CED50N06/CEU50N06 N-Channel Enhancement Mode Field Effect Transistor FEATURES 60V, 36A , RDS(ON) = 18mΩ(typ) @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 60 Units V VGS ±20 V ID 36 A IDM 105 A 68 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation @ TC = 25 C - Derate above 25 C Operating and Store Temperature Range S PD 0.45 W/ C TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 2.2 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W Rev 1. 2006.Oct http://www.cetsemi.com Details are subject to change without notice . 6 - 66 CED50N06/CEU50N06 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 60V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 23 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Dynamic Characteristics c Forward Transconductance VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 15A 18 gFS VDS = 10V, ID = 15A 15 S 1278 pF 430 pF 80 pF Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz 2 Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 36A, VGS = 10V, RGEN = 3.6Ω 21 45 ns 13 33 ns 40 80 ns Turn-Off Fall Time tf 9 27 ns Total Gate Charge Qg 31 40 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 36A, VGS = 10V 8 nC 13 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 15A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 6 - 67 35 A 1.5 V 6 CED50N06/CEU50N06 120 125 25 C VGS=8V 100 ID, Drain Current (A) ID, Drain Current (A) VGS=10V 80 VGS=7V 60 VGS=6V 40 VGS=5V 20 100 75 50 25 0 0 0 1 2 3 4 5 6 0 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 8 10 Figure 2. Transfer Characteristics 1200 900 600 Coss 300 Crss 0 0 5 10 15 20 25 2.6 2.2 ID=15A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) VTH, Normalized Gate-Source Threshold Voltage 6 Figure 1. Output Characteristics Ciss ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 4 VGS, Gate-to-Source Voltage (V) 1500 1.2 2 VDS, Drain-to-Source Voltage (V) 1800 1.3 -55 C TJ=125 C VGS=4V VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 1 0 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 6 - 68 15 V =48V DS ID=36A 12 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED50N06/CEU50N06 9 6 3 0 0 10 20 30 40 10 3 10 2 10 1 10 0 10 -1 RDS(ON)Limit 100ms 1ms 10ms DC 6 TC=25 C TJ=175 C Single Pulse 10 -2 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) VOUT td(off) tf 90% 90% VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -5 t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 6 - 69 10 0 10 1 2