LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) U DESCRIPTION FEATURES Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current Pin Compatible to 1458 and 324 with Precision Specs Guaranteed Offset Voltage 150µV Max. Guaranteed Low Drift 2µV/°C Max. Guaranteed Offset Current 0.8nA Max. Guaranteed High Gain 5mA Load Current 1.5 Million Min. 17mA Load Current 0.8 Million Min. Guaranteed Low Supply Current 500µA Max. Low Voltage Noise, 0.1Hz to 10Hz 0.55µVp-p Low Current Noise—Better than 0P-07, 0.07pA/√Hz ■ ■ ■ ■ ■ ■ ■ ■ ■ U APPLICATIONS ■ ■ ■ ■ The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C, offset current of 0.15nA, gain of 8 million, common-mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350µA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers 4mA–20mA Current Loop Transmitters Multiple Limit Threshold Detection Active Filters Multiple Gain Blocks ■ The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common-mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ±15V and single 5V supplies. , LTC and LT are registered trademarks of Linear Technology Corporation. LT1014 Distribution of Offset Voltage 3 Channel Thermocouple Thermometer 4k 1M 700 3k 299k +5V +5V 14 + 12 – 13 YSI 44007 5kΩ AT 25°C 1684Ω 2 – 3 + 4 LT1014 1 OUTPUT A 10mV/°C 11 LT1014 260Ω 1.8k 1M 4k USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C. 6 – LT1014 5 + NUMBER OF UNITS LT1004 1.2V VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 600 300 200 100 7 OUTPUT B 10mV/°C 0 100 0 200 –300 –200 –100 INPUT OFFSET VOLTAGE (µV) 300 1 LT1013/LT1014 W W U W ABSOLUTE MAXIMUM RATINGS Supply Voltage ...................................................... ±22V Differential Input Voltage ....................................... ±30V Input Voltage ............... Equal to Positive Supply Voltage ............5V Below Negative Supply Voltage Output Short-Circuit Duration .......................... Indefinite Storage Temperature Range All Grades ......................................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M ...................... – 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C LT1013I/ LT1014I ............................... – 40°C to 85°C W U U PACKAGE/ORDER INFORMATION A B –IN A 2 – + + – 6 –IN B +IN A 3 5 +IN B 4 V –(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN V– +IN A 3 – +A B V– 4 V+ 7 OUTPUT B 6 –IN B 5 +IN B J PACKAGE 8-LEAD CERAMIC DIP N PACKAGE 8-LEAD PLASTIC DIP TOP VIEW +INA 1 –IN A 2 8 – 8 –INA 7 OUTA + 2 +INB 3 + 6 V+ –INB 4 – 5 OUTB SO PACKAGE 8-LEAD PLASTIC SOIC NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION ORDER PART NUMBER LT1013DS8 LT1013IS8 PART MARKING OUTPUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 14 OUTPUT D – LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ LT1014ACN LT1014CN LT1014DN LT1014IN 13 –IN D +A D + B – + 10 +IN C C – 9 –IN C 12 +IN D 11 V – 8 OUTPUT C J PACKAGE 14-LEAD CERAMIC DIP N PACKAGE 14-LEAD PLASTIC DIP ORDER PART NUMBER LT1014DS LT1014IS TOP VIEW OUTPUT A 1 16 OUTPUT D –IN A 2 15 –IN D +IN A 3 14 +IN D V+ 4 13 V – +IN B 5 12 +IN C –IN B 6 11 –IN C OUTPUT B 7 PART MARKING 10 OUTPUT C NC 8 9 NC LT1014DS LT1014IS SO PACKAGE 16-LEAD PLASTIC SOIC V S = ±15V, VCM = 0V, TA = 25°C unless otherwise noted SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I ISO IB en Long Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage en Input Noise Voltage Density in Input Noise Current Density 2 LT1013AMJ8 