240pin Load Reduced DDR3(L) SDRAM DIMM DDR3(L) SDRAM Load Reduced DIMM Based on 4Gb A-die HMT84GL7AMR4A HMT84GL7AMR4C *SK hynix reserves the right to change products or specifications without notice. Rev. 0.3 / Jul. 2013 1 Revision History Revision No. History Draft Date 0.1 Initial Release Mar.2013 0.2 IDD Specification Update & Changed module maximum thickness to reflect the measured maximum Jun.2013 0.3 IDD Update (Montage 1.5V 1866Mbps) Jul.2013 Rev. 0.3 / Jul. 2013 Remark 2 Description SK hynix Load Reduced DDR3(L) SDRAM DIMMs are low power, high-speed operation memory modules that use SK hynix DDR3(L) SDRAM devices. These Load Reduced DIMMs are intended for use as main memory when installed in systems such as servers and workstations. Features • • • • • • • • • • • • • • • • 240 pin Load Reduced DDR3(L) DRAM Dual In-Line Memory Module Buffer performance by LRDIMM presenting less load to system Compatible with RDIMM systems with appropriate BIOS changes Backward Compatible with 1.5V DDR3 Memory Module (1.35V could not support the upper 1.5V speed) Built with 4Gb DDR3 SDRAM 78ball Data transfer rates: Up to PC3L-12800 / PC3-14900 JEDEC standard Double Data Rate3 Synchronous DRAMs(DDR3 SDRAMs) with 1.5V nominal JEDEC standard Double Data Rate3L Synchronous DRAMs(DDR3L SDRAMs) with 1.35V nominal Functionality and operations are same with DDR3 & DDR3L about same speed bin Host interface and MB(Memory Buffer) component industry standard compliant MB provides “address multiplication” to generate additional chips selects Address mirroring ODT (On-Die Termination) 133.35 x 30.35 mm form factor Full DIMM Heat Spreader This product is in compliance with the RoHS directive. Ordering Information Part Number Density Organization HMT84GL7AMR4A -H9/PB # of ranks MB FDHS Height O 30.35mm Vendor version Montage C1 Inphi GS02B Montage C1 Inphi GS02B DDP 2Gx4(H5TC8G43AMR)*36 32GB HMT84GL7AMR4C -H9/PB/RD Component Composition 4Gx72 4 DDP 2Gx4(H5TQ8G43AMR)*36 * In order to uninstall FDHS, please contact sales administrator Rev. 0.3 / Jul. 2013 3 Key Parameters MT/s Grade tCK (ns) CAS Latency (tCK) tRCD (ns) tRP (ns) tRAS (ns) tRC (ns) CL-tRCD-tRP DDR3-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 -H9 1.5 9 13.5 13.5 (13.125)* (13.125)* 36 49.5 (49.125)* 9-9-9 DDR3-1600 -PB 1.25 11 13.75 13.75 (13.125)* (13.125)* 35 48.75 (48.125)* 11-11-11 DDR3-1866 -Rd 1.07 13 13.91 13.91 (13.125)* (13.125)* 34 47.91 (48.125)* 13-13-13 *SK hynix DRAM devices support optional downbinning to CL11, CL9 and CL7. SPD setting is programmed to match. Speed Grade Frequency [MHz] Grade Remark CL6 CL7 CL8 CL9 CL10 -G7 800 1066 1066 -H9 800 1066 -PB 800 -RD 800 CL11 1066 1333 1333 1066 1066 1333 1333 1600 1066 1066 1333 1333 1600 CL12 CL13 1866 Address Table 32GB(4Rx4) Refresh Method 8K/64ms Row Address A0-A15 Column Address A0-A9,A11 Bank Address BA0-BA2 Page Size 1KB Rev. 0.3 / Jul. 2013 4 Pin Descriptions Pin Name Description Num ber Pin Name Description Num ber CK0 Clock Input, positive line 1 Par_In Parity bit for the Address and Control bus 1 CK0 Clock Input, negative line 1 Err_Out Parity error found on the Address and Control bus 1 CK1 Clock Input, positive line 1 ODT[0] CK1 Clock Input, negative line 1 DQ[63:0] Clock Enables 2 CB[7:0] 2 DQS[8:0] CKE[1:0] On Die Termination Inputs 1 Data Input/Output 64 Data check bits Input/Output 8 Clock Enables On Die Termination CKE[3:2], ODT[1], TEST Memory bus tool (Not Connected and Not Useable on DIMMs) Data strobes RAS Row Address Strobe 1 DQS[8:0] CAS Column Address Strobe 1 DM[8:0]/ DQS[17:9], TDQS[17:9] WE Write Enable 1 DQS[17:9], TDQS[17:9] S[1:0] Chip Selects 2 EVENT S[3:2], A17, A16 Chip Selects 2 TEST Memory bus test tool (Not Connected and Not Usable on DIMMs) 1 Address Inputs 14 RESET Register and SDRAM control pin 1 A10/AP Address Input/Autoprecharge 1 VDD Power Supply 22 A12/BC Address Input/Burst chop 1 