Anpec APA2605QAI-TRG 2.8w stereo class-d audio power amplifier Datasheet

APA2605
2.8W Stereo Class-D Audio Power Amplifier
(with DC Volume Control, AGC Function)
Features
General Description
•
•
Operating Voltage: 3.3V-5.5V
High Efficiency 85% at PO=2.8W, 4Ω Speaker,
The APA2605 is a stereo, high efficiency, filter-free ClassD audio amplifier available in SOP-18, SSOP-24,
VDD=5V
Filter-Free Class-D Amplifier
SSOP-24P, and QFN4x4-20A packages.
The APA2605 provides the precise DC volume control,
Low Shutdown Current
– IDD=1µA at VDD=5V
the gain range is from -80dB (V VOLUME =0V) to +20dB
(VVOLUME=5V) with 64 steps precise control. It’s easy to get
64 Steps Volume Adjustable from -80dB to +20dB
by DC Voltage with Hysteresis
the suitable amplifier’s gain with the 64 steps gain setting.
The filter-free architecture eliminates the output filters
AGC (Non-Clip) Function
Output Power at THD+N=1%
compared to the traditional Class-D audio amplifier, and
reduces the external component counts and the compo-
– 2.3W at VDD=5V, RL=4Ω
– 1.3W at VDD=5V, RL=8Ω
nents high, it could save the PCB space, system cost,
simplifies the design and the power loss at filter.
Output Power at THD+N=10%
– 2.8W at VDD=5V, RL=4Ω
APA2605 provides an AGC (Non-Clip) function, and this
function can low down the dynamic range for large input
– 1.6W at VDD=5V, RL=8Ω
Less External Components Required
signal. APA2605 can provide from 20dB to -80dB with 64
steps gain decrease for non-clipping function, and this
Thermal and Over-Current Protections with AutoRecovery
function can avoid output signal clipping.
The APA2605 also integrates the de-pop circuitry that re-
Power Enhanced Packages SSOP-24, SOP-18,
SSOP-24P & QFN4x4-20A
duces the pops and click noise during power on/off or
shutdown enable process.
Lead Free and Green Devices Available
(RoHS Compliant)
The APA2605 has build-in over-current and thermal protection that prevent the chip being destroyed by short-
•
•
•
•
•
•
•
•
•
circuit or over-temperature situation.
APA2605 is capable of driving 2.8W at 5V into 4Ω speaker.
Applications
•
•
•
The efficiency can archive 85% at RL=4Ω when PO=2.8W
at VDD=5V.
LCD TVs
DVD Player
Simplified Application Circuit
Active Speakers
ROUTP
RINN
Stereo Input
Signals
ROUTN
LINN
Stereo
Speakers
APA2605
LOUTN
DC Volume
Control
Volume
LOUTP
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
1
www.anpec.com.tw
APA2605
Pin Configuration
LOUTP 1
GND 2
LOUTN 3
PVDD 4
MUTE 5
VDD 6
LINN 7
VDC 8
VOLUME 9
18
17
16
15
14
13
12
APA2605
LOUTP 1
GND 2
GND 3
LOUTN 4
PVDD 5
MUTE 6
VDD 7
LINN 8
NC 9
VDC10
VOLUME 11
NC 12
ROUTP
GND
ROUTN
PVDD
SD
GND
RINN
11 AGC
10 BYPASS
SOP-18
(Top View)
APA2605
24
23
22
21
20
19
18
17
16
15
14
13
ROUTP
GND
GND
ROUTN
PVDD
SD
GND
RINN
AGC
NC
BYPASS
NC
24
23
22
21
20
19
18
17
16
15
14
13
ROUTP
PGND
PGND
ROUTN
PVDD
SD
GND
RINN
AGC
NC
BYPASS
NC
16 GND
17 ROUTP
18 NC
19 LOUTP
20 GND
SSOP-24
(Top View)
LOUTN 1
PVDD 2
MUTE 3
VDD 4
LOUTP 1
PGND 2
PGND 3
LOUTN 4
PVDD 5
MUTE 6
VDD 7
LINN 8
NC 9
VDC10
VOLUME 11
NC 12
15 ROUTN
APA2605
QFN4X4-20A
Top View
14 PVDD
13 SD
12 GND
AGC 10
BYPASS 9
NC 8
VDC 6
11 RINN
VOLUME 7
LINN 5
=Thermal Pad (connected the Thermal Pad to
GND plane for better dissipation
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
APA2605
Top View
SSOP-24P
2
www.anpec.com.tw
APA2605
Ordering and Marking Information
Package Code
N : SSOP-24 NA : SSOP-24P K : SOP-18
QA : QFN4x4-20A
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA2605
Assembly Material
Handling Code
Temperature Range
Package Code
APA2605 N:
APA2605
XXXXX
XXXXX - Date Code
APA2605 NA:
APA2605
XXXXX
XXXXX - Date Code
APA2605 K:
APA2605
XXXXX
XXXXX - Date Code
APA2605 QA:
APA2605
XXXXX
XXXXX - Date Code
Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
3
www.anpec.com.tw
APA2605
Absolute Maximum Ratings (Note 1)
Parameter
Symbol
VDD
TJ
Rating
Supply Voltage (VDD, PVDD, VDC to GND)
-0.3 to 6.5
Input Voltage (LINN, RINN to GND)
-0.3 to VDD+0.3
Input Voltage (SD, MUTE, AGC, VDC, VOLUME and BYPASS to GND)
-0.3 to VDD+0.3
Maximum Junction Temperature
V
150
TSTG
Storage Temperature Range
TSDR
Maximum Soldering Temperature Range, 10 Seconds
PD
Unit
ο
-65 to +150
C
260
Power Dissipation
Internally Limited
W
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
Thermal Characteristics
Symbol
Parameter
Thermal Resistance -Junction to Ambient
Typical Value
Unit
(Note 2)
θJA
QFN4x4-20A
SSOP-24
SOP-18
SSOP-24P
45
96
70
45
QFN4x4-20A
SSOP-24
SOP-18
SSOP-24P
7
18
16
11
ο
C/W
Thermal Resistance -Junction to Case (Note 3)
θJC
ο
C/W
Note 2: Please refer to “ Layout Recommendation”, the GND PIN on the central of the IC should connect to the ground plan, and the PCB
is a 2-layer, 5-inch square area with 2oz copper thickness.