LT1013MJ8 LT1013ACJ8 LT1013CJ8 LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8 1013 1013I ELECTRICAL CHARACTERISTICS ORDER PART NUMBER TOP VIEW TOP VIEW OUTPUT A 1 + 7 OUTPUT B – 8 ORDER PART NUMBER + V+ OUTPUT A 1 ORDER PART NUMBER LT1013AMH LT1013MH LT1013ACH LT1013CH – TOP VIEW MIN — — — LT1013AM/AC LT1014AM/AC TYP MAX 40 150 50 180 — — MIN — — — LT1013C/D/I/M LT1014C/D/I/M TYP 60 60 200 MAX 300 300 800 UNITS µV µV µV — 0.4 — — 0.5 — µV/Mo. 0.1Hz to 10Hz — — — 0.15 12 0.55 0.8 20 — — — — 0.2 15 0.55 1.5 30 — nA nA µVp-p fO = 10Hz fO = 1000Hz — — 24 22 — — — — 24 22 — — nV/√Hz nV/√Hz fO = 10Hz — 0.07 — — 0.07 — pA/√Hz LT1013/LT1014 ELECTRICAL CHARACTERISTICS V S = ±15V, VCM = 0V, TA = 25°C unless otherwise noted SYMBOL AVOL PARAMETER CONDITIONS Input Resistance – Differential (Note 1) Common-Mode Large Signal Voltage Gain VO = ±10V, RL = 2k VO = ±10V, RL = 600Ω Input Voltage Range CMRR PSRR LT1013AM/AC LT1014AM/AC MIN TYP MAX LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX 100 — 1.5 0.8 400 5 8.0 2.5 — — — — 70 — 1.2 0.5 300 4 7.0 2.0 — — — — MΩ GΩ V/µV V/µV +13.5 – 15.0 +13.8 – 15.3 — — +13.5 – 15.0 +13.8 – 15.3 — — V V dB dB dB V UNITS VOUT Common-Mode Rejection Ratio Power Supply Rejection Ratio Channel Separation Output Voltage Swing VCM = + 13.5V, – 15.0V VS = ±2V to ±18V VO = ±10V, RL = 2k RL = 2k 100 103 123 ±13 117 120 140 ±14 — — — — 97 100 120 ±12.5 114 117 137 ±14 — — — — IS Slew Rate Supply Current Per Amplifier 0.2 — 0.4 0.35 — 0.50 0.2 — 0.4 0.35 — 0.55 V/µs mA LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX UNITS Note 1: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. ELECTRICAL CHARACTERISTICS V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V, TA = 25°C unless otherwise noted SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I IOS IB Input Offset Current Input Bias Current AVOL Large Signal Voltage Gain Input Voltage Range VO = 5mV to 4V, RL = 500Ω VOUT Output Voltage Swing IS Supply Current Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground Per Amplifier LT1013AM/AC LT1014AM/AC MIN TYP MAX — — — — — 60 70 — 0.2 15 250 280 — 1.3 35 — — — — — 90 90 250 0.3 18 450 450 950 2.0 50 µV µV µV nA nA — + 3.5 0 — — — 4.0 3.4 — 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.31 — — — 25 10 350 — — 0.45 — +3.5 0 — — — 4.0 3.4 — 1.0 + 3.8 – 0.3 15 5 220 4.4 4.0 0.32 — — — 25 10 350 — — 0.50 V/µV V V mV mV mV V V mA 3 LT1013/LT1014 ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VOS IOS V S = ±15V, VCM = 0V, – 55°C ≤ TA ≤ 125°C unless otherwise noted CONDITIONS Input Offset Voltage Input Offset Voltage Drift Input Offset Current VS = + 5V, 0V; VO = + 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C (Note 2) VS = + 5V, 0V; VO = +1.4V IB AVOL CMRR PSRR VOUT IS Input Bias Current Large Signal Voltage Gain Common-Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier VS = + 5V, 0V; VO = +1.4V VO = ±10V, RL = 2k VCM = +13.0V, – 14.9V VS = ±2V to ±18V RL = 2k VS = +5V, 0V RL = 600Ω to Ground Output Low Output High VS = +5V, 0V; VO = +1.4V LT1013AM MIN TYP MAX ● — 80 300 ● ● ● ● ● ● ● ● ● — — — — — — — — 0.5 97 100 ● ±12 ● ● ● ● — 3.2 — — MIN — LT1014AM TYP MAX 90 350 80 120 250 0.4 0.3 0.6 15 20 2.0 114 117 450 450 900 2.0 2.5 6.0 30 80 — — — — — — — — — — — 0.4 96 100 90 150 300 0.4 0.3 0.7 15 25 2.0 114 117 ±13.8 — ±12 ±13.8 6 3.8 0.38 0.34 15 — 0.60 0.55 — 3.2 — — 6 3.8 0.38 0.34 LT1013M/LT1014M UNITS MIN TYP MAX — 110 550 µV 480 480 960 2.0 2.8 