VSS Ground 59 BA[2:0] SDRAM Bank Addresses 3 VREFDQ Reference Voltage for DQ 1 Reference Voltage for CA 1 Termination Voltage 4 A[9:0],A11, A[15:13] Address Inputs SCL Serial Presence Detect (SPD) Clock Input 1 VREFCA SDA SPD Data Input/Output 1 VTT SPD Address Inputs 3 VDDSPD SA[2:0] Rev. 0.3 / Jul. 2013 Data strobes, negative line 9 Data Masks / Data strobes, Termination data strobes Data Masks / Data strobes, Termination data strobes Reserved for optional hardware temperature sensing SPD Power 9 9 9 1 1 5 Input/Output Functional Descriptions Symbol Type Polarity Function CK0 IN Positive Line Positive line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver. CK0 IN Negative Line Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver. CK1 IN Positive Line Terminated but not used on RDIMMs. CK1 IN Negative Line Terminated but not used on RDIMMs. CKE[1:0] IN Active High CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank) Enables the command decoders for the associated rank of SDRAM when low and disables decoders when high. When decoders are disabled, new commands are ignored and previous operations continue. Other combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register device(s). For modules with two registers, S[3:2] operate similarly to S[1:0] for the second set of register outputs or register control words. S[3:0] IN Active Low ODT[1:0] IN Active High On-Die Termination control signals RAS, CAS, WE IN Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the operation to be executed by the SDRAM. VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7. VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1. BA[2:0] IN — Selects which SDRAM bank of eight is activated. BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines mode register is to be accessed during an MRS cycle. A[15:13, 12/BC,11, 10/AP,[9:0] IN — Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification for ‘’BL on the fly’’ during CAS command. The address inputs also provide the op-code during Mode Register Set commands. DQ[63:0], CB[7:0] I/O — Data and Check Bit Input/Output pins DM[8:0] IN Active High VDD, VSS Supply Power and ground for the DDR SDRAM input buffers and core logic. VTT Supply Termination Voltage for Address/Command/Control/Clock nets. Rev. 0.3 / Jul. 2013 Masks write data when high, issued concurrently with input data. 6 Symbol Type Polarity Function DQS[17:0] I/O Positive Edge Positive line of the differential data strobe for input and output data. DQS[17:0] I/O Negative Edge Negative line of the differential data strobe for input and output data. TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1,DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. X4 DRAMs must disable the TDQS function via mode register A11=0 in MR1 TDQS[17:9] TDQS[17:9] OUT SA[2:0] IN — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA I/O — This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pullup. SCL IN — This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pullup. EVENT OUT (open drain) VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. RESET IN The RESET pin is connected to the RESET pin on the register and to the RESET pin on the DRAM. Par_In IN Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even) Err_Out OUT (open drain) TEST Rev. 0.3 / Jul. 2013 This signal indicates that a thermal event has been detected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the Active Low EVENT pin on TS/SPD part. No pull-up resister is provided on DIMM. Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out bus line to VDD on the system planar to act as a pull up. Used by memory bus analysis tools (unused (NC) on memory DIMMs) 7 Pin Assignments Pin # Front Side (left 1–60) Pin # Back Side (right 121–180) Pin # Front Side (left 61–120) Pin # Back Side (right 181–240) 1 VREFDQ 121 VSS 61 A2 181 A1 2 VSS 122 DQ4 62 VDD 182 VDD 3 DQ0 123 DQ5 63 NC, CK1 183 VDD 4 DQ1 124 VSS 64 NC, CK1 184 CK0 5 VSS 125 DM0,DQS9, TDQS9 65 VDD 185 CK0 6 DQS0 126 NC,DQS9, TDQS9 66 VDD 186 VDD 7 DQS0 127 VSS 67 VREFCA 187 EVENT, NC 8 VSS 128 DQ6 68 Par_In, NC 188 A0 9 DQ2 129 DQ7 69 VDD 189 VDD 10 DQ3 130 VSS 70 A10 / AP 190 BA1 11 VSS 131 DQ12 71 BA0 191 VDD 12 DQ8 132 DQ13 72 VDD 192 RAS 13 DQ9 133 VSS 73 WE 193 S0 14 VSS 134 DM1,DQS10, TDQS10 74 CAS 194 VDD 15 DQS1 135 NC,DQS10, TDQS10 75 VDD 195 ODT0 16 DQS1 136 VSS 76 S1, NC 196 A13 17 VSS 137 DQ14 77 ODT1, NC 197 VDD 18 DQ10 138 DQ15 78 VDD 198 S3, NC 19 DQ11 139 VSS 79 S2, NC 199 VSS 20 VSS 140 DQ20 80 VSS 200 DQ36 21 DQ16 141 DQ21 81 DQ32 201 DQ37 22 DQ17 142 VSS 82 DQ33 202 VSS 83 VSS 203 DM4,DQS13, TDQS13 23 VSS 143 DM2,DQS11, TDQS11 24 DQS2 144 NC,DQS11, TDQS11 84 DQS4 204 NC,DQS13, TDQS13 25 DQS2 145 VSS 85 DQS4 205 VSS 26 VSS 146 DQ22 86 VSS 206 DQ38 27 DQ18 147 DQ23 87 DQ34 207 DQ39 28 DQ19 148 VSS 88 DQ35 208 VSS 29 VSS 149 DQ28 89 VSS 209 DQ44 30 DQ24 150 DQ29 90 DQ40 210 DQ45 31 DQ25 151 VSS 91 DQ41 211 VSS NC = No Connect; RFU = Reserved Future Use Rev. 0.3 / Jul. 2013 8 Pin # Front Side (left 1–60) Pin # Back Side (right 121–180) Pin # Front Side (left 61–120) Pin # Back Side (right 181–240) 32 VSS 152 DM3,DQS12, TDQS12 92 VSS 212 DM5,DQS14, TDQS14 33 DQS3 153 NC,DQS12, TDQS12 93 DQS5 213 NC,DQS14, TDQS14 34 DQS3 154 VSS 94 DQS5 214 VSS 35 VSS 155 DQ30 95 VSS 215 DQ46 36 DQ26 156 DQ31 96 DQ42 216 DQ47 37 DQ27 157 VSS 97 DQ43 217 VSS 38 VSS 158 CB4, NC 98 VSS 218 DQ52 39 CB0, NC 159 CB5, NC 99 DQ48 219 DQ53 40 CB1, NC 160 VSS 100 DQ49 220 VSS 41 VSS 161 NC,DM8,DQS17, TDQS17 101 VSS 221 DM6,DQS15, TDQS15 42 DQS8 162 NC,DQS17, TDQS17 102 DQS6 222 NC,DQS15, TDQS15 43 DQS8 163 VSS 103 DQS6 223 VSS 44 VSS 164 CB6, NC 104 VSS 224 DQ54 45 CB2, NC 165 CB7, NC 105 DQ50 225 DQ55 46 CB3, NC 166 VSS 106 DQ51 226 VSS 47 VSS 167 NC(TEST) 107 VSS 227 DQ60 48 VTT, NC 168 RESET 108 DQ56 228 DQ61 109 DQ57 229 VSS KEY KEY 49 VTT, NC 169 CKE1, NC 110 VSS 230 DM7,DQS16, TDQS16 50 CKE0 170 VDD 111 DQS7 231 NC,DQS16, TDQS16 51 VDD 171 A15 112 DQS7 232 VSS 52 BA2 172 A14 113 VSS 233 DQ62 53 Err_Out, NC 173 VDD 114 DQ58 234 DQ63 54 VDD 174 A12 / BC 115 DQ59 235 VSS 55 A11 175 A9 116 VSS 236 VDDSPD 56 A7 176 VDD 117 SA0 237 SA1 57 VDD 177 A8 118 SCL 238 SDA 58 A5 178 A6 119 SA2 239 VSS 59 A4 179 VDD 120 VTT 240 VTT 60 VDD 180 A3 NC = No Connect; RFU = Reserved Future Use Rev. 0.3 / Jul. 2013 9 Functional Block Diagram 32GB, 4Gx72 Module(4Rank of x4) - page1 QCKE0A QODT0A QCKE1A QODT1A QCS0A QCS2A QCS1A QCS3A VDD CS0 CS1 ODT0 ODT1 CKE0 CKE1 ZQ MDQS3 MDQS3 MDQ [24:27] DQS3 DQS3 DQ [24:27] DQS DQS DQ [0:3] VDD CS0 CS1 VSS D0 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] DQS9 DQS9 DQ [4:7] MEMORY BUFFER DQS11 DQS11 DQ [20:23] DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] DQS DQS DQ [0:3 CS0 CS1 ZQ DQS DQS DQ [0:3] DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] MDQS0 MDQS0 MDQ [0:3] DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] MDQS10 MDQS10 MDQ [12:15] DQS DQS DQ [0:3] CS0 CS1 ZQ DQS DQS DQ [0:3] MDQS1 MDQS1 MDQ [8:11] DQS DQS DQ [0:3 D8 VSS D34 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS1 DQS1 DQ [8:11] ODT0 ODT1 CKE0 CKE1 VSS D7 VDD CS0 CS1 VSS D33 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS10 DQS10 DQ [12:15] ODT0 ODT1 CKE0 CKE1 VSS D6 VDD CS0 CS1 VSS D32 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS0 DQS0 DQ [0:3] ODT0 ODT1 CKE0 CKE1 VSS D5 VDD CS0 CS1 VSS D31 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS9 MDQS9 MDQ [4:7] ODT0 ODT1 CKE0 CKE1 VSS D4 VDD CS0 CS1 VSS D30 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS11 MDQS11 MDQ [20:23] ODT0 ODT1 CKE0 CKE1 VSS D3 VDD CS0 CS1 VSS D29 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS2 MDQS2 MDQ [16:19] DQS2 DQS2 DQ [16:19] ODT0 ODT1 CKE0 CKE1 VSS D2 VDD CS0 CS1 VSS D28 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS17 MDQS17 MCB [4:7] DQS17 DQS17 CB [4:7] ODT0 ODT1 CKE0 CKE1 VSS D1 VDD CS0 CS1 VSS D27 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS12 MDQS12 MDQ [28:31] DQS12 DQS12 DQ [28:31] ODT0 ODT1 CKE0 CKE1 CS0 CS1 ODT0 ODT1 CKE0 CKE1 VSS ZQ DQS DQS DQ [0:3] VSS D35 Notes: 1. 