12V
RSET
1kΩ
U2
VOUT
V+
TEMP TRIM
GND
OP1177
+15V
–5V TO VL
V–
U2
V+
–VREF
–12V
VL
RL
1kΩ
IL
OP1177
Figure 41. Programmable 0 to 5 mA Current Source
–15V
02747-F-039
V–
Figure 39. Negative Reference
Rev. F | Page 16 of 20
02747-F-041
VTEMP (V)
0.65
02747-F-040
0.75
VIN = 15V
SAMPLE SIZE = 5
ADR01/ADR02/ADR03/ADR06
To optimize the resolution of this circuit, dual-supply op amps
should be used because the ground potential of ADR02 can
swing from –5 V at zero scale to VL at full scale of the potentiometer setting.
latter is true, oscillation may occur. For this reason, a capacitor, C1,
in the range of 1 pF to 10 pF should be connected between VP
and the output terminal of U4, to filter any oscillation.
ZO =
PROGRAMMABLE 4 TO 20 mA CURRENT
TRANSMITTER
Because of their precision, adequate current handling, and small
footprint, the devices are suitable as the reference sources for
many high performance converter circuits. One of these
applications is the multichannel 16-bit 4 to 20 mA current
transmitter in the industrial control market (see Figure 42). This
circuit employs a Howland current pump at the output, which
yields better efficiency, a lower component count, and a higher
voltage compliance than the conventional design with op amps
and MOSFETs. In this circuit, if the resistors are matched such
that R1 = R1′, R2 = R2′, R3 = R3′, the load current is
Vt
R1′
=
I t ⎛ R1′ R2 ⎞
− 1⎟
⎜
⎝ R1R2′ ⎠
(3)
In this circuit, an ADR01 provides the stable 10.000 V reference
for the AD5544 quad 16-bit DAC. The resolution of the adjustable current is 0.3 µA/step, and the total worst-case INL error is
merely 4 LSB. Such error is equivalent to 1.2 µA or a 0.006%
system error, which is well below most systems’ requirements.
The result is shown in Figure 43 with measurement taken at 25°C
and 70°C; total system error of 4 LSB at both 25°C and 70°C.
5
RL = 500Ω
IL = 0mA TO 20mA
4
(R2 + R3) R1 VREF × D
IL =
×
2N
R3′
(2)
INL (LSB)
3
where D is similarly the decimal equivalent of the DAC input
code and N is the number of bits of the DAC.
2
25oC
o
70 C
1
According to Equation 2, R3′ can be used to set the sensitivity.
R3′ can be made as small as necessary to achieve the current
needed within U4 output current driving capability. On the
other hand, other resistors can be kept high to conserve power.
0
0
8192
16384
24576 32768 40960
02747-F-043
–1
49152 57344 65536
0V TO –10V
U1
15V
VIN
VOUT
TEMP TRIM
U2
VDD
RF
+15V
IO
10V V
REF AD5544
IO
GND
U3
CODE (Decimal)
R2
15kΩ
R1
150kΩ
VX
VP
C1
–15V
Figure 43. Result of Programmable 4 to 20 mA Current Transmitter
R3
50Ω
GND
10pF
AD8512
U4
R2'
15kΩ
U1 = ADR01/ADR02/ADR03/ADR06, REF01
U2 = AD5543/AD5544/AD5554
U3, U4 = AD8512
R1'
150kΩ
VO
R3'
50Ω
VL
VN
LOAD
500Ω
4–20mA
02747-F-042
DIGITAL INPUT
CODE 20%–100% FULL SCALE
Precision Boosted Output Regulator
A precision voltage output with boosted current capability can
be realized with the circuit shown in Figure 44. In this circuit,
U2 forces VO to be equal to VREF by regulating the turn-on of
N1, thereby making the load current furnished by VIN. In this
configuration, a 50 mA load is achievable at VIN of 15 V. Moderate
heat is generated on the MOSFET, and higher current can be
achieved with a replacement of a larger device. In addition, for a
heavy capacitive load with a fast edging input signal, a buffer
should be added at the output to enhance the transient response.
N1
Figure 42. Programmable 4 to 20 mA Transmitter
VIN
In this circuit, the AD8512 is capable of delivering 20 mA of
current, and the voltage compliance approaches 15 V.
