Freescale MCIMX6D1AVT08AC I.mx 6dual/6quad automotive and infotainment applications processor Datasheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: IMX6DQAEC
Rev. 2.3, 07/2013
MCIMX6QxAxxxxC
MCIMX6DxAxxxxC
i.MX 6Dual/6Quad
Automotive and
Infotainment
Applications Processors
Package Information
Case FCPBGA 21 x 21 mm, 0.8 mm pitch
Ordering Information
See Table 1 on page 3
1
Introduction
The i.MX 6Dual and i.MX 6Quad automotive and
infotainment processors represent Freescale
Semiconductor’s latest achievement in integrated
multimedia applications processors. These processors
are part of a growing family of multimedia-focused
products that offer high-performance processing with a
high degree of functional integration. These processors
target the needs of the growing automotive infotainment,
telematics, HMI, and display-based cluster markets.
The i.MX 6Dual/6Quad processors feature Freescale’s
advanced implementation of the quad
ARM® Cortex®-A9 core, which operates at speeds up to
1 GHz. They include 2D and 3D graphics processors, 3D
1080p video processing, and integrated power
management. Each processor provides a 64-bit
DDR3/LVDDR3/LPDDR2-1066 memory interface and
a number of other interfaces for connecting peripherals,
such as WLAN, Bluetooth®, GPS, hard drive, displays,
and camera sensors.
© 2012-2013 Freescale Semiconductor, Inc. All rights reserved.
1
2
3
4
5
6
7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Updated Signal Naming Convention . . . . . . . . . . . . 7
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 17
3.2 Recommended Connections for Unused Analog
Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Power Supplies Requirements and Restrictions . . 30
4.3 Integrated LDO Voltage Regulator Parameters . . . 31
4.4 PLL Electrical Characteristics . . . . . . . . . . . . . . . . 33
4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Output Buffer Impedance Parameters . . . . . . . . . . 45
4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . 49
4.10 General-Purpose Media Interface (GPMI) Timing. 65
4.11 External Peripheral Interface Parameters . . . . . . . 74
Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 139
5.1 Boot Mode Configuration Pins. . . . . . . . . . . . . . . 139
5.2 Boot Devices Interfaces Allocation . . . . . . . . . . . 140
Package Information and Contact Assignments . . . . . . 142
6.1 Updated Signal Naming Convention . . . . . . . . . . 142
6.2 21 x 21 mm Package Information . . . . . . . . . . . . 142
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Introduction
The i.MX 6Dual/6Quad processors are specifically useful for applications such as the following:
• Automotive navigation and entertainment
• Graphics rendering for Human Machine Interfaces (HMI)
• High-performance speech processing with large databases
• Audio playback
• Video processing and display
The i.MX 6Dual/6Quad processors have some very exciting features, for example:
• Multilevel memory system—The multilevel memory system of each processor is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The processors support
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR
Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed
NAND, including eMMC up to rev 4.4/4.41.
• Smart speed technology—The processors have power management throughout the device that
enables the rich suite of multimedia features and peripherals to consume minimum power in both
active and various low power modes. Smart speed technology enables the designer to deliver a
feature-rich product, requiring levels of power far lower than industry expectations.
• Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices
by scaling the voltage and frequency to optimize performance.
• Multimedia powerhouse—The multimedia performance of each processor is enhanced by a
multilevel cache system, Neon MPE (Media Processor Engine) co-processor, a multi-standard
hardware video codec, 2 autonomous and independent image processing units (IPU), and a
programmable smart DMA (SDMA) controller.
• Powerful graphics acceleration—Each processor provides three independent, integrated graphics
processing units: an OpenGL® ES 2.0 3D graphics accelerator with four shaders (up to 200 MT/s
and OpenCL support), 2D graphics accelerator, and dedicated OpenVG™ 1.1 accelerator.
• Interface flexibility—Each processor supports connections to a variety of interfaces: LCD
controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS
display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with
PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host
and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces
(such as UART, I2C, and I2S serial audio, SATA-II, and PCIe-II).
• Automotive environment support—Each processor includes interfaces, such as two CAN ports, an
MLB150/50 port, an ESAI audio interface, and an asynchronous sample rate converter for
multichannel/multisource audio.
• Advanced security—The processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad
security reference manual (IMX6DQ6SDLSRM).
• Integrated power management—The processors integrate linear regulators and internally generate
voltage levels for different domains. This significantly simplifies system power management
structure.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
2
Freescale Semiconductor
Introduction
1.1
Ordering Information
Table 1 shows examples of orderable part numbers covered by this data sheet. Table 1 does not include all
possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If
your desired part number is not listed in Table 1, or you have questions about available parts, see
freescale.com/imx6series or contact your Freescale representative.
Table 1. Example Orderable Part Numbers
Part Number
Quad/Dual CPU
Options
Speed
Grade
Temperature
Grade
MCIMX6Q6AVT10AC
i.MX 6Quad
With VPU, GPU
1 GHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6Q4AVT10AC
i.MX 6Quad
With GPU, no VPU
1 GHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6Q6AVT08AC
i.MX 6Quad
With VPU, GPU
852 MHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6Q4AVT08AC
i.MX 6Quad
With GPU, no VPU
852 MHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D6AVT10AC
i.MX 6Dual
With VPU, GPU
1 GHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D4AVT10AC
i.MX 6Dual
With GPU, no VPU
1 GHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D6AVT08AC
i.MX 6Dual
With VPU, GPU
852 MHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D4AVT08AC
i.MX 6Dual
With GPU, no VPU
852 MHz
Automotive
21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
Package
Figure 1 describes the part number nomenclature so that users can identify the characteristics of the
specific part number they have (for example, cores, frequency, temperature grade, fuse options, silicon
revision). Figure 1 applies to the i.MX 6Quad and i.MX 6Dual.
The primary characteristic that describes which data sheet a specific part applies to is the temperature
grade (junction) field:
• The i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors data sheet
(IMX6DQAEC) covers parts listed with “A (Automotive temp)”
• The i.MX 6Dual/6Quad Applications Processors for Consumer Products data sheet (IMX6DQCEC)
covers parts listed with “D (Commercial temp)” or “E (Extended Commercial temp)”
• The i.MX 6Dual/6Quad Applications Processors for Industrial Products data sheet (IMX6DQIEC)
covers parts listed with “C (Industrial temp)”
Ensure that you have the right data sheet for your specific part by checking the temperature grade
(junction) field and matching it to the right data sheet. If you have questions, see freescale.com/imx6series
or contact your Freescale representative.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
3
Introduction
MC
IMX6
X
@
+
VV
$$
%
A
MC
Silicon revision1
A
Prototype Samples
PC
Rev 1.2
C
Mass Production
MC
Special
SC
Fusing
%
Real Codec off and no HDCP or DTCP
A
Real Codec off with HDCP on
C
Qualification level
Part # series
X
i.MX 6Quad
Q
i.MX 6Dual
D
Part differentiator
@
Industrial with VPU, GPU, no MLB
7
Automotive with VPU, GPU
6
Consumer, with VPU, GPU
5
Automotive with GPU, no VPU
4
Automotive, no VPU, no GPU
1
Frequency
$$
800 MHz2 (Industrial grade)
08
850 MHz (Automotive grade)
08
3
Temperature Tj
+
Commercial: 0 to + 95 C
D
Extended commercial: -20 to + 105 C
E
Industrial: -40 to +105 C
C
Automotive: -40 to + 125C
A
1 GHz
10
1.2 GHz
12
Package type
RoHS
FCPBGA 21x21 0.8mm (lidded)
VT
FCPBGA 21x21 0.8mm (non lidded)
YM
1. See the freescale.com\imx6series Web page for latest information on the available silicon revision.
2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.