7.0 30 90 — — — — — — — — — — — 0.25 94 97 — ±11.5 ±13.8 15 — 0.60 0.55 — 3.1 — — 100 200 400 0.5 0.4 0.9 18 28 2.0 113 116 6 3.8 0.38 0.34 750 µV 750 µV 1500 µV 2.5 µV/°C 5.0 nA 10.0 nA 45 nA 120 nA — V/µV — dB — dB — 18 — 0.7 0.65 V mV V mA mA ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D unless otherwise noted SYMBOL PARAMETER VOS IOS AVOL CMRR MAX 240 — 350 MIN — — — TYP 65 — 85 MAX 270 — 380 — — — — — — — 1.0 98 — 0.3 — 0.2 0.4 13 18 5.0 116 — 2.0 — 1.5 3.5 25 55 — — — — — — — — — 1.0 98 — 0.3 — 0.2 0.4 13 20 5.0 116 — 2.0 — 1.7 4.0 25 60 — — — — — — — — — 0.7 94 280 0.4 0.7 0.3 0.5 16 24 4.0 113 VS = ±2V to ±18V ● 101 119 — 101 119 — 97 116 RL = 2k VS = +5V, 0V; RL = 600Ω Output Low Output High ● ±12.5 ±13.9 LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V (Note 2) LT1013D/I, LT1014D/I PSRR VOUT IS Input Bias Current Large Signal Voltage Gain Common-Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing VS = +5V, 0V; VO = 1.4V VO = ±10V, RL = 2k VCM = +13.0V, – 15.0V Supply Current per Amplifier VS = +5V, 0V; VO = 1.4V Note 2: This parameter is not 100% tested. 4 LT1013C/D/I UNITS LT1014C/D/I MIN TYP MAX — 80 400 µV — 230 1000 µV — 110 570 µV TYP 55 — 75 VS = +5V, 0V; VO = 1.4V IB LT1014AC MIN ● — ● — ● — Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current LT1013AC CONDITIONS ● ● ● ● ● ● ● ● ● — 3.3 ● — ● — ● ● 6 3.9 0.36 0.32 — 13 — 0.55 0.50 ±12.5 ±13.9 — 3.3 — — 6 3.9 0.36 0.32 — 13 — 0.55 0.50 ±12.0 ±13.9 — 3.2 — — 6 3.9 0.37 0.34 1200 µV 2.5 µV/°C 5.0 µV/°C 2.8 nA 6.0 nA 38 nA 90 nA — V/µV — dB — dB — V 13 — 0.60 0.55 mV V mA mA The ● denotes specifications which apply over the full operating temperature range. LT1013/LT1014 U W TYPICAL PERFORMANCE CHARACTERISTICS Offset Voltage Drift with Temperature of Representative Units Warm-Up Drift 5 10 INPUT OFFSET VOLTAGE (mV) 100 0 –100 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1 VS = 5V, 0V, 25°C 0.1 RS VS = ±15V, 0V, 25°C RS –200 VS = ±15V TA = 25°C CHANGE IN OFFSET VOLTAGE (µV) VS = ±15V 200 INPUT OFFSET VOLTAGE (µV) Offset Voltage vs Balanced Source Resistance + 4 3 LT1013 METAL CAN (H) PACKAGE 2 LT1014 1 0.01 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 0 1k Common-Mode Rejection Ratio vs Frequency 5 0.1Hz to 10Hz Noise 100 80 VS = 5V, 0V VS = ±15V 60 40 20 10 100 1k 10k FREQUENCY (Hz) 100k TA = 25°C VS = ±2V TO ±18V 100 NEGATIVE SUPPLY 80 POSITIVE SUPPLY 60 40 VS = ±15V + 1VP-P SINE WAVE TA = 25°C 20 0 0.1 1M NOISE VOLTAGE (200nV/DIV) TA = 25°C POWER SUPPLY REJECTION RATIO (dB) 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 0 10Hz Voltage Noise Distribution Noise Spectrum TA = 25°C VS = ±2V TO ±18V 160 NUMBER OF UNITS 300 100 CURRENT NOISE VOLTAGE NOISE 30 140 120 100 80 60 40 20 1/f CORNER 2Hz 0 1 10 100 FREQUENCY (Hz) 1k 10 20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz) 6 4 TIME (SECONDS) 8 10 460 VS = ±15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS 180 2 Supply Current vs Temperature 200 1000 SUPPLY CURRENT PER AMPLIFIER (µA) COMMON-MODE REJECTION RATIO (dB) 1 3 4 2 TIME AFTER POWER ON (MINUTES) 120 0 VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz) 0 3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω) Power Supply Rejection Ratio vs Frequency 120 10 LT1013 CERDIP (J) PACKAGE – 60 420 380 VS = ±15V 340 VS = 5V, 0V 300 260 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 5 LT1013/LT1014 U W Input Bias Current vs Common-Mode Voltage 4 10 3 5 VS = ±15V 2 0 VS = 5V, 0V 1 –5 0 –10 –1 0 –5 –25 –10 –15 –20 INPUT BIAS CURRENT (nA) –15 –30 1.0 VCM = 0V –25 0.8 0.6 0.4 VS = 5V, 0V VS =± V 2.5 0.2 0 –50 –25 –20 VS = 5V, 0V .5V VS = ± 2 –15 VS = ±15V –10 –5 VS = ±15V 50 25 0 75 TEMPERATURE (°C) 100 125 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 125 Large Signal Transient Response, VS = ±15V Small Signal Transient Response, VS = ±15V V + = 5V TO 30V V – = 0V ISINK = 10mA 1 ISINK = 5mA 5V/DIV 20mV/DIV SATURATION VOLTAGE (V) –30 VCM = 0V Output Saturation vs Sink Current vs Temperature 10 Input Bias Current vs Temperature INPUT BIAS CURRENT (nA) 15 TA = 25°C INPUT OFFSET CURRENT (nA) 5 Input Offset Current vs Temperature COMMON-MODE INPUT VOLTAGE, VS = ±15V (V) COMMON-MODE INPUT VOLTAGE, VS = +5V, 0V (V) TYPICAL PERFORMANCE CHARACTERISTICS ISINK = 1mA 0.1 ISINK = 100µA ISINK = 10µA AV = +1 2µs/DIV AV = +1 50µs/DIV ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 Large Signal Transient Response, VS = 5V, 0V Small Signal Transient Response, VS = 5V, 0V Large Signal Transient Response, VS = 5V, 0V 4V 4V 100mV 2V 2V 0V 50mV 0V 0 AV = +1 RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE 6 20µs/DIV AV = +1 RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE 10µs/DIV AV = +1 NO LOAD INPUT = 0V TO 4V PULSE 10µs/DIV LT1013/LT1014 U W TYPICAL PERFORMANCE CHARACTERISTICS Output Short Circuit Current vs Time 40 125°C TA = 125°C, VS = ±15V 10 0 125°C –10 –20 25°C –30 –55°C TA = –55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V 1M TA = 125°C, VS = 5V, 0V 100 80 1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) 1k LOAD RESISTANCE TO GROUND (Ω) 20 0 ±15V GAIN 140 160 0 5V, 0V 180 5V, 0V 200 CHANNEL SEPARATION (dB) 120 160 PHASE SHIFT (DEGREES) VOLTAGE GAIN (dB) 80 TA = 25°C VCM = 0V 100 CL = 100pF ±15V 10 –20 0.01 0.1 10k 140 LIMITED BY THERMAL INTERACTION 120 1 3 FREQUENCY (MHz) RS = 100Ω RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE 80 60 10 10 100 10k 1k FREQUENCY (Hz) 100k 1M U W U 0.3 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k –10 0.1 1 Channel Separation vs Frequency Gain, Phase vs Frequency PHASE VS = ±15V 40 VO = 20mV TO 3.5V WITH VS = 5V, 0V 100k 100 VS = 5V, 0V 60 VO = ±10V WITH VS = ±15V –40 20 TA = 25°C CL = 100pF 120 VOLTAGE GAIN (dB) 20 Voltage Gain vs Frequency 140 TA = 25°C, VS = ±15V TA = –55°C, VS = ±15V VOLTAGE GAIN (V/V) SHORT CIRCUIT CURRENT (mA) SINKING SOURCING 25°C 10M VS = ±15V –55°C 30 Voltage Gain vs Load Resistance U APPLICATIONS INFORMATION Single Supply Operation The LT1013/1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common-mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/ 1014, the 400Ω resistors, in series with the input (see schematic diagram), protect the devices even when the input is 5V below ground. 7 LT1013/LT1014 U W U U APPLICATIONS INFORMATION (b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/ 1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect. D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free. Comparator Applications The single supply operation of the LT1013/1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators. Voltage Follower with Input Exceeding the Negative Common-Mode Range 4V 2V 4V 4V 2V 2V 0V 0V 0V 6Vp-p INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL LT1013/LT1014 NO PHASE REVERSAL Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives OUTPUT (V) OUTPUT (V) Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives 4 2 INPUT (mV) INPUT (mV) 2 0 0 – 100 0 100 0 VS = 5V, 0V 8 4 50µs/DIV VS = 5V, 0V 50µs/DIV LT1013/LT1014 U U W U APPLICATIONS INFORMATION Test Circuit for Offset Voltage and Offset Drift with Temperature Low Supply Operation The minimum supply voltage for proper operation of the LT1013/1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290µA, therefore power dissipation is only one milliwatt per amplifier. 