The Howland current pump yields a potentially infinite output
impedance, which is highly desirable, but resistance matching is
critical in this application. The output impedance can be determined using Equation 3. As can be seen by this equation, if the
resistors are perfectly matched, ZO is infinite. On the other hand,
if they are not matched, ZO is either positive or negative. If the
Rev. F | Page 17 of 20
U1
ADR01/
ADR02/
ADR03/
ADR06
VIN
VOUT
TEMP TRIM
GND
2N7002
RL
200Ω
CL
1µF
VO
15V
V+
OP1177
V–
U2
Figure 44. Precision Boosted Output Regulator
02747-F-044
5V
ADR01/ADR02/ADR03/ADR06
OUTLINE DIMENSIONS
2.00 BSC
4
1.25 BSC
2.10 BSC
PIN 1
0.65 BSC
1.00
0.90
0.70
1.10 MAX
0.22
0.08
0.30
0.15
0.10 MAX
0.46
0.36
0.26
SEATING
PLANE
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203AA
Figure 45. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
PIN 1
0.95 BSC
1.90
BSC
0.90
0.87
0.84
1.00 MAX
0.10 MAX
0.50
0.30
SEATING
PLANE
8°
4°
0.20
0.08
0.60
0.45
0.30
COMPLIANT TO JEDEC STANDARDS MO-193AB
Figure 46. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
8
5
4.00 (0.1574)
3.80 (0.1497) 1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
COPLANARITY
0.31 (0.0122)
SEATING
0.10
PLANE
0.50 (0.0196)
× 45°
0.25 (0.0099)
8°
0.25 (0.0098) 0° 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Figure 47. 8-Lead Standard Small Outline Package [SOIC]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
Rev. F | Page 18 of 20
ADR01/ADR02/ADR03/ADR06
ORDERING GUIDES
ADR01 ORDERING GUIDE
Model
ADR01AR
ADR01AR-REEL7
ADR01BR
ADR01BR-REEL7
ADR01AUJ-REEL7
ADR01AUJ-R2
ADR01BUJ-REEL7
ADR01BUJ-R2
ADR01AKS-REEL7
ADR01AKS-R2
ADR01BKS-REEL7
ADR01BKS-R2
ADR01CRZ2
ADR01CRZ-REEL2
ARR01NBC
1
2
Output
Voltage
VO (V)
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Initial
Accuracy
(mV) (%)
10
0.1
10
0.1
5
0.05
5
0.05
10
0.1
10
0.1
5
0.05
5
0.05
10
0.1
10
0.1
5
0.05
5
0.05
10
0.1
10
0.1
5
0.05
Temperature
Coefficient
(ppm/°C)
10
10
3
3
25
25
9
9
25
25
9
9
40
40
10 (Typ)
Package
Description
SOIC-8
SOIC-8
SOIC-8
SOIC-8
TSOT-23-5
TSOT-23-5
TSOT-23-5
TSOT-23-5
SC70
SC70
SC70
SC70
SOIC-8
SOIC-8
Dice
Package
Option
R-8
R-8
R-8
R-8
UJ-5
UJ-5
UJ-5
UJ-5
KS-5
KS-5
KS-5
KS-5
R-8
R-8
Top
Mark1
ADR01
ADR01
ADR01
ADR01
R8A
R8A
R8B
R8B
R8A
R8A
R8B
R8B
ADR01
ADR01
Number of
Parts per
Reel/Tray
98
1,000
98
1,000
3,000
250
3,000
250
3,000
250
3,000
250
98
2,500
360
Temperature
Range (°C)
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
First line shows part number ADR01; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.
Z = Pb-free part.
ADR02 ORDERING GUIDE
Model
ADR02AR
ADR02AR-REEL
ADR02AR-REEL7
ADR02ARZ2
ADR02ARZ-REEL2
ADR02BR
ADR02BR-REEL7
ADR02AUJ-REEL7
ADR02AUJ-R2
ADR02BUJ-REEL7
ADR02BUJ-R2
ADR02AKS-REEL7
ADR02AKS-R2
ADR02BKS-REEL7
ADR02BKS-R2
ADR02CRZ2
ADR02CRZ-REEL2
ARR02NBC
1
2
Output
Voltage
VO (V)
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5.0
5.0
5
Initial
Accuracy
(mV) (%)
5
0.1
5
0.1
5
0.1
5
0.1
5
0.1
3
0.06
3
0.06
5
0.1
5
0.1
3
0.06
3
0.06
5
0.1
5
0.1
3
0.06
3
0.06
5
0.1
5
0.1
3
0.06
Temperature
Coefficient
(ppm/°C)
10
10
10
10
10
3
3
25
25
9
9
25
25
9
9
40
40
10 (Typ)
Package
Description
SOIC-8
SOIC-8
SOIC-8
SOIC-8
SOIC-8
SOIC-8
SOIC-8
TSOT-23-5
TSOT-23-5
TSOT-23-5
TSOT-23-5
SC70
SC70
SC70
SC70
SOIC-8
SOIC-8
Dice
Package
Option
R-8
R-8
R-8
R-8
R-8
R-8
R-8
UJ-5
UJ-5
UJ-5
UJ-5
KS-5
KS-5
KS-5
KS-5
R-8
R-8
Top
Mark1
ADR02
ADR02
ADR02
ADR02
ADR02
ADR02
ADR02
R9A
R9A
R9B
R9B
R9A
R9A
R9B
R9B
ADR02
ADR02
Number of
Parts per
Reel/Tray
98
1,000
1,000
98
2,500
98
1,000
3,000
250
3,000
250
3,000
250
3,000
250
98
2500
360
First line shows part number ADR02; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.