2. 3. 4. 5. Unless otherwise noted, resistor values are 10 Ohms ±5%. See the wiring diagrams for all resistors associated with the command, address and control bus. This Design uses SDRAMz in DDP. There are four ZQ resistors per DDP. The ZQ resistors are 240 Ohms ±1%. DM pins on SDRAMs are wired to VSS. The DQ and MDQ labels reflect the byte lanes as defined at the edge connector not which Memory Buffer pins are used. Rev. 0.3 / Jul. 2013 10 32GB, 4Gx72 Module(4Rank of x4) - page2 QCKE0B QODT0B QCKE1B QODT1B QCS0B QCS2B QCS1B QCS3B VDD CS0 CS1 ODT0 ODT1 CKE0 CKE1 ZQ MDQS4 MDQS4 MDQ [32:35] MDQS3 MDQS3 DQ [32:35] ZQ DQS DQS DQ [0:3] VDD CS0 CS1 CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 DQS15 DQS15 DQ [52:55] MEMORY BUFFER DQS14 DQS14 DQ [44:47] CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 MDQS6 MDQS6 MDQ [48:51] CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 MDQS16 MDQS16 MDQ [60:63] CS0 CS1 ZQ DQS DQS DQ [0:3] VDD CS0 CS1 MDQS7 MDQS7 MDQ [56:59] CS0 CS1 ZQ DQS DQS DQ [0:3] VDDSPD SCL EVENT EVENT A0 A1 A2 SDA SA0 SA1 SA2 Serial PD w/ stand alone Thermal sensor Rev. 0.3 / Jul. 2013 ODT0 ODT1 CKE0 CKE1 VSS D17 DQS DQS DQ [0:3 VSS D25 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS7 DQS7 DQ [56:59] ODT0 ODT1 CKE0 CKE1 VSS D16 DQS DQS DQ [0:3] VSS D24 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS16 DQS16 DQ [60:63] ODT0 ODT1 CKE0 CKE1 VSS D15 DQS DQS DQ [0:3] VSS D23 VDD ODT0 ODT1 CKE0 CKE1 ZQ DQS6 DQS6 DQ [48:51] ODT0 ODT1 CKE0 CKE1 VSS D14 DQS DQS DQ [0:3] VSS D22 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS15 MDQS15 MDQ [52:55] ODT0 ODT1 CKE0 CKE1 VSS D13 DQS DQS DQ [0:3 VSS D21 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS14 MDQS14 MDQ [44:47] ODT0 ODT1 CKE0 CKE1 VSS D12 DQS DQS DQ [0:3] VSS D20 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS5 MDQS5 MDQ [40:43] DQS5 DQS5 DQ [40:43] ODT0 ODT1 CKE0 CKE1 VSS D2=11 DQS DQS DQ [0:3] VSS D19 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS8 MDQS8 MCB [0:3] MDQS8 MDQS8 MCB [0:3] ODT0 ODT1 CKE0 CKE1 VSS D10 DQS DQS DQ [0:3] VSS D18 VDD ODT0 ODT1 CKE0 CKE1 ZQ MDQS13 MDQS13 MDQ [36:39] MDQS13 MDQS13 DQ [36:39] ODT0 ODT1 CKE0 CKE1 VSS D9 DQS DQS DQ [0:3] VDD CS0 CS1 VSS D26 SPD VDD D0–D35 VTT VREFCA D0–D35 VREFDQ D0–D35 VSS D0–D35 11 32GB, 4Gx72 Module(4Rank of x4) - page3 CS[3:0] BA[2:0] A[15:0] RAS CAS WE CKE[3:0] ODT[1:0] M e m o r y B u f f e r CS2A → CS0: SDRAMs D[8:0] CS3A → CS0: SDRAMs D[35:27] CS0A → CS1: SDRAMs D[8:0] CS1A → CS1: SDRAMs D[35:27] CS2B → CS0: SDRAMs D[17:9] CS3B → CS0: SDRAMs D[26:18] CS0B → CS1: SDRAMs D[17:9] CS1B → CS1: SDRAMs D[26:18] BA[2:0]A → BA[2:0]: SDRAMs D[8:0], D[35:27] BA[2:0]B → BA[2:0]: SDRAMs D[26:9] A[15:0]A → A[15:0]: SDRAMs D[8:0], D[35:27] A[15:0]B → A[15:0]: SDRAMs D[26:9] RASA → RAS: SDRAMs D[8:0], D[35:27] RASB → RAS: SDRAMs D[26:9] CASA → CAS: SDRAMs D[8:0], D[35:27] CASB → CAS: SDRAMs D[26:9] WEA → WE: SDRAMs D[8:0], D[35:27] WEB → We: SDRAMs D[26:9] CKE2A → CKE0: D[8:0] CKE0A → CKE1: D[8:0] CKE3A → CKE0: D[26:18] CKE1A → CKE1: D[26:18] CKE2B → CKE0: D[17:9] CKE0B → CKE1: D[17:9] CKE3B → CKE0: D[35:27] CKE1B → CKE1: D[35:27] ODT0A → ODT1: SDRAMs D[8:0] ODT1A → ODT1: SDRAMs D[35:27] ODT0B → ODT1: SDRAMs D[17:9] ODT1B → ODT1: SDRAMs D[26:18] CK0 CK0 → CK: SDRAMs D[8:0] CK1 → CK: SDRAMs D[35:27] CK2 → CK: SDRAMs D[17:9] CK3 → CK: SDRAMs D[26:18] CK0 CK0 → CK: SDRAMs D[8:0] CK1 → CK: SDRAMs D[35:27] CK2 → CK: SDRAMs D[17:9] CK3 → CK: SDRAMs D[26:18] CK1 CK1 PAR_IN Err_Out RESET QRESET: All SDRAMs 1. CK0 and CK0 are terminated with 120 Ohms ±5% resistor. 