50k* +15V – 100Ω* LT1013 OR LT1014 50k* For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet. VO + Noise Testing –15V *RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ±20V. VO = 1000VOS U TYPICAL APPLICATIONS 5V Single Supply Dual Instrumentation Amplifier 50MHz Thermal rms to DC Converter 100k* +5V +5V 1/2 LTC1043 2 30k* 30k* – 0.01 LT1014 10k 3 1µF +INPUT 1 10k* 6 5 5 6 2 6 – 5 + 300Ω* 100k* 10k* 7 OUTPUT A – 4 +5V 4 LT1014 8 1/2 LT1013 10k* + + R2 1µF 1µF 3 7 R1 11 10k* –INPUT 18 +INPUT 7 15 0.01 0.01 T1A GRN – 12 + LT1014 10k INPUT 300mV– 10VRMS BRN 13 1/2 LTC1043 14 3 8 1/2 LT1013 1µF 2 11 10 RED T1B RED T2B GRN BRN + 20k FULLSCALE TRIM 10k 8 1µF 0V–4V OUTPUT 10k* –INPUT 10k* 2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION. 1µF 12 – T2A OUTPUT B – R2 + LT1014 9 1 13 14 16 0.01 R1 OFFSET = 150µV GAIN = R2 + 1. R1 CMRR = 120dB. COMMON-MODE RANGE IS 0V TO 5V. 9 LT1013/LT1014 U TYPICAL APPLICATIONS Hot Wire Anemometer +15V 500pF Q1 2N6533 Q2–Q5 CA3046 PIN 3 TO –15V Q2 2k Q5 Q3 220 150k* 0.01µF 10k* 27Ω 1W 33k – 2 #328 6 A2 LT1014 Q4 7 2k 150k* + 12k 1 1k ZERO FLOW + 2k* 500k –15V – 12 + A4 LT1014 10M RESPONSE TIME ADJUST 2M FULLSCALE FLOW 3.3k 11 13 1µF +15V 4 A1 LT1014 3 5 1000pF – 14 0V–10V = 0–1000 FEET/MINUTE 100k –15V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. * 1% RESISTOR. 9 – 10 + 1µF A3 LT1014 8 Liquid Flowmeter 3.2k** 1M* +15V 15Ω DALE HL-25 3.2k* 1M* 2 1M* 6.25k** 3 10M RESPONSE TIME – 1 A1 LT1014 + 6 – 5 +LT1014 A2 100k 7 6.98k* 5k FLOW CALIB 6.25k** 1µF 1M* 1k* T1 T2 +15V 4.7k 1N4148 100k 2N4391 300pF 0.1 LT1004 –1.2 383k* 9 2.7k 10 – 8 A3 LT1014 100k 12 + 100k –15V 13 + OUTPUT 0Hz 300Hz = 0 300ML/MIN +15V 4 14 A4 LT1014 – 11 –15V T1 FLOW T2 FLOW PIPE 10 15Ω HEATER RESISTOR * 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED FREQUENCY OUTPUT. LT1013/LT1014 U TYPICAL APPLICATIONS 5V Powered Precision Instrumentation Amplifier – 8 9 LT1014 + TO INPUT CABLE SHIELDS 10 200k* 10k* 10k* 1 LT1014 † 20k –INPUT – 2 +5V + 3 +5V 10k † 13 – 12 + 4 RG (TYP 2k) 14 LT1014 1µF 200k* † 6 20k 10k* 7 LT1014 10k* + 5 +INPUT 11 10k – OUTPUT † * 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES. +5V 9V Battery Powered Strain Gauge Signal Conditioner 15k +9V +9V 2 – 0.068 3 + 1N4148 4 LT1014 11 22M 47µF 4.7k 1 330Ω 2N2219 100k 0.01 TO A/D RATIO REFERENCE 100k 100k 100k +9V +9V 1 15k 15 350Ω STRAIN GAUGE BRIDGE 13 6 5 – + LT1014 7 499 0.068 14 – 12 + LT1014 14 TO A/D 499 7 74C221 3k 13 9 – 0.068 6 9 10 + 100k LT1014 8 5 TO A/D CONVERT COMMAND SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA. 4.7k–0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO HIGH ∆V/∆T STEPS. 