Note 3: The case temperature is measured at the center of the GND PIN on the underside of the SSOP-24, SOP-18 and QFN 4x4-20A
packages.
Recommended Operating Conditions
Symbol
VDD
Parameter
Range
Supply Voltage
Unit
3.3 ~ 5.5
VIH
High Level Threshold Voltage
SD, MUTE
2 ~ VDD
VIL
Low Level Threshold Voltage
SD, MUTE
0 ~ 0.8
VICM
Common Mode Input Voltage
TA
Ambient Temperature Range
-40 ~ 85
TJ
Junction Temperature Range
-40 ~ 125
RL
Speaker Resistance
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
V
1 ~ VDD-1
3.5 ~
4
ο
C
Ω
www.anpec.com.tw
APA2605
Electrical Characteristics
o
VDD=5V, VGND=0V, TA=25 C, Gain=20dB (unless otherwise noted)
Symbol
Parameter
APA2605
Test Conditions
Unit
Min.
Typ.
Max.
0.49x
VDD
0.5x
VDD
0.51x
VDD
V
mA
VDD=5V, VGND=0V, TA= 25οC, GAIN=20dB
VBYPASS
Bypass Pin Voltage
Supply Current
VMUTE=0V, VSD=5V, No Load
-
5
13
Shutdown Current
VMUTE=0V, VSD=0V, No Load
-
-
1
Input Current
SD, MUTE, VOLUME
-
-
1
FOSC
Oscillator Frequency
(VDD=3.3~5.5V, TA= -40~85οC)
400
500
600
kHz
Ri(min)
Minimum Input Resistance
Gain=20dB
36
43
50
kΩ
VDD=5.5V,
IL=0.8A
-
690
-
VDD=4.5V,
IL=0.6A
-
720
-
VDD=3.6V,
IL=0.4A
-
760
-
-
1.2
-
RL=4Ω
-
2.3
-
RL=8Ω
-
1.3
-
RL=4Ω
-
2.8
-
RL=8Ω
-
1.6
-
80
85
-
-
0.1
0.3
-
0.08
0.2
IDD
ISD
Ii
RDSON
TSTART-UP
Static Drain-Source On-State
Resistance
Start-Up Time from Shutdown
Power MOSFET
(P+N)
Bypass Capacitor, C1=2.2µF
µA
mΩ
s
VDD=5V, TA=25°
C, GAIN=6dB
THD+N=1%
fin=1kHz
PO
Output Power
THD+N=10%
fin=1kHz
η
THD+N
Crosstalk
PSRR
Efficiency
RL=4Ω, PO=2.8W
RL=4Ω,
PO=1.6W
RL=8Ω,
PO=0.8W
Total Harmonic Distortion Plus
Noise
fin=1kHz
Channel Separation
PO=0.2W, RL=4Ω, fin=1kHz
-
-100
-60
Power Supply Rejection Ratio
RL=4Ω,
Input
AC-Ground
fin=100Hz
-
-60
-50
fin=1kHz
-
-70
-60
-80
-85
-
W
%
dB
SNR
Signal to Noise Ratio
With A-Weighting Filter
VO=1Vrms, RL=8Ω
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, VIN=1Vrms
-
-100
-80
Shutdown Attenuation
fin=1kHz, RL=8Ω, VIN=1Vrms
With A-Weighting Filter (Gain =
20dB)
-
-120
-90
-
80
100
µVrms
RL=4Ω (Gain=20dB)
-
20
30
mV
RL=4Ω
1.0
1.1
-
RL=8Ω
0.6
0.65
-
RL=4Ω
-
1.4
-
RL=8Ω
-
0.85
-
78
83
-
Attshutdown
Vn
Output Noise
VOS
Output Offset Voltage
dB
VDD=3.6V, TA=25°
C, GAIN=6dB
PO
η
Output Power
Efficiency
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
THD+N=1
%
fin=1kHz
THD+N=10
%
fin=1kHz
RL=4Ω, PO=1.4W
5
W
%
www.anpec.com.tw
APA2605
Electrical Characteristics (Cont.)
o
VDD=5V, VGND=0V, TA=25 C, Gain=20dB (unless otherwise noted)
Symbol
Parameter
APA2605
Test Conditions
Unit
Min.
Typ.
Max.
RL=4Ω, PO=0.8W
-
0.2
0.4
RL=8Ω, PO=0.5W
-
0.1
0.3
-
-100
-60
VDD=3.6V, TA=25°
C, GAIN=6dB (CONT.)
THD+N
Crosstalk
PSRR
Total Harmonic Distortion Plus
Noise
fin=1kHz
Channel Separation
PO=0.1W, RL=4Ω, fin=1kHz
Power Supply Rejection Ratio
RL=4Ω, Input
AC-Ground
fin=100Hz
-
-60
-50
fin=1kHz
-
-70
-60
-80
-85
-
SNR
Signal to Noise Ratio
With A-Weighting Filter
VO=1Vrms, RL=8Ω
AttMute
Mute Attenuation
%
dB
fin=1kHz, RL=8Ω, VIN=1Vrms
-
-100
-80
Shutdown Attenuation
fin=1kHz, RL=8Ω, VIN=1Vrms
-
-120
-90
Vn
Output Noise
With A-Weighting Filter (Gain=20dB)
-
80
-
µVrms
VOS
Output Offset Voltage
RL=4Ω (Gain=20dB)
-
20
30
mV
Attshutdown
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
6
www.anpec.com.tw
APA2605
Typical Operating Characteristics
100
90
90
80
80
70
70
60
50
RL=4Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
40
20
10
0
0.0
0.5
60
50
40
20
10
1.0
1.5
2.0
Output Power (W)
2.5
0
0.0
3.0
80.0
70.0
70.0
Efficiency (%)
90.0
80.0
60.0
RL=4Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
QFN4X4-2A
40.0
30.0
20.0
10.0
0.0
0.0
20
10
0.5
1.0
2.5
0.0
0.0
3.0
0.5
1.0
1.5
THD+N vs. Output Power
20
10
5
VDD=5V
0.1
0.02
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
2
1
0.5
0.1
0.0
5
0.0
2
0.0
VDD=5.5V
0.4
1
Output Power (W)
2
0.2
0.05
0.1
30.0
THD+N vs. Output Power
VDD=3.6V
0.01
RL=8Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
QFN4X4-2A
40.0
Output Power (W)
0.5
0.2
50.0
Output Power (W)
1
2
2.0
2.0
60.0
10.0
1.5
1.0
1.5
Output Power (W)
Efficiency vs.