3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.
Figure 1. Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual
1.2
Features
The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore™ Platform, which has the
following features:
• ARM Cortex-A9 MPCore 4xCPU Processor (with TrustZone)
• The core configuration is symmetric, where each core includes:
— 32 KByte L1 Instruction Cache
— 32 KByte L1 Data Cache
— Private Timer and Watchdog
— Cortex-A9 NEON MPE (Media Processing Engine) Co-processor
The ARM Cortex-A9 MPCore complex includes:
• General Interrupt Controller (GIC) with 128 interrupt support
• Global Timer
• Snoop Control Unit (SCU)
• 1 MB unified I/D L2 cache, shared by two/four cores
• Two Master AXI (64-bit) bus interfaces output of L2 cache
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
4
Freescale Semiconductor
Introduction
•
•
Frequency of the core (including Neon and L1 cache) as per Table 6
NEON MPE coprocessor
— SIMD Media Processing Architecture
— NEON register file with 32x64-bit general-purpose registers
— NEON Integer execute pipeline (ALU, Shift, MAC)
— NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
— NEON load/store and permute pipeline
The SoC-level memory system consists of the following additional components:
— Boot ROM, including HAB (96 KB)
— Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)
— Secure/non-secure RAM (16 KB)
• External memory interfaces:
— 16-bit, 32-bit, and 64-bit DDR3-1066, LVDDR3-1066, and 1/2 LPDDR2-1066 channels,
supporting DDR interleaving mode, for 2x32 LPDDR2-1066
— 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit.
— 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
— 16/32-bit PSRAM, Cellular RAM
Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
• Hard Disk Drives—SATA II, 3.0 Gbps
• Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450
Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel.
— One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual
HD1080 and WXGA at 60 Hz)
— LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example,
WUXGA at 60 Hz) each
— HDMI 1.4 port
— MIPI/DSI, two lanes at 1 Gbps
• Camera sensors:
— Parallel Camera port (up to 20 bit and up to 240 MHz peak)
— MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to
800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to
four data lanes. Each i.MX 6Dual/6Quad processor has four lanes.
• Expansion cards:
— Four MMC/SD/SDIO card ports all supporting:
– 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104
mode (104 MB/s max)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
5
Introduction
•
•
•
– 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR
and DDR modes (104 MB/s max)
USB:
— One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
— Three USB 2.0 (480 Mbps) hosts:
– One HS host with integrated High Speed PHY
– Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) PHY
Expansion PCI Express port (PCIe) v2.0 one lane
— PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint
operations. Uses x1 PHY configuration.
Miscellaneous IPs and interfaces:
— Three I2S/SSI/AC97, up to 1.4 Mbps each
— Enhanced Serial Audio Interface (ESAI), up to 1.4 Mbps per channel
— Five UARTs, up to 4.0 Mbps each:
– Providing RS232 interface
– Supporting 9-bit RS485 multidrop mode
– One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is
due to the SoC IOMUX limitation, since all UART IPs are identical.
— Five eCSPI (Enhanced CSPI)
— Three I2C, supporting 400 kbps
— Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps
— Four Pulse Width Modulators (PWM)
— System JTAG Controller (SJC)
— GPIO with interrupt capabilities
— 8x8 Key Pad Port (KPP)
— Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
— Two Controller Area Network (FlexCAN), 1 Mbps each
— Two Watchdog timers (WDOG)
— Audio MUX (AUDMUX)
— MLB (MediaLB) provides interface to MOST Networks (150 Mbps) with the option of DTCP
cipher accelerator
The i.MX 6Dual/6Quad processors integrate advanced power management unit and controllers:
• Provide PMU, including LDO supplies, for on-chip resources
• Use Temperature Sensor for monitoring the die temperature
• Support DVFS techniques for low power modes
• Use Software State Retention and Power Gating for ARM and MPE
1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus
throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the
ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
6
Freescale Semiconductor
Introduction
•
•
Support various levels of system power modes
Use flexible clock gating control scheme
The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power
consumption numbers, while having the CPU core relatively free for performing other tasks.
The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:
• VPU—Video Processing Unit
• IPUv3H—Image Processing Unit version 3H (2 IPUs)
• GPU3Dv4—3D Graphics Processing Unit (OpenGL ES 2.0) version 4
• GPU2Dv2—2D Graphics Processing Unit (BitBlt)
• GPUVG—OpenVG 1.1 Graphics Processing Unit
• ASRC—Asynchronous Sample Rate Converter
Security functions are enabled and accelerated by the following hardware:
• ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
• SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or
blocking the access to the system debug features.
• CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and
True and Pseudo Random Number Generator (NIST certified)
• SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
• CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be
configured during boot and by eFUSEs and will determine the security level operation mode as
well as the TZ policy.
• A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.
1.3
Updated Signal Naming Convention
The signal names of the i.MX6 series of products have been standardized to better align the signal names
within the family and across the documentation. Some of the benefits of these changes are as follows:
• The names are unique within the scope of an SoC and within the series of products
• Searches will return all occurrences of the named signal
• The names are consistent between i.MX 6 series products implementing the same modules
• The module instance is incorporated into the signal name
This change applies only to signal names. The original ball names have been preserved to prevent the need
to change schematics, BSDL models, IBIS models, etc.
Throughout this document, the updated signal names are used except where referenced as a ball name
(such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal
name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to
map the signal names used in older documentation to the new standardized naming conventions.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
7
Architectural Overview
2
Architectural Overview
The following subsections provide an architectural overview of the i.MX 6Dual/6Quad processor system.
2.1
Block Diagram
Figure 2 shows the functional modules in the i.MX 6Dual/6Quad processor system.
Digital
Audio
LPDDR2/DDR3
532MHz (DDR1066)
NOR Flash
PSRAM
External
Memory
Interface
GPMI
MMDC
CSI2/MIPI
Internal
RAM
(272KB)
Smart DMA
(SDMA)
Debug
DAP
TPIU
SPBA
CTIs
SJC
Shared Peripherals
SSI (3)
eCSPI (5)
5xFast-UART
ESAI
SPDIF Rx/Tx
ASRC
Security
CAAM
(16KB Ram)
1/2 LVDS
(WUXGA+)
LDB
HDMI
ImageProcessing
Subsystem
2x IPUv3H
Boot
ROM
(96KB)
2xCAN
Interface
PCIe
GPS
Bus
4x Camera
Parallel/MIPI
Application Processor
Domain (AP)
EIM
SATA II
3.0Gbps
Battery Ctrl
Device
ARM Cortex A9
MPCore Platform
4x A9-Core
L1 I/D Cache
Timer, Wdog
AXI and AHB Switch Fabric
Raw/ONFI 2.2
Nand-Flash
GPS
Timers/Control
GPT
OSC32K
MMC/SD
eMMC/eSD
uSDHC (3)
uSDHC
MMC/SD
SDXC
I2C (3)
3D Graphics
Proc. Unit
(GPU3D)
IOMUXC
2D Graphics
Proc. Unit
(GPU2D)
GPIO
CAN (2)
EPIT (2)
OCOTP
Modem IC
KPP
Keypad
1-Gbps ENET
MLB 150
Ethernet
10/100/1000
Mbps
DTCP
HSI/MIPI
OTG PHY1
Host PHY2
WLAN
SRC
XTALOSC
PWM (4)
OpenVG 1.1
Proc. Unit
(GPUVG)
WDOG (2)
Bluetooth
Crystals
& Clock sources
PLL (8)
CCM
GPC
Video
Proc. Unit
(VPU + Cache)
Fuse Box
Temp Monitor
Clock and Reset
AUDMUX
CSU
JTAG
(IEEE1149.6)
2xHSIC
PHY
USB OTG
(dev/host)
MIPI
Display
DSI/MIPI
AP Peripherals
1MB L2 cache
SCU, Timer
PTM’s CTI’s
SNVS
(SRTC)
Audio,
Power
Mgmnt.