Z = Pb-free part.
Rev. F | Page 19 of 20
Temperature
Range (°C)
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
ADR01/ADR02/ADR03/ADR06
ADR03 ORDERING GUIDE
Model
ADR03AR
ADR03AR-REEL7
ADR03BR
ADR03BR-REEL7
ADR03AUJ-REEL7
ADR03AUJ-R2
ADR03BUJ-REEL7
ADR03BUJ-R2
ADR03AKS-REEL7
ADR03AKS-R2
ADR03BKS–REEL7
ADR03BKS–R2
ADR03BKSZ–REEL72
ADR03CRZ2
ADR03CRZ-REEL2
1
2
Output
Voltage
VO (V)
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
Initial
Accuracy
(mV) (%)
5
0.2
5
0.2
2.5
0.1
2.5
0.1
5
0.2
5
0.2
2.5
0.1
2.5
0.1
5
0.2
5
0.2
2.5
0.1
2.5
0.1
2.5
0.1
5
0.1
5
0.1
Temperature
Coefficient
(ppm/°C)
10
10
3
3
25
25
9
9
25
25
9
9
9
40
40
Package
Description
SOIC-8
SOIC-8
SOIC-8
SOIC-8
TSOT-23-5
TSOT-23-5
TSOT-23-5
TSOT-23-5
SC70
SC70
SC70
SC70
SC70
SOIC-8
SOIC-8
Package
Option
R-8
R-8
R-8
R-8
UJ-5
UJ-5
UJ-5
UJ-5
KS-5
KS–5
KS–5
KS–5
KS–5
R-8
R-8
Top
Mark1
ADR03
ADR03
ADR03
ADR03
RFA
RFA
RFB
RFB
RFA
RFA
RFB
RFB
RFB
ADR02
ADR02
Number of
Parts per
Reel/Tray
98
1,000
98
1,000
3,000
250
3,000
250
3,000
250
3,000
250
3,000
98
2500
Temperature
Range (°C)
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
First line shows part number ADR03; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.
Z = Pb-free part.
ADR06 ORDERING GUIDE
Model
ADR06AR
ADR06AR-REEL7
ADR06BR
ADR06BR-REEL7
ADR06AUJ-R2
ADR06AUJ-REEL7
ADR06BUJ–R2
ADR06BUJ-REEL7
ADR06AKS-R2
ADR06AKS-REEL7
ADR06BKS-R2
ADR06BKS–REEL7
ADR06CRZ2
ADR06CRZ-REEL2
1
2
Output
Voltage
VO (V)
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
Initial
Accuracy
(mV) (%)
6
0.2
3
0.2
6
01
3
0.1
6
0.2
6
0.2
3
0.1
3
0.1
6
0.2
6
0.2
3
0.1
3
0.1
6
0.2
6
0.2
Temperature
Coefficient
(ppm/°C)
10
10
3
3
25
25
9
9
25
25
9
9
40
40
Package
Description
SOIC-8
SOIC-8
SOIC-8
SOIC-8
TSOT-23-5
TSOT-23-5
TSOT-23-5
TSOT-23-5
SC70
SC70
SC70
SC70
SOIC-8
SOIC-8
Package
Option
R-8
R-8
R-8
R-8
UJ-5
UJ-5
UJ-5
UJ-5
KS-5
KS–5
KS-5
KS–5
R-8
R-8
Top
Mark1
ADR06
ADR06
ADR06
ADR06
RWA
RWA
RWB
RWB
RWA
RWA
RWB
RWB
ADR06
ADR06
Number of
Parts per
Reel/Tray
98
1,000
98
1,000
250
3,000
250
3,000
250
3,000
250
3,000
98
2500
First line shows part number ADR06; second line shows A or B for the grade, with the YYMM date code; third line shows the lot number.
Z = Pb-free part.
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
C02747–0–7/04(F)
Rev. F | Page 20 of 20
Temperature
Range (°C)
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
–40 to +125
Similar pages