Output Power (QFN4X4-20A 8Ω)
20.0
fin=1kHz
RL=4Ω
AV=20dB
AUX-0025
AES-17(20kHz) VDD=3.3V
QFN4X4-2A
5
0.5
100.0
90.0
50.0
RL=8Ω+33µH
fin=1kHz
THD+N≦10%
AV=20dB
AUX-0025
AES-17(20kHz)
30
Efficiency vs.
Output Power (QFN4X4-20A 4Ω)
100.0
Efficiency (%)
Efficiency (%)
100
30
THD+N (%)
Efficiency vs. Output Power (8Ω)
THD+N (%)
Efficiency (%)
Efficiency vs. Output Power (4Ω)
3
1 0.1
4
7
2.0
fin=1kHz
RL=8Ω
AV=20dB
AUX-0025
AES17(20kHz)
QFN4X4-20A VDD=3.3V
VDD=5V
VDD=3.6V
VDD=5.5V
0.4
1
Output Power (W)
2
www.anpec.com.tw
APA2605
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
1
THD+N vs. Output Power
10
fin=1kHz
RL=4Ω
AV=20dB
AUX-0025
AES-17(20kHz)
SOP-18
1
VDD=3.3V
THD+N (%)
THD+N (%)
20
10
VDD=3.6V
VDD=5V
0.1
fin=1kHz
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-18
0.1
AV=20dB
AV=12dB
AV=6dB
VDD=5.5V
0.01
0.03
0.1
1
Output Power (W)
0.01
0.070.01
4
0.1
Output Power (W)
THD+N vs. Output Power
1
VDD=3.3V
VDD=3.6V
0.1
VDD=5V
VDD=5.5V
0.01
0.01
0.1
Output Power (W)
1
fin=1kHz
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-18
AV=12dB
0.1
2
0.1
10
VDD=3.3/3.6/5.0/5.5V
PO=0.7/0.85/1.7/2W
RL=4Ω
AUX-0025
AV=20dB,VDD=5.5V,
AES-17(20kHz)
PO=2W
SOP-18
AV=20dB,VDD=5.0V,
PO=1.7W
1
0.1
Output Power (W)
0.1
VDD=5.0V
PO=1.7/0.85/0.1W
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-18
AV=20dB,VDD=3.3V,
PO=0.7W
100
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
2 3
0.001
20
10k 20k
8
AV=6dB,
Po=1.7W
AV=6dB,
Po=0.85W
AV=20dB,VDD=3.6V,
PO=0.85W
1k
Frequency (Hz)
1
AV=6dB,
Po=0.1W
0.01
0.01
0.001
20
AV=6dB
THD+N vs. Frequency
THD+N (%)
THD+N (%)
1
AV=20dB
0.01
0.07 0.01
THD+N vs. Frequency
10
4
10
fin=1kHz
RL=8Ω
AV=20dB
AUX-0025
AES-17(20kHz)
SOP-18
THD+N (%)
THD+N (%)
1
2
THD+N vs. Output Power
20
10
1
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2605
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
THD+N vs. Frequency
10
10
VDD=3.3/3.6/5.0/5.5V
PO=0.42/0.5/1/1.2W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-18
1
AV=20dB, VDD=5.5V,
PO=1.2W
THD+N (%)
THD+N (%)
1
AV=20dB, VDD=5.0V,
PO=1W
0.1
0.01 A =20dB, VDD=3.3V, A =20dB, VDD=3.6V,
V
V
PO=0.42W
0.001
20
100
VDD=5.0V
PO=1/0.5/0.1W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-18
0.1
AV=6dB, Po=0.1W
0.01
PO=0.5W
1k
Frequency (Hz)
AV=6dB, Po=0.5W
0.001
20
10k 20k
-85
-90
-95
-100
-105
-110
-115
-120
10
-60
-70
AV=20dB, L-ch to R-ch
-80
-100
AV=6dB, R-ch to L-ch AV=6dB, L-ch to R-ch
-120
10k 20k
10
Crosstalk vs. Frequency
-60
Crosstalk (dB)
Crosstalk (dB)
-80
-90
-100
AV=6dB, R-ch to L-ch AV=6dB, L-ch to R-ch
10
100
1k
-85
-90
-95
10k 20k
10k 20k
VDD=5.0V
PO=1W
RL=8Ω
AUX-0025
AES-17(20kHz)
SOP-18
AV=20dB, R-ch to L-ch
AV=20dB, L-ch to R-ch
-100
-105
-120
10
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
-75
-80
-110
-115
-110
-120
100
1k
Frequency (Hz)
Crosstalk vs. Frequency
-60
-65
-70
VDD=3.6V
PO=0.5W
RL=8Ω
AUX-0025
AV=20dB, R-ch to L-ch
AES-17(20kHz)
SOP-18
AV=20dB, L-ch to R-ch
-70
10k 20k
-90
-110
AV=6dB, R-ch to L-ch AV=6dB, L-ch to R-ch
100
1k
Frequency (Hz)
1k
Frequency (Hz)
VDD=5.0V
PO=2W
RL=4Ω
AUX-0025
AV=20dB, R-ch to L-ch
AES-17(20kHz)
SOP-18
AV=20dB, L-ch to R-ch
AV=20dB, R-ch to L-ch
Crosstalk (dB)
Crosstalk (dB)
-70
-75
-80
VDD=3.6V
PO=1W
RL=4Ω
AUX-0025
AES-17(20kHz)
SOP-18
100
Crosstalk vs. Frequency
Crosstalk vs. Frequency
-60
-65
AV=6dB, Po=1W
AV=6dB, R-ch to L-ch
100
AV=6dB, L-ch to R-ch
1k
10k 20k
Frequency (Hz)