HDMI 1.4
Display
1/2 LCD
Displays
USB OTG +
3 HS Ports
MLB/Most
Network
Figure 2. i.MX 6Dual/6Quad Automotive Grade System Block Diagram
NOTE
The numbers in brackets indicate number of module instances. For example,
PWM (4) indicates four separate PWM peripherals.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
8
Freescale Semiconductor
Modules List
3
Modules List
The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these
modules in alphabetical order.
Table 2. i.MX 6Dual/6Quad Modules List
Block
Mnemonic
Block Name
Subsystem
Brief Description
512x8 Fuse
Box
Electrical Fuse Array Security
Electrical Fuse Array. Enables to setup Boot Modes, Security Levels,
Security Keys, and many other system parameters.
The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box
accessible through OCOTP_CTRL interface
APBH-DMA
NAND Flash and
BCH ECC DMA
Controller
System
Control
Peripherals
DMA controller used for GPMI2 operation
ARM
ARM Platform
ARM
The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores
version r2p10 and associated sub-blocks, including Level 2 Cache
Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller),
private timers, Watchdog, and CoreSight debug modules.
ASRC
Asynchronous
Sample Rate
Converter
Multimedia
Peripherals
The Asynchronous Sample Rate Converter (ASRC) converts the
sampling rate of a signal associated to an input clock into a signal
associated to a different output clock. The ASRC supports concurrent
sample rate conversion of up to 10 channels of about -120dB THD+N. The
sample rate conversion of each channel is associated to a pair of
incoming and outgoing sampling rates. The ASRC supports up to three
sampling rate pairs.
AUDMUX
Digital Audio Mux
Multimedia
Peripherals
The AUDMUX is a programmable interconnect for voice, audio, and
synchronous data routing between host serial interfaces (for example,
SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice
codecs). The AUDMUX has seven ports with identical functionality and
programming models. A desired connectivity is achieved by configuring
two or more AUDMUX ports.
BCH40
Binary-BCH ECC
Processor
System
Control
Peripherals
The BCH40 module provides up to 40-bit ECC encryption/decryption for
NAND Flash controller (GPMI)
CAAM
Cryptographic
Accelerator and
Assurance Module
Security
CAAM is a cryptographic accelerator and assurance module. CAAM
implements several encryption and hashing functions, a run-time integrity
checker, and a Pseudo Random Number Generator (PRNG). The pseudo
random number generator is certified by Cryptographic Algorithm
Validation Program (CAVP) of National Institute of Standards and
Technology (NIST). Its DRBG validation number is 94 and its SHS
validation number is 1455.
CAAM also implements a Secure Memory mechanism. In i.MX
6Dual/6Quad processors, the security memory provided is 16 KB.
Clock Control
Module, General
Power Controller,
System Reset
Controller
Clocks,
These modules are responsible for clock and reset distribution in the
Resets, and system, and also for the system power management.
Power Control
CCM
GPC
SRC
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
9
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
Block Name
Subsystem
Brief Description
CSI
MIPI CSI-2 Interface Multimedia
Peripherals
The CSI IP provides MIPI CSI-2 standard camera interface port. The
CSI-2 interface supports up to 1 Gbps for up to 3 data lanes and up to 800
Mbps for 4 data lanes.
CSU
Central Security Unit Security
The Central Security Unit (CSU) is responsible for setting comprehensive
security policy within the i.MX 6Dual/6Quad platform. The Security
Control Registers (SCR) of the CSU are set during boot time by the HAB
and are locked to prevent further writing.
CTI-0
CTI-1
CTI-2
CTI-3
CTI-4
Cross Trigger
Interfaces
CTM
Cross Trigger Matrix Debug / Trace Cross Trigger Matrix IP is used to route triggering events between CTIs.
The CTM module is internal to the Cortex-A9 Core Platform.
DAP
Debug Access Port
System
Control
Peripherals
DCIC-0
DCIC-1
Display Content
Integrity Checker
Automotive IP The DCIC provides integrity check on portion(s) of the display. Each i.MX
6Dual/6Quad processor has two such modules, one for each IPU.
DSI
MIPI DSI interface
Multimedia
Peripherals
The MIPI DSI IP provides DSI standard display port interface. The DSI
interface support 80 Mbps to 1 Gbps speed per data lane.
DTCP
MM
Provides encryption function according to Digital Transmission Content
Protection standard for traffic over MLB150.
Configurable SPI
Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface. It is configurable to
support Master/Slave modes, four chip selects to support multiple
peripherals.
Ethernet Controller
Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is designed to support
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external
transceiver interface and transceiver function are required to complete the
interface to the media. The i.MX 6Dual/6Quad processors also consist of
hardware assist for IEEE 1588 standard. For details, see the ENET
chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
DTCP
eCSPI1-5
ENET
Debug / Trace Cross Trigger Interfaces allows cross-triggering based on inputs from
masters attached to CTIs. The CTI module is internal to the Cortex-A9
Core Platform.
The DAP provides real-time access for the debugger without halting the
core to:
• System memory and peripheral registers
• All debug configuration registers
The DAP also provides debugger access to JTAG scan chains. The DAP
module is internal to the Cortex-A9 Core Platform.
Note: The theoretical maximum performance of 1 Gbps ENET is limited
to 470 Mbps (total for Tx and Rx) due to internal bus throughput
limitations. The actual measured performance in optimized environment
is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX
6Dual/6Quad errata document (IMX6DQCE).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
10
Freescale Semiconductor
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
EPIT-1
EPIT-2
ESAI
FlexCAN-1
FlexCAN-2
GPIO-1
GPIO-2
GPIO-3
GPIO-4
GPIO-5
GPIO-6
GPIO-7
Block Name
Subsystem
Brief Description
Enhanced Periodic
Interrupt Timer
Timer
Peripherals
Each EPIT is a 32-bit “set and forget” timer that starts counting after the
EPIT is enabled by software. It is capable of providing precise interrupts
at regular intervals with minimal processor intervention. It has a 12-bit
prescaler for division of input clock frequency to get the required time
setting for the interrupts to occur, and counter value can be programmed
on the fly.
Enhanced Serial
Audio Interface
Connectivity
Peripherals
The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial
port for serial communication with a variety of serial devices, including
industry-standard codecs, SPDIF transceivers, and other processors.
The ESAI consists of independent transmitter and receiver sections, each
section with its own clock generator. All serial transfers are synchronized
to a clock. Additional synchronization signals are used to delineate the
word frames. The normal mode of operation is used to transfer data at a
periodic rate, one word per period. The network mode is also intended for
periodic transfers; however, it supports up to 32 words (time slots) per
period. This mode can be used to build time division multiplexed (TDM)
networks. In contrast, the on-demand mode is intended for non-periodic
transfers of data and to transfer data serially at high speed when the data
becomes available.
The ESAI has 12 pins for data and clocking connection to external
devices.
Flexible Controller
Area Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed to be used as a
vehicle serial data bus, meeting the specific requirements of this field:
real-time processing, reliable operation in the Electromagnetic
interference (EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, Version 2.0 B, which supports both standard
and extended message frames.
General Purpose I/O System
Modules
Control
Peripherals
Used for general purpose input/output to external devices. Each GPIO
module supports 32 bits of I/O.
GPMI
General Purpose
Media Interface
Connectivity
Peripherals
The GPMI module supports up to 8x NAND devices. 40-bit ECC
encryption/decryption for NAND Flash controller (GPMI2). The GPMI
supports separate DMA channels per NAND device.