2. CK1 and CK1 are terminated with 120 Ohms ±5% resistor, but is not used. 3. Unless othersiwe noted resistors are 22 Ohms ±5% Rev. 0.3 / Jul. 2013 12 Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol VDD VDDQ Parameter Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.80 V V 1,3 Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.80 V V 1,3 V 1 VIN, VOUT Voltage on any pin relative to Vss TSTG - 0.4 V ~ 1.80 V -55 to +100 Storage Temperature o C 1, 2 Notes: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. DRAM Component Operating Temperature Range Temperature Range Symbol TOPER Parameter Normal Operating Temperature Range Extended Temperature Range Rating Units Notes 0 to 85 oC 1,2 85 to 95 oC 1,3 Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b). DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the DIMM SPD for tREFI requirements in the Extended Temperature Range Rev. 0.3 / Jul. 2013 13 AC & DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions - DDR3L (1.35V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.45 V 1,2,3,4 1.45 V 1,2,3,4 Min. Typ. Max. Supply Voltage 1.283 1.35 Supply Voltage for Output 1.283 1.35 Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec). 2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications. 3. Under these supply voltages, the device operates to this DDR3L specification. 4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see Figure 0). Recommended DC Operating Conditions - - DDR3 (1.5V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.575 V 1,2,3 1.575 V 1,2,3 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 Notes: 1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications. 2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device. 3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation (see Figure 0). Rev. 0.3 / Jul. 2013 14 Ta Tb Tc Td Te Tf Tg Th Ti Tj Tk CK,CK# VDD, VDDQ (DDR3) tCKSRX Tmin = 10ns VDD, VDDQ (DDR3L) Tmin = 10ns Tmin = 200us T = 500us RESET# Tmin = 10ns CKE VALID tDLLK tIS COMMAND READ BA READ 1) tXPR tMRD tMRD tMRD tMOD MRS MRS MRS MRS MR2 MR3 MR1 MR0 tZQinit ZQCL 1) VALID VALID tIS ODT READ tIS Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW VALID RTT NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands. TIME BREAK DON’T CARE Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3 Rev. 0.3 / Jul. 2013 15 Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3-800 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 21. Speed Bin DDR3-800E CL - nRCD - nRP 6-6-6 Unit Parameter Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns tCK(AVG) 2.5 3.3 ns CL = 6 CWL = 5 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK Rev. 0.3 / Jul. 2013 Notes 1,2,3 16 DDR3-1066 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 21. Speed Bin DDR3-1066F CL - nRCD - nRP Parameter Symbol Unit 7-7-7 min max Note Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,6 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) ns 4 CWL = 6 tCK(AVG) ns 1,2,3 CL = 6 CL = 7 CL = 8 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 0.3 / Jul. 2013 17 DDR3-1333 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 21. Speed Bin DDR3-1333H CL - nRCD - nRP Parameter Symbol Unit 9-9-9 min max Note Internal read command to first data tAA 13.5 (13.125)5,10 20 ns ACT to internal read or write delay time tRCD 13.5 (13.125)5,10 — ns PRE command period tRP 13.5 (13.125)5,10 — ns ACT to ACT or REF command period tRC 49.5 (49.125)5,10 — ns ACT to PRE command period tRAS 36 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) ns 1,2,3,4 CL = 6 CL = 7 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) 1.875 < 2.5 (Optional)5,10 Reserved ns 4 ns 1,2,3,7 Reserved ns 1,2,3,4 Reserved ns 4 ns 1,2,3,4 ns 4 (Optional) ns ns 1,2,3 5 Supported CL Settings 6, 7, 8, 9, 10 nCK Supported CWL Settings 5, 6, 7 nCK CL = 8 CL = 9 CL = 10 Rev. 0.3 / Jul. 2013 Reserved 1.875 < 2.5 