9
www.anpec.com.tw
APA2605
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
Output Noise Voltage vs. Frequency
200µ
200µ
180µ
AV=20dB
Output Noise Voltage (Vrms)
Output Noise Voltage (Vrms)
180µ
160µ
VDD=3.6V
RL=8Ω
Input AC Ground
AUX-0025
AES-17(20kHz)
SOP-18
140µ
120µ
100µ
80µ
AV=10dB
60µ
AV=6dB
40µ
AV=20dB
160µ
140µ
AV=10dB
120µ
100µ
80µ
AV=6dB
60µ
VDD=5.0V
RL=8Ω
Input AC Ground
40µ
20µ
20µ
10
100
1k
Frequency (Hz)
10k 20k
10
Frequency Response
+400
+20
Amplitude,AV=20dB
+200
+10
+8
+100
Amplitude,AV=10dB
Phase, AV=10dB
+0
Gain (dB)
+12
Phase, AV=20dB
+6
-100
+4
+2
10
100
1k
10k
Frequency (Hz)
-200
200k
+22
+21
+20
+19
+18
+17
+16
+15
+14
+13
+12
+11
+10
+9
+8
+7
+6
+5
+4
+3
+2
10
Mute Attenuation vs. Frequency
Gain (dB)
-70
T
VDD=5.0V
RL=4Ω
AV=20dB
VO=1Vrms
AUX-0025
AES-17(20kHz)
SOP-18
Amplitude,AV=20dB
VDD=5.0V
RL=8Ω
Po=150mW
AUX-0025
SOP-18
+100
Amplitude,AV=7.6dB
100
+300
+200
Phase, AV=7.6dB
Phase, AV=20dB
-80
-90
Right Channel
-80
Left Channel
-90
+400
+0
-100
1k
10k
Frequency (Hz)
-175
-200
200k
Shutdown Attenuation vs. Frequency
Gain (dB)
-60
10k 20k
Phase (Deg)
+14
VDD=3.6V
RL=8Ω
Po=70mW
AUX-0025
SOP-18
+300
Phase (Deg)
Gain (dB)
+16
100
1k
Frequency (Hz)
Frequency Response
+22
+18
AUX-0025
AES-17(20kHz)
SOP-18
T
VDD=5.0V
RL=4Ω
AV=20dB
VO=1Vrms
AUX-0025
AES-17(20kHz)
SOP-18
-100
Left Channel
-110
Right Channel
-100
20
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
-120
20
10k 20k
100
1k
10k 20k
Frequency (Hz)
10
www.anpec.com.tw
APA2605
Typical Operating Characteristics (Cont.)
PSRR vs. Frequency
+0
20
VDD=5.0V
RL=8Ω
AV=20dB
Vrr=0.2Vrms
Input floating
AUX-0025
AES-17(20kHz)
SOP-18
-20
-30
-40
10
Gain Down
0
Gain Up
-10
Gain (dB)
-10
PSRR (dB)
Gain vs. Volume Voltage
-50
-20
-30
-40
-50
-60
VDD=5.0V
No Load
AUX-0025
AES-17(20kHz)
-60
-70
-80
-70
20
100
1k
Frequency (Hz)
-80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10k 20k
DC Volume Voltage (V)
Shutdown Current vs. Supply Voltage
Supply Current vs. Supply Voltage
1.0
8
No Load
Shutdown Current (µA)
6
4
2
0
0.0
2.0
0.6
0.4
0.2
0.0
2.0
4.0
Voltage (V)
6.0
AGC Function
Output Power vs. Input AC
1.6
1.4
2.6
2.4
2.2
2
1
0
0.8
0.0
6.0
AGC Function
Output Power vs. Input AC
3
Output Power (W)
4.0
Voltage (V)
Output Power (W)
Shutdown Current (mA)
No Load
VDD=5.0V
RL=4Ω
AES-17(20kHz)
SSOP-24
0.2
0.4
0.6 0.8
1
Input AC (Vrms)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
1.2
1
VDD=5.0V
RL=8Ω
AES-17(20kHz)
SSOP-24
0.2
1.2
1.4
0.2
11
0.4
0.6 0.8
1
Input AC (Vrms)
1.2
1.4
www.anpec.com.tw
APA2605
Pin Description
PIN
NO.
I/O/P
QFN4x4
FUNCTION
NAME
SSOP-24
SOP-18
1
1
19
LOUTP
O
Positive output of left channel power amplifier.
4
3
1
LOUTN
O
Negative output of left channel power amplifier.
5,20
4,15
2,14
PVDD
P
Power amplifier’s power supply.
6
5
3
MUTE
I
Mute control signal input. Place entire IC in mute mode when held low.
7
6
4
VDD
P
Control and bias block’s power supply.
8
7
5
LINN
I
Negative input of left channel power amplifier.
9,12,13,15
-
8,18
NC
-
No connection.
10
8
6
VDC
P
Volume control block’s power supply.
11
9
7
VOLUME
I
Internal gain setting input.
14
10
9
BYPASS
P
Bias voltage for power amplifiers.
16
11
10
AGC
I
Maximum output power setting input. When held high disable AGC function.
17
12
11
RINN
I
Negative input of right channel power amplifier.
2,3,
18,22,23
2,13,17
12,16,20
GND
P
Control and bias block’s ground.