GPT
General Purpose
Timer
Timer
Peripherals
Each GPT is a 32-bit “free-running” or “set and forget” mode timer with
programmable prescaler and compare and capture register. A timer
counter value can be captured using an external event and can be
configured to trigger a capture event on either the leading or trailing edges
of an input pulse. When the timer is configured to operate in “set and
forget” mode, it is capable of providing precise interrupts at regular
intervals with minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at comparison. This
timer can be configured to run either on an external clock or on an internal
clock.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
11
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
Block Name
Subsystem
Brief Description
GPU2Dv2
Graphics Processing Multimedia
Unit-2D, ver. 2
Peripherals
The GPU2Dv2 provides hardware acceleration for 2D graphics
algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
GPU3Dv4
Graphics Processing Multimedia
Unit, ver. 4
Peripherals
The GPU3Dv4 provides hardware acceleration for 3D graphics algorithms
with sufficient processor power to run desktop quality interactive graphics
applications on displays up to HD1080 resolution. The GPU3D provides
OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1
GPUVGv2
Vector Graphics
Processing Unit,
ver. 2
Multimedia
Peripherals
OpenVG graphics accelerator provides OpenVG 1.1 support as well as
other accelerations, including Real-time hardware curve tesselation of
lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and
various Vector Drawing functions.
HDMI Tx
HDMI Tx interface
Multimedia
Peripherals
The HDMI module provides HDMI standard interface port to an HDMI 1.4
compliant display.
HSI
MIPI HSI interface
Connectivity
Peripherals
The MIPI HSI provides a standard MIPI interface to the applications
processor.
I2C Interface
Connectivity
Peripherals
I2C provide serial interface for external devices. Data rates of up to 400
kbps are supported.
IOMUXC
IOMUX Control
System
Control
Peripherals
This module enables flexible IO multiplexing. Each IO pad has default and
several alternate functions. The alternate functions are software
configurable.
IPUv3H-1
IPUv3H-2
Image Processing
Unit, ver. 3H
Multimedia
Peripherals
IPUv3H enables connectivity to displays and video sources, relevant
processing and synchronization and control capabilities, allowing
autonomous operation.
The IPUv3H supports concurrent output to two display ports and
concurrent input from two camera ports, through the following interfaces:
• Parallel Interfaces for both display and camera
• Single/dual channel LVDS display interface
• HDMI transmitter
• MIPI/DSI transmitter
• MIPI/CSI-2 receiver
The processing includes:
• Image conversions: resizing, rotation, inversion, and color space
conversion
• A high-quality de-interlacing filter
• Video/graphics combining
• Image enhancement: color adjustment and gamut mapping, gamma
correction, and contrast enhancement
• Support for display backlight reduction
Key Pad Port
Connectivity
Peripherals
KPP Supports 8 x 8 external key pad matrix. KPP features are:
• Open drain design
• Glitch suppression circuit design
• Multiple keys detection
• Standby key press detection
I2C-1
I2C-2
I2C-3
KPP
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
12
Freescale Semiconductor
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
LDB
Block Name
Subsystem
LVDS Display Bridge Connectivity
Peripherals
Brief Description
LVDS Display Bridge is used to connect the IPU (Image Processing Unit)
to External LVDS Display Interface. LDB supports two channels; each
channel has following signals:
• One clock pair
• Four data pairs
Each signal pair contains LVDS special differential pad (PadP, PadM).
MediaLB
Connectivity / The MLB interface module provides a link to a MOST® data network,
using the standardized MediaLB protocol (up to 150 Mbps).
Multimedia
The module is backward compatible to MLB-50.
Peripherals
Multi-Mode DDR
Controller
Connectivity
Peripherals
DDR Controller has the following features:
• Support 16/32/64-bit DDR3-1066 (LV) or LPDDR2-1066
• Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2
configurations (including 2x32 interleaved mode)
• Support up to 4 GByte DDR memory space
Security
The On-Chip OTP controller (OCOTP_CTRL) provides an interface for
reading, programming, and/or overriding identification and control
information stored in on-chip fuse elements. The module supports
electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also
provides a set of volatile software-accessible signals that can be used for
software control of hardware elements, not requiring non-volatility. The
OCOTP_CTRL provides the primary user-visible mechanism for
interfacing with on-chip fuse elements. Among the uses for the fuses are
unique chip identifiers, mask revision numbers, cryptographic keys, JTAG
secure mode, boot characteristics, and various control signals, requiring
permanent non-volatility.
On-Chip Memory
Controller
Data Path
The On-Chip Memory controller (OCRAM) module is designed as an
interface between system’s AXI bus and internal (on-chip) SRAM memory
module.
In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the
256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz
Clocking
Generates 32.768 kHz clock from an external crystal.
PCIe
PCI Express 2.0
Connectivity
Peripherals
The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU
Power-Management Data Path
Functions
Integrated power management unit. Used to provide power to various
SoC domains.
Pulse Width
Modulation
Connectivity
Peripherals
The pulse-width modulator (PWM) has a 16-bit counter and is optimized
to generate sound from stored sample audio images and it can also
generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate
sound.
RAM
16 KB
Secure/non-secure
RAM
Secured
Internal
Memory
Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM
256 KB
Internal RAM
Internal
Memory
Internal RAM, which is accessed through OCRAM memory controller.
MLB150
MMDC
OCOTP_CTRL OTP Controller
OCRAM
OSC 32 kHz
PWM-1
PWM-2
PWM-3
PWM-4
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
13
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
ROM
96KB
ROMCP
Block Name
Boot ROM
Subsystem
Internal
Memory
Brief Description
Supports secure and regular Boot Modes. Includes read protection on 4K
region for content protection
ROM Controller with Data Path
Patch
ROM Controller with ROM Patch support
SATA
Serial ATA
The SATA controller and PHY is a complete mixed-signal IP solution
designed to implement SATA II, 3.0 Gbps HDD connectivity.
SDMA
Smart Direct Memory System
Access
Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It helps in maximizing
system performance by off-loading the various cores in dynamic data
routing. It has the following features:
• Powered by a 16-bit Instruction-Set micro-RISC engine
• Multi-channel DMA supporting up to 32 time-division multiplexed DMA
channels
• 48 events with total flexibility to trigger any combination of channels
• Memory accesses including linear, FIFO, and 2D addressing
• Shared peripherals between ARM and SDMA
• Very fast context-switching with 2-level priority based preemptive
multi-tasking
• DMA units with auto-flush and prefetch capability
• Flexible address management for DMA transfers (increment,
decrement, and no address changes on source and destination
address)
• DMA ports can handle unit-directional and bi-directional flows (copy
mode)
• Up to 8-word buffer for configurable burst transfers
• Support of byte-swapping and CRC calculations
• Library of Scripts and API is available
System JTAG
Controller
System
Control
Peripherals
The SJC provides JTAG interface, which complies with JTAG TAP
standards, to internal logic. The i.MX 6Dual/6Quad processors use JTAG
port for production, testing, and system debugging. In addition, the SJC
provides BSR (Boundary Scan Register) standard support, which
complies with IEEE1149.1 and IEEE1149.6 standards.
The JTAG port must be accessible during platform initial laboratory
bring-up, for manufacturing tests and troubleshooting, as well as for
software debugging by authorized entities. The i.MX 6Dual/6Quad SJC
incorporates three security modes for protecting against unauthorized
accesses. Modes are selected through eFUSE configuration.
SNVS
Secure Non-Volatile
Storage
Security
Secure Non-Volatile Storage, including Secure Real Time Clock, Security
State Machine, Master Key Control, and Violation/Tamper Detection and
reporting.