1.5 <1.875 Reserved 1.5 <1.875 18 DDR3-1600 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 21. Speed Bin DDR3-1600K CL - nRCD - nRP Parameter Symbol Unit 11-11-11 min max 20 ns Internal read command to first data tAA 13.75 (13.125)5,10 ACT to internal read or write delay time tRCD 13.75 (13.125)5,10 — ns PRE command period tRP 13.75 (13.125)5,10 — ns ACT to ACT or REF command period tRC 48.75 (48.125)5,10 — ns ACT to PRE command period tRAS 35 9 * tREFI ns 2.5 CWL = 5 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 6 tCK(AVG) CWL = 7 CWL = 5, 6 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 7 tCK(AVG) CWL = 5 CL = 6 CWL = 6 CWL = 7 CL = 7 CWL = 8 CWL = 5 CL = 8 CWL = 6 CWL = 7 CWL = 8 CL = 9 tCK(AVG) tCK(AVG) tCK(AVG) CL = 10 CWL = 7 tCK(AVG) CWL = 8 CWL = 5, 6,7 tCK(AVG) CL = 11 tCK(AVG) CWL = 8 3.3 ns 1,2,3,8 Reserved ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4 1.875 < 2.5 (Optional) Reserved ns 1,2,3,4,8 ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4 5,10 1.875 < 2.5 ns 1,2,3,8 ns 1,2,3,4,8 Reserved ns 1,2,3,4 Reserved ns 4 Reserved 1.5 <1.875 (Optional) Reserved ns 1,2,3,4,8 ns 1,2,3,4 Reserved ns 4 ns 1,2,3,8 Reserved ns 1,2,3,4 Reserved ns 4 ns 1,2,3 5,10 CWL = 8 CWL = 5, 6 1.5 <1.875 1.25 <1.5 Supported CL Settings 5, 6, 7, 8, 9, 10, 11 Supported CWL Settings 5, 6, 7, 8 Rev. 0.3 / Jul. 2013 Note nCK nCK 19 DDR3-1866 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 21. Speed Bin DDR3-1866M CL - nRCD - nRP Parameter Symbol Internal read command to first data tAA ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or PRE command period tRC tCK(AVG) tCK(AVG) CWL = 7,8,9 tCK(AVG) tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 CWL = 7,8,9 tCK(AVG) tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8,9 tCK(AVG) CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) CWL = 9 tCK(AVG) CWL = 5, 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 CWL = 5,6,7 tCK(AVG) tCK(AVG) CWL = 8 tCK(AVG) CWL = 9 CWL = 5,6,7,8 tCK(AVG) tCK(AVG) CWL = 9 CWL = 5,6,7,8 tCK(AVG) tCK(AVG) CWL = 9 CWL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CL = 11 CL = 12 CL = 13 Unit 13-13-13 min 13.91 max 20 ns — ns — ns 9 * tREFI ns - ns (13.125)5,11 13.91 (13.125)5,11 13.91 (13.125)5,11 34 47.91 (47.125)5,11 2.5 CWL = 6 ns 1,2,3,9 Reserved 3.3 ns 1,2,3,4,9 Reserved ns 4 Reserved ns 4 ns 1,2,3,4,9 ns 4 1.875 < 2.5 Reserved Reserved ns 4 ns 1,2,3,9 Reserved ns 1,2,3,4,9 Reserved ns 4 1.875 < 2.5 Reserved ns 4 ns 1,2,3,4,9 Reserved ns 1,2,3,4,9 Reserved ns 4 1.5 <1.875 Reserved ns 4 ns 1,2,3,9 Reserved ns 1,2,3,4,9 Reserved ns 4 1.5 <1.875 1.25 ns 1,2,3,4,9 Reserved <1.5 ns 1,2,3,4 Reserved ns 4 Reserved ns 1,2,3,4 Reserved ns 4 ns 1, 2, 3 1.07 <1.25 Supported CL Settings 6, 7, 8, 9, 10, 11, 13 Supported CWL Settings 5, 6, 7, 8, 9 Rev. 0.3 / Jul. 2013 Note nCK nCK 20 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.35V +1.000/- 0.067 V); (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) = 3.0 ns should only be used for CL = 5 calculation. 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 10. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K. 11. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRCmin(byte 21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns + 13.125ns) Rev. 0.3 / Jul. 2013 21 IDD and IDDQ Specification Parameters and Test Conditions IDD and IDDQ Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “MID_LEVEL” is defined as inputs are VREF = VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1. • Basic IDD and IDDQ Measurement Conditions are described in Table 2. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} • Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 0.3 / Jul. 2013 22 IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3(L) SDRAM CKE CS RAS, CAS, WE DQS, DQS DQ, DM, TDQS, TDQS A, BA ODT ZQ VSS RTT = 25 Ohm VDDQ/2 VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.3 / Jul. 2013 23 Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol tCK DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 7-7-7 9-9-9 11-11-11 13-13-13 1.875 1.5 1.25 1.25 Unit ns CL 7 9 11 11 nCK nRCD 7 9 11 11 nCK nRC 27 33 39 39 nCK nRAS 20 24 28 28 nCK nRP 7 9 11 11 nCK 1KB page size 20 20 24 24 nCK 2KB page size 27 30 32 32 nCK 1KB page size 4 4 5 5 nCK nFAW nRRD 2KB page size nRFC -512Mb 6 5 6 6 nCK 48 60 72 72 nCK nRFC-1 Gb 59 74 88 88 nCK nRFC- 2 Gb 86 107 128 128 nCK nRFC- 4 Gb 139 174 208 208 nCK nRFC- 8 Gb 187 234 280 280 nCK Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and IDD0 PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3. Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT, IDD1 RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4. Rev. 0.3 / Jul. 2013 24 Symbol Description Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2NT Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6; Pattern Details: see Table 6. Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD3N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Rev. 0.3 / Jul. 2013 25 Symbol Description Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address, IDD4R Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7. Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address, IDD4W Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8. Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command, IDD5B Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9. Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: IDD6 Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Self-Refresh Current: Extended Temperature Range (optional) TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede); IDD6ET CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Rev. 0.3 / Jul. 2013 26 Symbol Description Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a),f); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table IDD7 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10. a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B Rev. 0.3 / Jul. 2013 27 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 0 3,4 ... nRAS ... Static High toggling 1*nRC+0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary ACT 0 0 1 1 0 0 00 0 1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - 1*nRC+3, 4 D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 - ... 1*nRC+nRAS repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.3 / Jul. 2013 28 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 00000000 0 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) 0 3,4 ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 00110011 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL. Rev. 0.3 / Jul. 2013 29 Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.3 / Jul. 2013 30 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna) 0 Static High toggling 5 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. 0, 0, 0, 0, 0, 0, 0, 1 1 1 1 1 1 = = = = = = = A[2:0] ODT 0 0 1 0 0 1 BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] A[6:3] 0 0 1 0 0 1 but but but but but but but WE CAS RAS CS 0 1 1 0 1 1 0 1 1 0 1 1 Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop A[9:7] WR D D,D WR D D,D repeat repeat repeat repeat repeat repeat repeat A[10] 1 2 3 4 5 6 7 1 2,3 4 5 6,7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 A[15:11] 0 BA[2:0] 0 Command Cycle Number Sub-Loop CKE Static High toggling CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 0 0 00000000 00110011 - 1 2 3 4 5 6 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.3 / Jul. 2013 31 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 9 - IDD5B Measurement-Loop Patterna) 3,4 Static High toggling 5...8 2 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.3 / Jul. 2013 32 Table 10 - IDD7 Measurement-Loop Patterna) 2 3 4 Static