19
14
13
SD
I
Shutdown mode control input. Place entire IC in shutdown mode when held low.
21
16
15
ROUTN
O
Negative output of right channel power amplifier.
24
18
17
ROUTP
O
Positive output of right channel power amplifier.
-20A
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
12
www.anpec.com.tw
APA2605
Block Diagram
GND
Gate
Drive
RINN
ROUTP
PVDD
Gate
Drive
BYPASS
BYPASS
AGC
AGC
Control
Biases &
Reference
VDC
MUTE
VOLUME
Protection
Function
GND
Volume
Control
SD
ROUTN
Oscillator
Shutdown
Control
VDD
Gate
Drive
LINN
LOUTP
PVDD
Gate
Drive
LOUTN
GND
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
13
www.anpec.com.tw
APA2605
Typical Application Circuit
PVDD
CS1
10µF
ROUTP 18
1 LOUTP
CS2
0.1µF
Mute Control
Left Channel Ci2
Input Signal
1µF
CS4
1µF
PGND 17
2 PGND
4Ω
VDD
R1
50kΩ
ROUTN 16
3 LOUTN
APA2605 PVDD 15
5 MUTE (Top View)
SD 14
4 PVDD
6 VDD
GND 13
7 LINN
RINN 12
8 VDC
AGC 11
9 VOLUME
BYPASS 10
4Ω
CS3
0.1µF
Shutdown Control
1µF
CB
Left Channel
Ci2 Input Signal
VDD
R2
2.2µF
CS5
1µF
R3
VDD=5V
RL (Ω)
4
8
R2 (kΩ)
R3 (kΩ)
PO (W)
VAGC (V)
30.1
12.0
2.19
1.425
26.7
12.0
1.71
1.550
30.9
12.0
1.15
1.400
Note 4 :The resistance must use 1%.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
14
www.anpec.com.tw
APA2605
DC Volume Control Table
Step
Gain
Low (%)
High (%)
Recom (%)
Low (5V)
High (5V)
Recom (5V)
1
20.0
97.7
100.0
100.0
4.885
5.000
5.00
2
19.6
96.2
96.6
96.4
4.808
4.830
4.82
3
19.2
94.6
95.1
94.8
4.731
4.753
4.74
4
18.8
93.1
93.5
93.3
4.653
4.675
4.66
5
18.4
91.5
92.0
91.7
4.576
4.598
4.59
6
18.0
90.0
90.4
90.2
4.499
4.521
4.51
7
17.6
88.4
88.9
88.6
4.421
4.443
4.43
8
17.2
86.9
87.3
87.1
4.344
4.366
4.36
9
16.8
85.3
85.8
85.6
4.267
4.289
4.28
10
16.4
83.8
84.2
84.0
4.189
4.211
4.20
11
16.0
82.2
82.7
82.5
4.112
4.134
4.12
12
15.6
80.7
81.1
80.9
4.035
4.057
4.05
13
15.2
79.1
79.6
79.4
3.957
3.980
3.97
14
14.8
77.6
78.0
77.8
3.880
3.902
3.89
15
14.4
76.1
76.5
76.3
3.803
3.825
3.81
16
14.0
74.5
75.0
74.7
3.725
3.748
3.74
17
13.6
73.0
73.4
73.2
3.648
3.670
3.66
18
13.2
71.4
71.9
71.6
3.571
3.593
3.58
19
12.8
69.9
70.3
70.1
3.493
3.516
3.50
20
12.4
68.3
68.8
68.5
3.416
3.438
3.43
21
12.0
66.8
67.2
67.0
3.339
3.361
3.35
22
11.6
65.2
65.7
65.5
3.261
3.284
3.27
23
11.2
63.7
64.1
63.9
3.184
3.207
3.20
24
10.8
62.1
62.6
62.4
3.107
3.129
3.12
25
10.4
60.6
61.0
60.8
3.029
3.052
3.04
26
10.0
59.0
59.5
59.3
2.952
2.975
2.96
27
9.6
57.5
57.9
57.7
2.875
2.897
2.89
28
9.2
55.9
56.4
56.2
2.797
2.820
2.81
29
8.8
54.4
54.9
54.6
2.720
2.743
2.73
30
8.4
52.9
53.3
53.1
2.643
2.665
2.65
31
8.0
51.3
51.8
51.5
2.565
2.588
2.58
32
7.6
49.8
50.2
50.0
2.488
2.511
2.50
33
7.2
48.2
48.7
48.4
2.411
2.433
2.42
34
6.8
46.7
47.1
46.9
2.333
2.356
2.34
35
6.4
45.1
45.6
45.3
2.256
2.279
2.27
36
6.0
43.6
44.0
43.8
2.179
2.202
2.19
37
5.6
42.0
42.5
42.3
2.101
2.124
2.11
38
5.2
40.5
40.9
40.7
2.024
2.047
2.04
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
15
www.anpec.com.tw
APA2605
DC Volume Control Table (Cont.)