SPDIF
Sony Philips Digital Multimedia
Interconnect Format Peripherals
SJC
Connectivity
Peripherals
A standard audio file transfer format, developed jointly by the Sony and
Phillips corporations. It supports Transmitter and Receiver functionality.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
14
Freescale Semiconductor
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
SSI-1
SSI-2
SSI-3
TEMPMON
Block Name
I2S/SSI/AC97
Interface
Subsystem
Connectivity
Peripherals
Brief Description
The SSI is a full-duplex synchronous interface, which is used on the
processor to provide connectivity with off-chip audio peripherals. The SSI
supports a wide variety of protocols (SSI normal, SSI network, I2S, and
AC-97), bit depths (up to 24 bits per word), and clock / frame sync options.
The SSI has two pairs of 8x24 FIFOs and hardware support for an
external DMA controller in order to minimize its impact on system
performance. The second pair of FIFOs provides hardware interleaving of
a second audio stream that reduces CPU overhead in use cases where
two time slots are being used simultaneously.
Temperature Monitor System
Control
Peripherals
The temperature monitor/sensor IP module for detecting high temperature
conditions. The temperature read out does not reflect case or ambient
temperature. It reflects the temperature in proximity of the sensor location
on the die. Temperature distribution may not be uniformly distributed;
therefore, the read out value may not be the reflection of the temperature
value for the entire die.
TZASC
Trust-Zone Address
Space Controller
Security
The TZASC (TZC-380 by ARM) provides security address region control
functions required for intended application. It is used on the path to the
DRAM controller.
UART-1
UART-2
UART-3
UART-4
UART-5
UART Interface
Connectivity
Peripherals
Each of the UARTv2 modules support the following serial data
transmit/receive protocols and configurations:
• 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd
or none)
• Programmable baud rates up to 4 MHz. This is a higher max baud rate
relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F
standard and the i.MX31 UART modules.
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud
• IrDA 1.0 support (up to SIR speed of 115200 bps)
• Option to operate as 8-pins full UART, DCE, or DTE
USB 2.0 High Speed Connectivity
OTG and 3x HS
Peripherals
Hosts
USBOH3 contains:
• One high-speed OTG module with integrated HS USB PHY
• One high-speed Host module with integrated HS USB PHY
• Two identical high-speed Host modules connected to HSIC USB ports.
USBOH3A
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
15
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
uSDHC-1
uSDHC-2
uSDHC-2
uSDHC-4
VDOA
VPU
WDOG-1
Block Name
Subsystem
Brief Description
SD/MMC and SDXC Connectivity
Enhanced
Peripherals
Multi-Media Card /
Secure Digital Host
Controller
i.MX 6Dual/6Quad specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and are based on the
uSDHC IP. They are:
• Fully compliant with MMC command/response sets and Physical Layer
as defined in the Multimedia Card System Specification,
v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC.
Hardware reset as specified for eMMC cards is supported at ports #3
and #4 only.
• Fully compliant with SD command/response sets and Physical Layer
as defined in the SD Memory Card Specifications, v3.0 including
high-capacity SDHC cards up to 32 GB.
• Fully compliant with SDIO command/response sets and
interrupt/read-wait mode as defined in the SDIO Card Specification,
Part E1, v1.10
• Fully compliant with SD Card Specification, Part A2, SD Host
Controller Standard Specification, v2.00
All four ports support:
• 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to
UHS-I SDR104 mode (104 MB/s max)
• 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52
MHz in both SDR and DDR modes (104 MB/s max)
However, the SoC-level integration and I/O muxing logic restrict the
functionality to the following:
• Instances #1 and #2 are primarily intended to serve as external slots or
interfaces to on-board SDIO devices. These ports are equipped with
“Card Detection” and “Write Protection” pads and do not support
hardware reset.
• Instances #3 and #4 are primarily intended to serve interfaces to
embedded MMC memory or interfaces to on-board SDIO devices.
These ports do not have “Card detection” and “Write Protection” pads
and do support hardware reset.
• All ports can work with 1.8 V and 3.3 V cards. There are two completely
independent I/O power domains for Ports #1 and #2 in four bit
configuration (SD interface). Port #3 is placed in his own independent
power domain and port #4 shares power domain with some other
interfaces.
VDOA
Multimedia
Peripherals
The Video Data Order Adapter (VDOA) is used to re-order video data from
the “tiled” order used by the VPU to the conventional raster-scan order
needed by the IPU.
Video Processing
Unit
Multimedia
Peripherals
A high-performing video processing unit (VPU), which covers many
SD-level and HD-level video decoders and SD-level encoders as a
multi-standard video codec engine as well as several important video
processing, such as rotation and mirroring.
See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for complete
list of VPU’s decoding/encoding capabilities.
Watchdog
Timer
Peripherals
The Watchdog Timer supports two comparison points during each
counting period. Each of the comparison points is configurable to evoke
an interrupt to the ARM core, and a second point evokes an external event
on the WDOG line.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
16
Freescale Semiconductor
Modules List
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic
WDOG-2
(TZ)
EIM
XTALOSC
3.1
Block Name
Watchdog
(TrustZone)
Subsystem
Timer
Peripherals
Brief Description
The TrustZone Watchdog (TZ WDOG) timer module protects against
TrustZone starvation by providing a method of escaping normal mode and
forcing a switch to the TZ mode. TZ starvation is a situation where the
normal OS prevents switching to the TZ mode. Such a situation is
undesirable as it can compromise the system’s security. Once the TZ
WDOG module is activated, it must be serviced by TZ software on a
periodic basis. If servicing does not take place, the timer times out. Upon
a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces
switching to the TZ mode. If it is still not served, the TZ WDOG asserts a
security violation signal to the CSU. The TZ WDOG module cannot be
programmed or deactivated by a normal mode Software.
NOR-Flash /PSRAM Connectivity
interface
Peripherals
The EIM NOR-FLASH / PSRAM provides:
• Support 16-bit (in muxed IO mode only) PSRAM memories (sync and
async operating modes), at slow frequency
• Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow
frequency
• Multiple chip selects
Crystal Oscillator
interface
The XTALOSC module enables connectivity to external crystal oscillator
device. In a typical application use-case, it is used for 24 MHz oscillator.
—
Special Signal Considerations
The package contact assignments can be found in Section 6, “Package Information and Contact
Assignments.” Signal descriptions are defined in the i.MX 6Dual/6Quad reference manual
(IMX6DQRM). Special signal consideration information is contained in the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
3.2
Recommended Connections for Unused Analog Interfaces
The recommended connections for unused analog interfaces can be found in the section, “Unused analog
interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of
Applications Processors (IMX6DQ6SDLHDG).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
17
Electrical Characteristics
4
Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX 6Dual/6Quad
processors.
4.1
Chip-Level Conditions
This section provides the device-level electrical characteristics for the SoC. See Table 3 for a quick
reference to the individual tables and sections.
Table 3. i.MX 6Dual/6Quad Chip-Level Conditions
For these characteristics, …
4.1.1
Topic appears …
Absolute Maximum Ratings
on page 18
FCPBGA Package Thermal Resistance
on page 19
Operating Ranges
on page 20
External Clock Sources
on page 22
Maximum Supply Currents
on page 23
Low Power Mode Supply Currents
on page 25
USB PHY Current Consumption
on page 26
SATA Typical Power Consumption
on page 26
PCIe 2.0 Maximum Power Consumption
on page 28
HDMI Maximum Power Consumption
on page 29
Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 4 may affect reliability or cause
permanent damage to the device. These are stress ratings only. Functional
operation of the device at these or any other conditions beyond those
indicated in the Operating Ranges or Parameters tables is not implied.