High 5 6 7 8 9 10 4*nRRD nFAW nFAW+nRRD nFAW+2*nRRD nFAW+3*nRRD nFAW+4*nRRD 2*nFAW+0 2*nFAW+1 2&nFAW+2 11 2*nFAW+nRRD 2*nFAW+nRRD+1 2&nFAW+nRRD+2 12 13 2*nFAW+2*nRRD 2*nFAW+3*nRRD 14 2*nFAW+4*nRRD 15 16 17 18 3*nFAW 3*nFAW+nRRD 3*nFAW+2*nRRD 3*nFAW+3*nRRD 19 3*nFAW+4*nRRD 00110011 - 0 - 0 - 0 0 0 00110011 - 0 0 0 00000000 - 0 - 0 - A[10] 0 0 0 ODT 00000000 - WE 0 0 0 CAS ACT 0 0 1 1 0 0 00 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 D 1 0 0 0 0 0 00 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F RDA 0 1 0 1 0 1 00 1 0 F D 1 0 0 0 0 1 00 0 0 F repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 1, but BA[2:0] = 7 0 0 7 00 0 0 F D 1 0 0 Assert and repeat above D Command until 2* nFAW - 1, if necessary ACT 0 0 1 1 0 0 00 0 0 F RDA 0 1 0 1 0 0 00 1 0 F D 1 0 0 0 0 0 00 0 0 F Repeat above D Command until 2* nFAW + nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 0 RDA 0 1 0 1 0 1 00 1 0 0 D 1 0 0 0 0 1 00 0 0 0 Repeat above D Command until 2* nFAW + 2* nRRD - 1 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 0 Assert and repeat above D Command until 3* nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 0 Assert and repeat above D Command until 4* nFAW - 1, if necessary RAS Datab) CS A[9:7] A[15:11] BA[2:0] Command A[2:0] 1 0 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD A[6:3] 0 toggling Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.3 / Jul. 2013 33 IDD Specifications (Tcase: 0 to 95oC) *Module IDD values in the datasheet are only a calculation based on the component IDD spec and register power. The actual measurements may vary according to DQ loading cap. 32GB, 4G x 72 LR-DIMM: HMT84GL7AMR4A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 Montage(C1) DDR3L 1333 DDR3L 1600 3662 3808 3788 3934 3374 3520 3662 3808 946 1020 1090 1164 3446 3520 4022 4168 1594 1740 4436 4744 4526 4834 6686 6814 1234 1308 1522 1596 5426 5644 Inphi(GS02B) DDR3L 1333 DDR3L 1600 4169 4349 4295 4475 3881 4061 4169 4349 1527 1633 1671 1777 3953 4061 4529 4709 2175 2353 4943 5285 5033 5375 7193 7355 1815 1921 2103 2209 5933 6185 Unit note mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA 32GB, 4G x 72 LR-DIMM: HMT84GL7AMR4C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 Montage(C1) Inphi(GS02B) Unit note DDR3 1333 DDR3 1600 DDR3 1866 DDR3 1333 DDR3 1600 DDR3 1866 4213 4351 4490 4855 5045 4949 mA 4339 4495 4652 4981 5189 5111 mA 3907 4045 4184 4549 4739 4643 mA 4195 4405 4544 4837 5099 5003 mA 1192 1259 1292 1873 1997 2198 mA 1336 1403 1508 2017 2141 2414 mA 3979 4117 4112 4624 4811 4571 mA 4555 4765 4904 5197 5459 5363 mA 1840 1979 2012 2521 2717 2918 mA 5077 5377 5768 5719 6071 6227 mA 5167 5467 5858 5809 6161 6317 mA 7147 7267 7388 7789 7961 7847 mA 1480 1547 1580 2161 2285 2486 mA 1768 1835 1868 2249 2573 2774 mA 6157 6367 6668 6799 7061 7127 mA Rev. 0.3 / Jul. 2013 34 Module Dimensions 4Gx72 - HMT84GL7AMR4A(C) Front 133.35 128.95 Detail B Detail A DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP 1 9.50 17.30 23.30 Memory Buffer 4X3.00±0.10 120 1 2X3.00±0.10 47.00 Detail C 5.175 71.00 5.0 Detail D Back DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP DDP 121 240 1 Side Detail of Contacts A Detail of Contacts D Detail of Contacts C Detail of Contacts B 1.20± 0.15 4.53mm max 0.80± 0.05 2.50 14.90 2.50±0.20 0.3 ±0.15 0.20 2.50±0.20 13.60 3± 0.1 3.80 0.4 0.3~0.1 1.00 1.50 ±0.10 5.00 1.27±010mm max Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.3 / Jul. 2013 35 30.00 2.10±0.15 4Gx72 - HMT84GL7AMR4A(C) - Heat Spreader Front 133.4 126.4 42.3 7.2 25.00 14 30.20 7.4 3.1 11 17.0 Registering Clock Driver 7.9 11.4 2.786 26.1 5.1 16 120 1 34 76.6 69.25 119.64 Registering Clock Driver Back 1 120 Side 7.65mm max Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. 2.In order to uninstall FDHS, please contact sales administrator. Rev. 0.3 / Jul. 2013 1.27±010mm max Units: millimeters 36