Step
Gain
Low (%)
High (%)
Recom (%)
Low (5V)
High (5V)
Recom (5V)
39
4.8
38.9
39.4
39.2
1.947
1.970
1.96
40
4.4
37.4
37.8
37.6
1.869
1.892
1.88
41
4.0
35.8
36.3
36.1
1.792
1.815
1.80
42
3.6
34.3
34.8
34.5
1.715
1.738
1.73
43
3.2
32.7
33.2
33.0
1.637
1.660
1.65
44
2.8
31.2
31.7
31.4
1.560
1.583
1.57
45
2.4
29.6
30.1
29.9
1.482
1.506
1.49
46
2.0
28.1
28.6
28.3
1.405
1.429
1.42
47
1.6
26.6
27.0
26.8
1.328
1.351
1.34
48
1.2
25.0
25.5
25.2
1.250
1.274
1.26
49
0.8
23.5
23.9
23.7
1.173
1.197
1.18
50
0.4
21.9
22.4
22.2
1.096
1.119
1.11
51
0.0
20.4
20.8
20.6
1.018
1.042
1.03
52
-1.0
18.8
19.3
19.1
0.941
0.965
0.95
53
-2.0
17.3
17.7
17.5
0.864
0.887
0.88
54
-3.0
15.7
16.2
16.0
0.786
0.810
0.80
55
-5.0
14.2
14.7
14.4
0.709
0.733
0.72
56
-7.0
12.6
13.1
12.9
0.632
0.655
0.64
57
-9.0
11.1
11.6
11.3
0.554
0.578
0.57
58
-11.0
9.5
10.0
9.8
0.477
0.501
0.49
59
-17.0
8.0
8.5
8.2
0.400
0.424
0.41
60
-23.0
6.4
6.9
6.7
0.322
0.346
0.33
61
-29.0
4.9
5.4
5.1
0.245
0.269
0.26
62
-35.0
3.4
3.8
3.6
0.168
0.192
0.18
63
-41.0
1.8
2.3
2.0
0.090
0.114
0.10
64
-80.0
0.0
3.8
0.0
0.000
0.192
0.00
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
16
www.anpec.com.tw
APA2605
Function Description
Bypass Voltage
Class-D Operation
Output = 0V
The bypass voltage is equal to VDD/2, this voltage is for
bias the internal preamplifier stages. The external ca-
VOUTP
pacitor for this reference (CB) is a critical component and
serves several important functions.
VOUTN
DC Volume Control Function
VOUT
(VOUTP-VOUTN)
The APA2605 has an internal stereo volume control whose
setting is the function of the DC voltage applied to the
IOUT
VOLUME input pin. The APA2605 volume control consists
of 64 steps that are individually selected by a variable DC
Output > 0V
VOUTP
voltage level on the VOLUME control pin. The range of the
steps controlled by the DC voltage, are from +20dB to
VOUTN
-80dB. Each gain step corresponds to a specific input
voltage range, as shown in the table. To minimize the
VOUT
(VOUTP-VOUTN)
effect of noise on the volume control pin, which can affect
the selected gain level, hysteresis and clock delay are
IOUT
Output < 0V
VOUTP
implemented. The amount of hysteresis corresponds to
half of the step width, as shown in the “DC Volume Con-
VOUTN
trol Graph.”
For the highest accuracy, the voltage shown in the “recommended voltage” column of the table is used to select
a desired gain. This recommended voltage is exactly half-
VOUT
(VOUTP-VOUTN)
way between the two nearest transitions. The gains level
have are 0.4dB/step from 20dB to 0dB; 1dB/step from
IOUT
0dB to -3dB; 2dB/step from -3dB to -11dB and 6dB/step
from -11dB to -41dB and the last step at -80dB as mute
Figure 1. The APA2605 Output Waveform (Voltage &
Current)
mode.
The APA2605 power amplifier modulation scheme is
AGC (Non-Clipping) Function
shown in figure 1; the outputs VOUTP and VOUTN are in phase
with each other when no input signals. When output > 0V,
The APA2605 provides the 64 steps non-clipping Control,
and the range is from 20dB to -80dB. When the output
reaches the maximum power setting value, the internal
the duty cycle of VOUTP is greater than 50% and VOUTN is
less than 50%; when Output <0V, the duty cycle of VOUTP is
less than 50% and VOUTN is greater than 50%. This method
reduces the switching current across the load, and re-
Programmable Gain Amplifier (PGA) will decrease the gain
for prevent the output waveform clipping. This feature pre-
duces the I 2R losses in the load that improve the
amplifier’s efficiency.
vents speaker damage from occurring clipping. Using
the AGC pin to set the non-clipping function and limit the
This modulation scheme has very short pulses across
the load, this making the small ripple current and very
output power.
little loss on the load, and the LC filter can be eliminated
in most applications. Added the LC filter can increase the
efficiency by filter the ripple current.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
17
www.anpec.com.tw
APA2605
Function Description (Cont.)
Table 1: AGC Setting Threshold v.s Output Power
AGC Function
Output Power
VDD~0.45VDD
Disable AGC Function
0.45VDD~0.27VDD
1

8 x0.95 VDD − VAGC 
2


PO =
Thermal Protection
The over-temperature circuit limits the junction temperature of the APA2605. When the junction temperature exceeds TJ=+150oC, a thermal sensor turns off the output
2
buffer, allowing the devices to cool. The thermal sensor
allows the amplifier to start-up after the junction tempera-
RL
0.27VDD~GND
(AGC Floating)
(Max Output Power 4Ω) Po=2.513W
(Max Output Power 8Ω) Po=1.26W
ture going down to about 125oC. The thermal protection
is designed with a 25oC hysteresis to lower the average
TJ during continuous thermal overload conditions, increasing lifetime of the IC.
Shutdown Operation
In order to reduce power consumption while not in use,
the APA2605 contains a shutdown function to externally
turn off the amplifier bias circuitry. This shutdown feature
turns the amplifier off when logic low is placed on the SD
pin for APA2605. The trigger point between a logic high
and logic low level is typically 0.65V. It is the best to switch
between ground and the supply voltage VDD to provide
maximum device performance. By switching the SD pin
to a low level, the amplifier enters a low-consumptioncurrent state, IDD for APA2605 is in shutdown mode. On
normal operating, APA2605’s SD pin should pull to a high
level to keep the IC out of the shutdown mode. The SD pin
should be tied to a definite voltage to avoid unwanted
state changes.
Over-Current Protection
The APA2605 monitors the output current, and when the
current exceeds the current-limit threshold, the APA2605
turn-off the output stage to prevent the output device from
damages in over-current or short-circuit condition. The IC
will turn-on the output buffer after 1ms, but if the overcurrent or short-circuits condition is still remain, it enters
the Over-Current protection again. The situation will circulate until the over-current or short-circuits has be
removed.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
18
www.anpec.com.tw
APA2605
Application Information
Square Wave into the Speaker
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the circuit.