Table 4. Absolute Maximum Ratings
Parameter Description
Symbol
Min
Max
Unit
VDD_ARM_IN
VDD_ARM23_IN
VDD_SOC_IN
-0.3
1.5
V
VDD_ARM_CAP
VDD_ARM23_CAP
VDD_SOC_CAP
VDD_PU_CAP
-0.3
1.3
V
GPIO supply voltage
Supplies denoted as I/O supply
-0.5
3.6
V
DDR I/O supply voltage
Supplies denoted as I/O supply
-0.4
1.975
V
Core supply voltages
Internal supply voltages
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
18
Freescale Semiconductor
Electrical Characteristics
Table 4. Absolute Maximum Ratings (continued)
Parameter Description
Symbol
Min
Max
Unit
MLB I/O supply voltage
Supplies denoted as I/O supply
-0.3
2.8
V
LVDS I/O supply voltage
Supplies denoted as I/O supply
-0.3
2.8
V
VDD_HIGH_IN
-0.3
3.6
V
USB_H1_VBUS/USB_OTG_VBUS
—
5.25
V
USB_DP/USB_DN
-0.3
3.63
V
Vin/Vout
-0.5
OVDD1+0.3
V
—
—
2000
500
V
-40
150
oC
VDD_HIGH_IN supply voltage
USB VBUS
Input voltage on USB_OTG_DP, USB_OTG_DN,
USB_H1_DP, USB_H1_DN pins
Input/output voltage range
ESD damage immunity:
Vesd
• Human Body Model (HBM)
• Charge Device Model (CDM)
Storage temperature range
1
TSTORAGE
OVDD is the I/O supply voltage.
4.1.2
4.1.2.1
Thermal Resistance
FCPBGA Package Thermal Resistance
provides the FCPBGA package thermal resistance data.
Table 5. FCPBGA Package Thermal Resistance Data (Lidded)
Thermal Parameter
Junction to Ambient1
Junction to
Ambient1
Test Conditions
Symbol
Value
Unit
Single-layer board (1s); natural convection2
RJA
24
C/W
Four-layer board (2s2p); natural convection2
RJA
15
C/W
RJMA
17
C/W
RJMA
12
C/W
—
RJB
5
C/W
—
RJCtop
1
C/W
Single-layer board (1s); air flow 200
ft/min3
Four-layer board (2s2p); air flow 200 ft/min4
Junction to
Board1,4
Junction to Case (top)1,5
1
2
3
4
5
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Per JEDEC JESD51-3 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified
package.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1). The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the
interface layer.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
19
Electrical Characteristics
4.1.3
Operating Ranges
Table 6 provides the operating ranges of the i.MX 6Dual/6Quad processors.
Table 6. Operating Ranges
Parameter
Description
Symbol
Min
Typ
Max1
Unit
Comment
VDD_ARM_IN
VDD_ARM23_IN2
1.353
—
1.5
V
LDO Output Set Point (VDD_ARM_CAP4) of
1.225 V minimum for operation up to 852 MHz
or 996 MHz (depending on the device speed
grade).
1.2753
—
1.5
V
LDO Output Set Point (VDD_ARM_CAP4) of
1.150 V minimum for operation up to 792 MHz.
1.053
—
1.5
V
LDO Output Set Point (VDD_ARM_CAP4) of
0.925 V minimum for operation up to 396 MHz.
1.3503,6
—
1.5
V
264 MHz < VPU  352 MHz; VDDSOC and
VDDPU LDO outputs (VDD_SOC_CAP and
VDD_PU_CAP) require 1.225 V minimum.
1.2753,6
—
1.5
V
VPU  264 MHz; VDDSOC and VDDPU LDO
outputs (VDD_SOC_CAP and VDD_PU_CAP)
require 1.15 V minimum.
1.225
—
1.3
V
LDO bypassed for operation up to 852 MHz or
996 MHz (depending on the device speed
grade).
1.125
—
1.3
V
LDO bypassed for operation up to 792 MHz.
0.925
—
1.3
V
LDO bypassed for operation up to 396 MHz.
1.2256
—
1.3
V
264 MHz < VPU  352 MHz
1.156
—
1.3
V
VPU  264 MHz
VDD_ARM_IN
VDD_ARM23_IN2
0.9
—
1.3
V
See Table 10, "Stop Mode Current and Power
Consumption," on page 25.
VDD_SOC_IN
0.9
—
1.3
V
VDD_HIGH internal
Regulator
VDD_HIGH_IN7
2.8
—
3.3
V
Must match the range of voltages that the
rechargeable backup battery supports.
Backup battery supply
range
VDD_SNVS_IN7
2.8
—
3.3
V
Should be supplied from the same supply as
VDD_HIGH_IN, if the system does not require
keeping real time and other data on OFF state.
USB supply voltages
USB_OTG_VBUS
4.4
—
5.25
V
—
USB_H1_VBUS
4.4
—
5.25
V
—
NVCC_DRAM
1.14
1.2
1.3
V
LPDDR2
1.425
1.5
1.575
V
DDR3
1.283
1.35
1.45
V
DDR3_L
1.15
—
2.625
V
•
•
•
•
Run mode: LDO
enabled
VDD_SOC_IN5
Run mode: LDO
bypassed
VDD_ARM_IN
VDD_ARM23_IN2
VDD_SOC_IN5
Standby/DSM Mode
DDR I/O supply
Supply for RGMII I/O
power group8
NVCC_RGMII
1.15 V – 1.30 V in HSIC 1.2 V mode
1.43 V – 1.58 V in RGMII 1.5 V mode
1.70 V – 1.90 V in RGMII 1.8 V mode
2.25 V – 2.625 V in RGMII 2.5 V mode
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
20
Freescale Semiconductor
Electrical Characteristics
Table 6. Operating Ranges (continued)
Parameter
Description
GPIO supplies8
Symbol
Min
Typ
Max1
NVCC_CSI,
NVCC_EIM0,
NVCC_EIM1,
NVCC_EIM2,
NVCC_ENET,
NVCC_GPIO,
NVCC_LCD,
NVCC_NANDF,
NVCC_SD1,
NVCC_SD2,
NVCC_SD3,
NVCC_JTAG
1.65
1.8,
2.8,
3.3
3.6
NVCC_LVDS_2P59
NVCC_MIPI
2.25
2.5
2.75
V
—
HDMI_VP
0.99
1.1
1.3
V
—
HDMI_VPH
2.25
2.5
2.75
V
—
PCIE_VP
1.023
1.1
1.3
V
—
PCIE_VPH
2.325
2.5
2.75
V
—
PCIE_VPTX
1.023
1.1
1.3
V
—
SATA_VP
0.99
1.1
1.3
V
—
SATA_VPH
2.25
2.5
2.75
V
—
TJ
-40
95
125
C
See i.MX 6Dual/6Quad Product Lifetime Usage
Estimates Application Note, AN4724, for
information on product lifetime (power-on
years) for this processor.
HDMI supply voltages
PCIe supply voltages
SATA Supply voltages
Junction temperature
1
2
3
4
5
6
7
8
9
Unit
V
Comment
Isolation between the NVCC_EIMx and
NVCC_SDx different supplies allow them to
operate at different voltages within the specified
range.
Example: NVCC_EIM1 can operate at 1.8 V
while NVCC_EIM2 operates at 3.3 V.
Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a voltage
set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.
For Quad core system, connect to VDD_ARM_IN. For Dual core system, may be shorted to GND together with
VDD_ARM23_CAP to reduce leakage.
VDD_ARM_IN and VDD_SOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation.
VDD_ARM_CAP must not exceed VDD_CACHE_CAP by more than +50 mV. VDD_CACHE_CAP must not exceed
VDD_ARM_CAP by more than 200 mV.
VDD_SOC_CAP and VDD_PU_CAP must be equal.