11 LT1013/LT1014 U TYPICAL APPLICATIONS 5V Powered Motor Speed Controller No Tachometer Required +5V 100k 2 330k 3 47 1k 82Ω – A1 1/2 LT1013 0.47 + 1 2k Q3 2N5023 Q1 2N3904 + 1N4001 1M 2k 6.8M 0.068 1/4 CD4016 5V 8 – 7 1N4001 1N4148 6 3.3M 0.068 1N4148 A2 1/2 LT1013 0.47 2k 5 MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF. Q2 + 4 EIN 0V–3V 5V Powered EEPROM Pulse Generator +5V DALE #TC-10-04 1N4148 1N4148 1N4148 2N2222 10Ω +5V 0.05 0.1 2N2222 2N2222 4.7k 20k 0.33 1N4148 820 270Ω 100k 100Ω 820 2 1N4148 TTL INPUT MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT). *1% METAL FILM. 4.7M – LT1013 3 + 1 1N4148 6 – 8 LT1013 0.005 5 1k 2N2222 + 4 120k OUTPUT 100K* LT1004 1.2V 12 7 6.19K 21V 600µs RC LT1013/LT1014 U TYPICAL APPLICATIONS Methane Concentration Detector with Linearized Output +5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813 14 LT1004 1.2V –5V 0.033 390k* 10 1N4148 (4) CD4016 – A3 LT1014 + 100k* 8 13 11 12 5 8 LTC1044 – 74C04 A4 LT1014 14 + 74C04 +5V –5V 4 2 10µF + 10µF 3 470pF + 470pF 10k +5V 1 74C04 14 SENSOR CA3046 Q2 2 3 OUTPUT 500ppm-10,000ppm 50Hz 1kHz Q3 1000pF +5V 4 2k A1 LT1014 1 100k* 6 – A2 LT1014 + 5 2k 7 150k* + 12k* Low Power 9V to 5V Converter +9V INPUT L 2N2905 + 1N4148 10k 5V 20mA 2N5434 47 390k 1% HP5082-2811 VD = 200mV +9V 10k 100µA 1 + 7 5 330k LT1013 – 4 2 LT1013 8 + 5k 1000ppm TRIM – 1N4148 –5V Q4 Q1 – 2.7k 9 3 120k 1% +9V 6 47k LT1004 1.2V L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV. 13 LT1013/LT1014 U TYPICAL APPLICATIONS 5V Powered 4mA–20mA Current Loop Transmitter† +5V Q3 2N2905 820Ω 74C04 (6) 10µF T1 Q1 2N2905 68Ω 1N4002 (4) 10µF + + 0.002 Q2 2N2905 820Ω 10k 10k 0.33 100k +5V 8 A1 1/2 LT1013 1 + 100pF 3 4 10k* 20mA TRIM 4k* 10k* 1k 4mA TRIM 4.3k +5V 7 A2 1/2 LT1013 + † 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080. 100Ω* 80k* – – 2k Q4 2N2222 10k* 2 LT1004 1.2V 6 4mA-20mA OUT TO LOAD 2.2kΩ MAXIMUM 5 INPUT 0 TO 4V Fully Floating Modification to 4mA-20mA Current Loop† T1 0.1Ω +5V 7 A1 1/2 LT1013 100k A2 1/2 LT1013 1 68k* 5 + – TO INVERTER DRIVE 6 – 8 + 3 10µF 2 4mA-20mA OUT FULLY FLOATING + 4 4k* 10k* 4.3k 2k 4mA TRIM INPUT 0V–4V 14 301Ω* 1k 20mA TRIM +5V LT1004 1.2V 1N4002 (4) † 8-BIT ACCURACY. LT1013/LT1014 U TYPICAL APPLICATIONS 5V Powered, Linearized Platinum RTD Signal Conditioner 2M – 9 499Ω Q1 167Ω 200k – 2 A2 1/4 LT1014 Q2 200k + 3 2N4250 (2) A4 1/4 LT1014 150Ω 1 OUTPUT 0V–4V = 0°C–400°C ±0.05°C GAIN TRIM 1k 2M 3.01k SENSOR – 1.5k + 10 5k LINEARITY 8 ROSEMOUNT 118MF 7 A3 1/4 LT1014 6 8.25k 50k ZERO TRIM 5 + 274k +5V 4 – A1 1/4 LT1014 + 14 +5V 11 13 2.4k 5% LT1009 2.5V 10k 250k 12 ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0 ° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100 °C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400 °C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED. Strain Gauge Bridge Signal Conditioner +5V 220 +5V 8 1 + 2 100µF 301k 39k 100k 3 4 E LTC1044 4 10k ZERO TRIM VREF 2 1/2 LT1013 8 D PRESSURE TRANSDUCER 350Ω V ≈ –VREF 5 + 7 A 0.33 1/2 LT1013 6 OUTPUT – 0V–3.5V 0psi–350psi 0.047 C 5 100µF 2k GAIN TRIM + + LT1004 1.2V – 0.1 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD * 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER. 46k* 100Ω* 15 LT1013/LT1014 U TYPICAL APPLICATIONS LVDT Signal Conditioner 7 0.005 30k 0.005 30k 8 FREQUENCY = 1.5kHz +5V 5 + 7 LT1013 6 YEL-BLK 11 LVDT RDBLUE – BLUE –5V GRN 10k 4.7k YEL-RD 1N914 BLK 12 LT1004 1.2V 2N4338 100k 1.2k 10µF 1µF 13 7.5k 1/2 LTC1043 1 – 200k + 8 1k 7 LT1011 3 – 10k TO PIN 16, LT1043 4 1 + Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation 3 –INPUT + 1/4 LT1014 2 – R1 R3 RG – 5 + 12 + 13 – 2R 10M – R2 10 + 8 1/4 LT1014 OUTPUT R3 ( 1/4 LT1014 10pF 100k V– ) GAIN = 1 + 2R1 R3 RG R2 4 11 16 7 V+ R 5M 9 R1 1/4 LT1014 +INPUT R2 1 2R 10M 6 OUT 0V–3V +5V 2 100k PHASE TRIM + LT1013 2 100k LVDT = SCHAEVITZ E-100. 