Apply the square wave into the speaker may cause the
voice coil of speaker jumping out of the air gap and defac-
Where Ri is 36kΩ (minimum) and the specification calls
for a flat bass response down to 50Hz. The equation is
ing the voice coil. However, this depends on the amplitude of square wave is high enough and the bandwidth of
reconfigured as below:
Ci =
speaker is higher than the square wave’s frequency. For
500kHz switching frequency, this is not issued for the
1
2πRifc
(2)
speaker because the frequency is beyond the audio band
and can’t significantly move the voice coil, as cone move-
When the input resistance variation is considered, the Ci
is 0.08µF, so a value in the range of 0.01µF to 0.022µF
ment is proportional to 1/f2 for frequency out of audio band.
would be chosen. A further consideration for this capacitor is the leakage path from the input source through the
Input Resistor, Ri
input network (Ri + Rf, Ci) to the load. This leakage current
creates a DC offset voltage at the input to the amplifier
140
Gain vs. Input Resistance
that reduces useful headroom, especially in high gain
applications. For this reason, a low-leakage tantalum or
130
Input Resistance (kΩ)
120
ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should
110
100
face the amplifiers’ input in most applications because
the DC level of the amplifiers’ inputs are held at VDD/2.
90
80
Please note that it is important to confirm the capacitor
polarity in the application.
70
60
50
Effective Bypass Capacitor, CB
40
As with any power amplifier, proper supply bypassing is
30
20
-40 -35 -30 -25 -20 -15 -10 -5 0
Gain (dB)
5
critical for low noise performance and high power supply
rejection.
10 15 20
For achieving the 64 steps gain setting, it varies the input
The bypass capacitance sffects the startiup time. It is
determined in the following wquation:
resistance network (R i & R f ) of amplifier. The input
resistor’s range form smallest to maximum is about six
TSTART-UP=0.5(sec/µF) x CB + 0.2(sec)
times. Therefore, the input high-pass filter’s low cutoff
frequency will change for six times from low to high. The
(3)
The capacitor location on the bypass pin should be as
close to the device as possible. The effect of a larger half
bypass capacitor is improved PSRR due to increased
cutoff frequency can be calculated by equation 1.
Input Capacitor, Ci
half-supply stability. The selection of bypass capacitors,
especially CB, is thus dependent upon desired PSRR
In the typical application, an input capacitor, Ci, is required
to allow the amplifier to bias the input signal to the proper
requirements, click and pop performance.To avoid the
start-up pop noise occurred, choose Ci which is not larger
DC level for optimum operation. In this case, Ci and the
input impedance Ri form a high-pass filter with the corner
than CB.
frequency determined in the following equation:
f C(highpass) =
1
2πRiCi
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
(1)
19
www.anpec.com.tw
APA2605
Application Information (Cont.)
Ferrite Bead Selection
If the traces form APA2605 to speaker are short, the ferrite
bead filters can reduce the high frequency radiated to
meet the FCC & CE required.
OUTP 36µH
A ferrite that has very low impedance at low frequencies
and high impedance at high frequencies (above 1 MHz)
1µF
is recommended.
OUTN
36µH
8Ω
1µF
Output Low-Pass Filter
If the traces form APA2605 to speaker are short, it doesn’t
require output filter for FCC & CE standard.
A ferrite bead may be needed if it’s failing the test for FCC
Figure 3. LC Output Filter for 8Ω Speaker
or CE tested without the LC filter. The figure 2 is the sample
for added ferrite bead; the ferrite shows choosing high
impedance in high frequency.
OUTP 18µH
2.2µF
VON
OUTN
Ferrite
Bead
18µH
4Ω
2.2µF
1nF
Ferrite
Bead
VOP
4Ω
Figure 4. LC Output Filter for 4Ω Speaker
Figure 3 and 4’s low pass filter cut-off frequency are 25kHz
1nF
(FC).
fC(lowpass) =
1
(5)
2π LC
Power-Supply Decoupling Capacitor, CS
Figure 2. Ferrite Bead Output Filter
The APA2605 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
Figure 3 and 4 are examples for added the LC filter
(Butterworth), it’s recommended for the situation that the
ensure the output total harmonic distortion (THD) is as
low as possible. Power supply decoupling also prevents
trace form amplifier to speaker is too long and needs to
eliminate the radiated emission or EMI.
the oscillations being caused by long lead length between the amplifier and the speaker.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
20
www.anpec.com.tw
APA2605
Application Information (Cont.)
Power-Supply Decoupling Capacitor, CS (Cont.)
The optimum decoupling is achieved by using two different types of capacitors that target on different types of
noise on the power supply leads. For higher frequency
transients, spikes, or digital hash on the line, a good low
equivalent-series-resistance (ESR) ceramic capacitor,
typically 0.1µF placed as close as possible to the device
VDD pin for works best. For filtering lower frequency noise
signals, a large aluminum electrolytic capacitor of 10µF
or greater placed near the audio power amplifier is
recommended.
Layout Recommendation
ThermalVia
diameter
0.3mm X 5
1mm
3.2mm
0.28mm
0.5mm
Solder Mask
to Prevent
Short-Circuit
2.2mm
Ground
plane for
Thermal
PAD
Figure 5. QFN4x4-20A Land Pattern Recommendation
1. All components should be placed close to the APA2605.
For example, the input capacitor (Ci) should be close to
APA2605’s input pins to avoid causing noise coupling
to APA2605’s high impedance inputs; the decoupling
capacitor (Cs) should be placed by the APA2605’s power
pin to decouple the power rail noise.
2. The output traces should be short, wide ( >50mil), and
symmetric.
3. The input trace should be short and symmetric.
4. The power trace width should greater than 50mil.
5. The QFN4X4-20A Thermal PAD should be soldered on
PCB, and the ground plane needs soldered mask (to
avoid short-circuit) except the Thermal PAD area.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
21
www.anpec.com.tw
APA2605
Package Information
SSOP-24
D
h x 45o
E
E1
SEE VIEW A
c
0.25
A
GAUGE PLANE
SEATING PLANE
A1
A2
b
L
θ
e
VIEW A
S
Y
M
B
O
L
SSOP-24 (150mil)
MILLIMETERS
MIN.