VDDSOC and VDDPU output voltages must be set according to this rule: VDDARM-VDDSOC/PU<50mV.
While setting VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see the Hardware Development Guide for
i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or
not, and associated I/O pins need to have a pull-up or pull-down resistor applied to limit any floating gate current.
This supply also powers the pre-drivers of the DDR I/O pins; therefore, it must always be provided, even when LVDS is not used.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
21
Electrical Characteristics
Table 7 shows on-chip LDO regulators that can supply on-chip loads.
Table 7. On-Chip LDOs1 and their On-Chip Loads
Voltage Source
Load
Comment
VDD_HIGH_CAP
NVCC_LVDS_2P5
Board-level connection to VDD_HIGH_CAP
NVCC_MIPI
HDMI_VPH
PCIE_VPH
SATA_VPH
VDD_SOC_CAP2
VDD_CACHE_CAP3
Board-level connection to VDD_SOC_CAP
HDMI_VP
PCIE_VP
PCIE_VPTX
SATA_VP
1
On-chip LDOs are designed to supply the i.MX 6Dual/6Quad loads and must not be used to supply external loads.
VDD_ARM_CAP/VDD_ARM23_CAP must not exceed VDD_SOC_CAP by more than +50 mV.
3 VDD_CACHE_CAP must not exceed VDD_ARM_CAP by more than 200 mV. VDD_ARM_CAP must not exceed
VDD_CACHE_CAP by more than +50 mV.
2
4.1.4
External Clock Sources
Each i.MX 6Dual/6Quad processor has two external input system clocks: a low frequency (RTC_XTALI)
and a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watchdog counters. The clock input can be
connected to either an external oscillator or a crystal using the internal oscillator amplifier. Additionally,
there is an internal ring oscillator, that can be used instead of RTC_XTALI when accuracy is not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either an external oscillator or a crystal using the
internal oscillator amplifier.
Table 8 shows the interface frequency requirements.
Table 8. External Input Clock Frequency
Parameter Description
RTC_XTALI Oscillator1,2
4,2
XTALI Oscillator
Symbol
Min
Typ
Max
Unit
fckil
—
32.7683/32.0
—
kHz
fxtal
—
24
—
MHz
1
External oscillator or a crystal with internal oscillator amplifier.
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware
Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
3 Recommended nominal frequency 32.768 kHz.
4
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
2
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
22
Freescale Semiconductor
Electrical Characteristics
The typical values shown in Table 8 are required for use with Freescale BSPs to ensure precise time
keeping and USB operation. For RTC_XTALI operation, two clock sources are available:
• On-chip 40 kHz ring oscillator: This clock source has the following characteristics:
— Approximately 25 A more Idd than crystal oscillator
— Approximately ±50% tolerance
— No external component required
— Starts up quicker than 32 kHz crystal oscillator
• External crystal oscillator with on-chip support circuit
— At power up, an internal ring oscillator is utilized. After crystal oscillator is stable, the clock
circuit switches over to the crystal oscillator automatically.
— Higher accuracy than ring oscillator.
— If no external crystal is present, then the ring oscillator is utilized.
The decision to choose a clock source should be based on real-time clock use and precision timeout.
4.1.5
Maximum Supply Currents
The Power Virus numbers shown in Table 9 represent a use case designed specifically to show the
maximum current consumption possible. All cores are running at the defined maximum frequency and are
limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a
very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention
was to specifically show the worst case power consumption.
The MMPF0100xxxx, Freescale’s power management IC targeted for the i.MX 6 Series family, supports
the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal
design is required for the increased system power dissipation.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for more
details on typical power consumption under various use case definitions.
Table 9. Maximum Supply Currents
Power Supply
Conditions
Max Current
Unit
i.MX 6Quad:
VDD_ARM_IN+VDD_ARM23_IN
996 MHz ARM clock based on Power
Virus operation
3920
mA
i.MX 6Dual:
VDD_ARM_IN
996 MHz ARM clock based on Power
Virus operation,
VDD_ARM23_IN grounded
2352
mA
VDD_SOC_IN
996 MHz ARM clock
1890
mA
VDD_HIGH_IN
—
1251
mA
VDD_SNVS_IN
—
2752
A
USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0)
—
253
mA
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
23
Electrical Characteristics
Table 9. Maximum Supply Currents (continued)
Power Supply
Conditions
Max Current
Unit
Primary Interface (IO) Supplies
NVCC_DRAM
—
(see 4)
NVCC_ENET
N=10
Use maximum IO equation5
NVCC_LCD
N=29
Use maximum IO equation5
NVCC_GPIO
N=24
Use maximum IO equation5
NVCC_CSI
N=20
Use maximum IO equation5
NVCC_EIM0
N=19
Use maximum IO equation5
NVCC_EIM1
N=14
Use maximum IO equation5
NVCC_EIM2
N=20
Use maximum IO equation5
NVCC_JTAG
N=6
Use maximum IO equation5
NVCC_RGMII
N=12
Use maximum IO equation5
NVCC_SD1
N=6
Use maximum IO equation5
NVCC_SD2
N=6
Use maximum IO equation5
NVCC_SD3
N=11
Use maximum IO equation5
NVCC_NANDF
N=26
Use maximum IO equation5
—
25.5
mA
—
1
mA
NVCC_MIPI
MISC
DRAM_VREF
1
2
3
4
5
The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or
HDMI, PCIe, and SATA VPH supplies).
Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 9. The maximum VDD_SNVS_IN
current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of
the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that
current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
This is the maximum current per active USB physical interface.
The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators
are typically available from memory vendors which take into account factors such as signal termination.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for examples of DRAM power
consumption during specific use case scenarios.
General equation for estimated, maximum power consumption of an IO power supply:
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
24
Freescale Semiconductor
Electrical Characteristics
4.1.6
Low Power Mode Supply Currents
Table 10 shows the current core consumption (not including I/O) of the i.MX 6Dual/6Quad processors in
selected low power modes.
Table 10. Stop Mode Current and Power Consumption
Mode
Test Conditions
WAIT
STOP_ON
STOP_OFF
STANDBY
Deep Sleep Mode
(DSM)
SNVS Only
1
•
•
•
•
•
•
ARM, SoC, and PU LDOs are set to 1.225 V
HIGH LDO set to 2.5 V
Clocks are gated
DDR is in self refresh
PLLs are active in bypass (24 MHz)
Supply voltages remain ON
•
•
•
•
•
ARM LDO set to 0.9 V
SoC and PU LDOs set to 1.225 V
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
•
•
•
•
•
•
ARM LDO set to 0.9 V
SoC LDO set to 1.225 V
PU LDO is power gated
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
•
•
•
•
•
•
•
ARM and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
Low voltage
Well Bias ON
Crystal oscillator is enabled
•
•
•
•
•
•
•
ARM and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
Low voltage
Well Bias ON
Crystal oscillator and bandgap are disabled
• VDD_SNVS_IN powered
• All other supplies off
• SRTC running
Supply
Typical1
Unit
VDD_ARM_IN (1.4 V)
6
mA
VDD_SOC_IN (1.4 V)
23
mA
VDD_HIGH_IN (3.0 V)
3.7
mA
Total
52
mW
VDD_ARM_IN (1.4 V)
7.5
mA
VDD_SOC_IN (1.4 V)
22
mA
VDD_HIGH_IN (3.0 V)
3.7
mA
Total
52
mW
VDD_ARM_IN (1.4 V)
7.5
mA
VDD_SOC_IN (1.4 V)
13.5
mA
VDD_HIGH_IN (3.0 V)
3.7
mA
Total
41
mW
VDD_ARM_IN (0.9 V)
0.1
mA
VDD_SOC_IN (0.9 V)
13
mA
VDD_HIGH_IN (3.0 V)
3.7
mA
Total
22
mW
VDD_ARM_IN (0.9 V)
0.1
mA
VDD_SOC_IN (0.9 V)
2
mA
VDD_HIGH_IN (3.0 V)
0.5
mA
Total
3.4
mW
VDD_SNVS_IN (2.8V)
41
A
Total
115
W
The typical values shown here are for information only and are not guaranteed. These values are average values measured
on a worst-case wafer at 25C.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
25
Electrical Characteristics
4.1.7
4.1.7.1
USB PHY Current Consumption
Power Down Mode
In power down mode, everything is powered down, including the VBUS valid detectors, typ condition.