3 14 0.01 14 INPUT BIAS CURRENT TYPICALLY <1nA INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN NEGATIVE COMMON-MODE LIMIT = V – + IB × 2R + 30mV = 150mV for V – = 0V I B = 12nA LT1013/LT1014 U TYPICAL APPLICATIONS Voltage Controlled Current Source with Ground Referred Input and Output Low Dropout Regulator for 6V Battery +5V +12 OUTPUT 1N914 100Ω 3 2 4 + + 8 LTC1044 10 0V–2V 3 8 + 1 1/2 LT1013 5 2 – 4 10 2N2219 5V OUTPUT 0.68µF VBATT 6V 100k 100Ω 1k 1/2 LTC1043 0.01Ω 7 0.003µF 1.2k 6 5 1M 3 LT1004 1.2V 2 + LT1013 1 11 1µF – 100Ω 1µF 4 – 8 120k 8 12 7 A2 LT1013 1N914 + 14 13 30k 0.009V DROPOUT AT 5mA OUTPUT. 0.108V DROPOUT AT 100mA OUTPUT. IQUIESCENT = 850µA. IOUT = 0mA TO 15mA 50k OUTPUT ADJUST VIN 100Ω FOR BIPOLAR OPERATION, RUN BOTH ICs FROM A BIPOLAR SUPPLY. IOUT = 6V to ±15V Regulating Converter +6V + +6V 1µF 15pF 10k 22k 10k 2N3906 L1 1MHY Q2 +16V 10k 22k 2N3904 +15VOUT +16V 8 10 1 + 2 LT1013 10 10k 200k VOUT ADJ +6V 3 100k 4 15pF 1.4M 0.005 –16V LT1004 1.2V 82k 7 6 + D2 Q2 – Q1 2N4391 74C00 + CLK 1 74C74 D1 –16V CLK 2 + 100kHz INPUT Q1 – +V 5 LT1013 L1 = 24-104 AIE VERNITRON = 1N4148 ±5mA OUTPUT 75% EFFICIENCY 0.005 2N5114 1M –15VOUT 17 LT1013/LT1014 U TYPICAL APPLICATIONS Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)† +5V 3 8 + 1 1/2 LT1013 2 OSCILLATOR SUPPLY STABILIZATION 1M* – 4 5M* 3.4k* 4.3k +5V LT1009 2.5V RT1 3.2k 1M* 2.16k* 4.22M* TEMPERATURE COMPENSATION GENERATOR RT2 6.25k 6 5 3.5MHz XTAL 20k – 7 1/2 LT1013 1M* 100Ω 100k 100k 2N2222 OSCILLATOR + MV-209 510pF 3.5MHz OUTPUT 0.03ppm/°C, 0°C–70°C 680Ω 560k 4.22M* RT YSI 44201 +5V 510pF * 1% FILM 3.5MHz XTAL = AT CUT – 35°20' MOUNT RT NEAR XTAL 3mA POWER DRAIN † THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO MINIMIZE OVERALL OSCILLATOR DRIFT Step-Up Switching Regulator for 6V Battery INPUT +6V 22k 2N2222 OUTPUT +15V 50mA + 2.2 LT1004 1.2V L1 1MHY 200k 5 220pF 1N5821 1M 220k 0.001 3 + LT1013 2 – 1 2N5262 6 18 – 4 100 5.6k 5.6k LT = AIE–VERNITRON 24–104 78% EFFICIENCY 8 LT1013 130k + 300Ω + 0.1 7 LT1013/LT1014 W W SCHEMATIC DIAGRAM V+ 9k 9k 1.6k 1.6k Q13 Q6 Q5 1/2 LT1013, 1/4 LT1014 1.6k Q16 100Ω 1k 800Ω Q14 Q36 Q15 Q32 Q30 Q35 Q3 J1 Q4 Q37 Q25 – Q1 Q33 21pF 3.9k Q27 Q26 2.4k 2.5pF 400Ω 18Ω Q38 IN + Q21 OUTPUT Q2 Q41 14k Q28 400Ω Q39 IN Q22 Q18 4pF Q12 Q29 Q10 Q31 Q40 Q19 2k Q11 10pF Q9 Q7 Q17 Q8 75pF 5k V– 5k Q34 100pF 600Ω 42k Q23 Q24 Q20 1.3k 2k 2k 30Ω J8 Package 8-Lead CERDIP (Narrow 0.300, Hermetic) N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1110) (LTC DWG # 05-08-1510) CORNER LEADS OPTION (4 PLCS) 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION 0.400* (10.160) MAX 0.405 (10.287) MAX 0.005 (0.127) MIN 8 7 6 0.025 (0.635) RAD TYP 1 2 3 7 6 5 1 2 3 4 0.255 ± 0.015* (6.477 ± 0.381) 0.220 – 0.310 (5.588 – 7.874) 0.300 BSC (0.762 BSC) 8 5 4 0.200 (5.080) MAX 0.300 – 0.325 (7.620 – 8.255) 0.045 – 0.065 (1.143 – 1.651) 0.130 ± 0.005 (3.302 ± 0.127) 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 (0.203 – 0.457) 0.009 – 0.015 (0.229 – 0.381) 0° – 15° 0.045 – 0.068 (1.143 – 1.727) 0.385 ± 0.025 (9.779 ± 0.635) 0.125 3.175 0.100 ± 0.010 MIN (2.540 ± 0.254) 0.014 – 0.026 (0.360 – 0.660) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS. J8 0694 ( 0.065 (1.651) TYP 0.125 (3.175) MIN 0.005 (0.127) MIN +0.025 0.325 –0.015 +0.635 8.255 –0.381 ) 0.018 ± 0.003 (0.457 ± 0.076) 0.100 ± 0.010 (2.540 ± 0.254) 0.015 (0.380) MIN N8 0695 *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) Tjmax θja Tjmax θja 150°C 100°C / W 100°C 130°C / W Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LT1013/LT1014 U PACKAGE DESCRIPTION H Package 8-Lead TO-5 Metal Can (0.200 PCD) (LTC DWG # 05-08-1320) 0.335 – 0.370 (8.509 – 9.398) DIA 0.305 – 0.335 (7.747 – 8.509) 0.040 (1.016) MAX 0.050 (1.270) MAX SEATING PLANE 0.165 – 0.185 (4.191 – 4.699) 0.027 – 0.034 (0.686 – 0.864) REFERENCE PLANE GAUGE PLANE 0.027 – 0.045 (0.686 – 1.143) 45°TYP 0.500 – 0.750 (12.700 – 19.050) 0.010 – 0.045* (0.254 – 1.143) 0.200 (5.080) TYP 0.016 – 0.021** (0.406 – 0.533) *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 – 0.024 (0.406 – 0.610) 0.110 – 0.160 (2.794 – 4.064) INSULATING STANDOFF **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS H8(TO-5) 0.200 PCD 0595 NOTE: DIMENSIONS IN INCHES (MILLIMETERS) Tjmax 150°C θjc 45°C /W θja 150°C / W J Package 14-Lead CERDIP (Narrow 0.300, Hermetic) N Package 14-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1110) CORNER LEADS OPTION (4 PLCS) 0.005 (0.127) MIN 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION (LTC DWG # 05-08-1510) 0.785 (19.939) MAX 14 13 12 11 0.770* (19.558) MAX 10 9 8 1 2 3 4 5 6 7 0.200 (5.080) MAX 0.300 BSC (0.762 BSC) 0 . 1 0 0± 0 . 0 1 0 ( 2 . 5 4 0± 0 . 2 5 4 ) 0.014 – 0.026 (0.360 – 0.660) 0.125 (3.175) MIN J14 0694 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS. +0.025 0.325 –0.015 8.255 +0.635 –0.381 ) θja 100°C /W 1 2 3 4 5 6 7 0.065 (1.651) TYP 8 7 6 θja 100°C / W SW Package 16-Lead Plastic Small Outline (Wide 0.300) (LTC DWG # 05-08-1620) 16 2 3 0°– 8° T Y P 15 14 13 12 11 10 9 5 0.394 – 0.419 (10.007 – 10.643) NOTE 1 0.150 – 0.157** (3.810 – 3.988) 1 N14 0695 0.398 – 0.413* (10.109 – 10.490) 0.228 – 0.244 (5.791 – 6.197) 0.053 – 0.069 (1.346 – 1.752) 0.018 ± 0.003 (0.457 ± 0.076) 0.125 (3.175) MIN 0.189 – 0.197* (4.801 – 5.004) 0.291 – 0.299** (7.391 – 7.595) 4 1 0.004 – 0.010 (0.101 – 0.254) 2 3 4 5 6 7 8 0.037 – 0.045 (0.940 – 1.143) 0.093 – 0.104 (2.362 – 2.642) 0.010 – 0.029 × 45° (0.254 – 0.737) 0° – 8° TYP 0.016 – 0.050 0.406 – 1.270 0.014 – 0.019 (0.355 – 0.483) *D I M E N S I O N D O E S N O T I N C L U D E M O L D F L A S H . M O L D F L A S H SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE * *D I M E N S I O N D O E S N O T I N C L U D E I N T E R L E A D F L A S H . I N T E R L E A D FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 20 8 0.045 – 0.065 (1.143 – 1.651) Tjmax 100°C (LTC DWG # 05-08-1610) 0.008 – 0.010 (0.203 – 0.254) 9 0.005 (0.125) MIN 0.100 ± 0.010 (2.540 ± 0.254) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) ( S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) 0.010 – 0.020 × 4 5° (0.254 – 0.508) 10 0.009 – 0.015 (0.229 – 0.381) 0.045 – 0.068 (1.143 – 1.727) Tjmax 150°C 11 0.015 (0.380) MIN 0° – 1 5° 0 . 3 8 5± 0 . 0 2 5 ( 9 . 7 7 9± 0 . 6 3 5 ) 12 0.130 ± 0.005 (3.302 ± 0.127) 0.300 – 0.325 (7.620 – 8.255) 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 (0.203 – 0.457) 13 0.255 ± 0.015* (6.477 ± 0.381) 0.220 – 0.310 (5.588 – 7.874) 0.025 (0.635) RAD TYP 14 Linear Technology Corporation 0.050 (1.270) BSC SO8 0695 0.009 – 0.013 (0.229 – 0.330) NOTE 1 0.016 – 0.050 (0.406 – 1.270) 0.050 (1.270) TYP 0.004 – 0.012 (0.102 – 0.305) 0.014 – 0.019 (0.356 – 0.482) TYP NOTE: 1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS. *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE S16 (WIDE) 0695 LT/GP 0196 REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977 LINEAR TECHNOLOGY CORPORATION 1990