INCHES
MAX.
A
MIN.
MAX.
1.75
0.069
0.004
0.25
0.010
A1
0.10
A2
1.24
b
0.20
0.30
0.008
0.012
c
0.15
0.25
0.006
0.010
D
8.56
8.76
0.337
0.345
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.158
e
0.049
0.635 BSC
0.025 BSC
L
0.40
1.27
0.016
0.050
h
0.25
0.50
0.010
0.020
θ
0o
8o
0o
8o
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
22
www.anpec.com.tw
APA2605
Package Information
SSOP-24P
D
SEE VIEW A
h X 45o
E
E1
E2
D2
b
c
0.25
A1
NX
A
A2
e
L
GAUGE PLANE
SEATING PLANE
θ
aaa c
VIEW A
S
Y
M
B
O
L
A
SSOP-24P
INCHES
MILLIMETERS
MIN.
MAX.
MIN.
MAX.
0.004
0.010
0.069
1.75
0.25
A1
0.10
A2
1.24
b
0.20
0.30
0.008
c
0.15
0.25
0.006
0.010
D
8.56
8.76
0.337
0.345
D2
3.20
4.00
0.126
0.158
0.244
0.049
0.012
E
5.80
6.20
0.228
E1
3.80
4.00
0.150
0.158
E2
e
2.00
2.80
0.079
0.110
L
0.40
1.27
0.016
0.050
h
0.25
0.50
0.010
0.020
0o
8o
0.635 BSC
θ
aaa
0.025 BSC
0.10
0o
8o
0.004
Note : 1. Rerfence to JEDEC MO-137 AE.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side.
3. Dimension "E" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
23
www.anpec.com.tw
APA2605
Package Information
SOP-18
D
e
h x 45o
E1
E
SEE VIEW A
c
A1
0.25
A2
A
b
θ
L
GAUGE PLANE
SEATING PLANE
VIEW A
S
Y
M
B
O
L
SOP-18 (300mil)
INCHES
MILLIMETERS
MIN.
MAX.
A
MIN.
MAX.
2.65
0.104
0.004
0.30
0.012
A1
0.10
A2
2.05
b
0.31
0.51
0.012
0.020
c
0.20
0.33
0.008
0.013
D
11.35
11.75
0.447
0.463
E
10.10
10.50
0.398
0.413
E1
7.40
7.60
0.291
0.299
e
0.081
1.27 BSC
0.050 BSC
h
0.25
0.75
0.010
0.030
L
0.40
1.27
0.016
0.050
θ
0o
8o
0o
8o
Note : 1. Followed from JEDEC MS-013 AB.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side .
3. Dimension "E" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
24
www.anpec.com.tw
APA2605
Package Information
QFN4x4-20A
D
b
E
A
Pin 1
A1
D2
A3
L K
E2
Pin 1 Corner
e
S
Y
M
B
O
L
QFN4x4-20A
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.80
1.00
0.031
0.039
A1
0.00
0.05
0.000
0.002
A3
0.20 REF
0.008 REF
b
0.18
0.30
0.008
0.012
D
3.90
4.10
0.154
0.161
D2
2.00
2.50
0.079
0.098
E
3.90
4.10
0.154
0.161
E2
2.00
2.50
0.079
0.098
0.45
0.014
e
0.50 BSC
L
0.35
K
0.20
0.020 BSC
0.018
0.008
Note : 1. Followed from JEDEC MO-220 VGGD-5.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
25
www.anpec.com.tw
APA2605
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
SSOP-24
Application
SSOP-24P
Application
SOP-18
A
H
T1
330±2.00
50MIN
24.40+2.00
-0.00
P0
P1
P2
C
13.0+0.50
-0.20
D0
d
D
W
E1
F
1.5MIN
20.2MIN
24.0±0.30
1.75±0.10
11.5±0.10
T
A0
B0
K0
13.50±0.10
2.60±0.10
D1
5+0.10
-0.00
4.0±0.10
12.0±0.10
A
H
T1
C
d
D
W
E1
F
330.0±2.00
50 MIN.
16.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
16.0±0.30
1.75±0.10
7.50±0.10
P0
P1
P2
D0
D1
T
A0
B0
K0
1.5 MIN.
0.6+0.00
-0.40
6.40±0.20
9.00±0.20
2.10±0.20
2.0±0.10
1.5MIN
0.60+0.00
8.50±0.10
-0.40
4.0±0.10
8.0±0.10
2.0±0.10
1.5+0.10
-0.00
A
H
T1
C
d
D
W
E1
F
330.0±2.00
50 MIN.
16.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
16.0±0.30
1.75±0.10
7.5±0.10
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
10.9±0.20
10.70±0.20
3.1±0.20
4.0±0.10
8.0±0.10
(mm)
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
26
www.anpec.com.tw
APA2605
Carrier Tape & Reel Dimensions (Cont.)
Application
QFN4x4-20A
A
H
T1
C
d
D
W
E1
F
330.0±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
4.30±0.20
4.30±0.20
1.30±0.20
4.0±0.10
8.0±0.10
(mm)
Devices Per Unit
Package Type
QFN4x4-20A
SSOP-24(P)
SOP-18
Unit
Tape & Reel
Tape & Reel
Tape & Reel
Quantity
3000
2500
1000
Taping Direction Information
SSOP-24(P)
USER DIRECTION OF FEED
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
27
www.anpec.com.tw
APA2605
Taping Direction Information (Cont.)
SOP-18
USER DIRECTION OF FEED
QFN4x4-20A
USER DIRECTION OF FEED
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
28
www.anpec.com.tw
APA2605
Classification Profile
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3 °C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
29
www.anpec.com.tw
APA2605
Classification Reflow Profiles (Cont.)
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.7 - Mar., 2013
30
www.anpec.com.tw
Similar pages