Table 11 shows the USB interface current consumption in power down mode.
Table 11. USB PHY Current Consumption in Power Down Mode
Current
VDD_USB_CAP (3.0 V)
VDD_HIGH_CAP (2.5 V)
NVCC_PLL_OUT (1.1 V)
5.1 A
1.7 A
<0.5 A
NOTE
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were
identified to be the voltage divider circuits in the USB-specific level
shifters.
4.1.8
SATA Typical Power Consumption
Table 12 provides SATA PHY currents for certain Tx operating modes.
NOTE
Tx power consumption values are provided for a single transceiver. If
T = single transceiver power and C = Clock module power, the total power
required for N lanes = N x T + C.
Table 12. SATA PHY Current Drain
Mode
P0: Full-power state1
Test Conditions
Supply
Typical Current
Unit
Single Transceiver
SATA_VP
11
mA
SATA_VPH
13
SATA_VP
6.9
SATA_VPH
6.2
SATA_VP
11
SATA_VPH
11
SATA_VP
6.9
SATA_VPH
6.2
SATA_VP
9.4
SATA_VPH
2.9
SATA_VP
6.9
SATA_VPH
6.2
Clock Module
P0: Mobile2
Single Transceiver
Clock Module
P0s: Transmitter idle
Single Transceiver
Clock Module
mA
mA
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
26
Freescale Semiconductor
Electrical Characteristics
Table 12. SATA PHY Current Drain (continued)
Mode
P1: Transmitter idle, Rx powered
down, LOS disabled
Test Conditions
Supply
Typical Current
Unit
Single Transceiver
SATA_VP
0.67
mA
SATA_VPH
0.23
SATA_VP
6.9
SATA_VPH
6.2
SATA_VP
0.53
SATA_VPH
0.11
SATA_VP
0.036
SATA_VPH
0.12
SATA_VP
0.13
SATA_VPH
0.012
SATA_VP
0.008
SATA_VPH
0.004
Clock Module
P2: Powered-down state, only
LOS and POR enabled
Single Transceiver
Clock Module
PDDQ mode3
Single Transceiver
Clock Module
mA
mA
1
Programmed for 1.0 V peak-to-peak Tx level.
Programmed for 0.9 V peak-to-peak Tx level with no boost or attenuation.
3 LOW power non-functional.
2
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
27
Electrical Characteristics
4.1.9
PCIe 2.0 Maximum Power Consumption
Table 13 provides PCIe PHY currents for certain operating modes.
Table 13. PCIe PHY Current Drain
Mode
P0: Normal Operation
Test Conditions
Supply
Max Current
Unit
5G Operations
PCIE_VP (1.1 V)
40
mA
PCIE_VPTX (1.1 V)
20
PCIE_VPH (2.5 V)
21
PCIE_VP (1.1 V)
27
PCIE_VPTX (1.1 V)
20
PCIE_VPH (2.5 V)
20
PCIE_VP (1.1 V)
30
PCIE_VPTX (1.1 V)
2.4
PCIE_VPH (2.5 V)
18
PCIE_VP (1.1 V)
20
PCIE_VPTX (1.1 V)
2.4
PCIE_VPH (2.5 V)
18
PCIE_VP (1.1 V)
12
PCIE_VPTX (1.1 V)
2.4
PCIE_VPH (2.5 V)
12
PCIE_VP (1.1 V)
1.3
PCIE_VPTX (1.1 V)
0.18
PCIE_VPH (2.5 V)
0.36
2.5G Operations
P0s: Low Recovery Time
Latency, Power Saving State
5G Operations
2.5G Operations
P1: Longer Recovery Time
Latency, Lower Power State
Power Down
—
—
mA
mA
mA
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
28
Freescale Semiconductor
Electrical Characteristics
4.1.10
HDMI Maximum Power Consumption
Table 14 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down
modes.
Table 14. HDMI PHY Current Drain
Mode
Test Conditions
Supply
Max Current
Unit
Active
Bit rate 251.75 Mbps
HDMI_VPH
14
mA
HDMI_VP
4.1
mA
HDMI_VPH
14
mA
HDMI_VP
4.2
mA
HDMI_VPH
17
mA
HDMI_VP
7.5
mA
HDMI_VPH
17
mA
HDMI_VP
12
mA
HDMI_VPH
16
mA
HDMI_VP
17
mA
HDMI_VPH
19
mA
HDMI_VP
22
mA
HDMI_VPH
49
A
HDMI_VP
1100
A
Bit rate 279.27 Mbps
Bit rate 742.5 Mbps
Bit rate 1.485 Gbps
Bit rate 2.275 Gbps
Bit rate 2.97 Gbps
Power-down
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
29
Electrical Characteristics
4.2
Power Supplies Requirements and Restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to ensure the reliable operation of the device. Any deviation from
these sequences may result in the following situations:
• Excessive current during power-up phase
• Prevention of the device from booting
• Irreversible damage to the processor
4.2.1
Power-Up Sequence
For power-up sequence, the restrictions are as follows:
• VDD_SNVS_IN supply must be turned ON before any other power supply. It may be connected
(shorted) with VDD_HIGH_IN supply.
• If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
• If the external SRC_POR_B signal is used to control the processor POR, SRC_POR_B must
remain low (asserted) until the VDD_ARM_CAP and VDD_SOC_CAP supplies are stable.
VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no restrictions.
• If the external SRC_POR_B signal is not used (always held high or left unconnected), the
processor defaults to the internal POR function (where the PMU controls generation of the POR
based on the power supplies). If the internal POR function is used, the following power supply
requirements must be met:
— VDD_ARM_IN and VDD_SOC_IN may be supplied from the same source, or
— VDD_SOC_IN can be supplied before VDD_ARM_IN with a maximum delay of 1 ms.
NOTE
The SRC_POR_B input (if used) must be immediately asserted at power-up
and remain asserted until the last power rail reaches its working voltage. In
the absence of an external reset feeding the SRC_POR_B input, the internal
POR module takes control. See the i.MX 6Dual/6Quad reference manual
(IMX6DQRM) for further details and to ensure that all necessary
requirements are being met.
NOTE
Ensure that there is no back voltage (leakage) from any supply on the board
towards the 3.3 V supply (for example, from the external components that
use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply
sequence and can be powered at any time.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
30
Freescale Semiconductor
Electrical Characteristics
4.2.2
Power-Down Sequence
No special restrictions for i.MX 6Dual/6Quad SoC.
4.2.3
•
•
•
4.3
Power Supplies Usage
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx)
is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For
information about I/O power supply of each pin, see “Power Group” column of Table 101, "21 x
21 mm Functional Contact Assignments," on page 147.
When the SATA interface is not used, the SATA_VP and SATA_VPH supplies should be grounded.
The input and output supplies for rest of the ports (SATA_REXT, SATA_PHY_RX_N,
SATA_PHY_RX_P, and SATA_PHY_TX_N) can be left floating. It is recommended not to turn
OFF the SATA_VPH supply while the SATA_VP supply is ON, as it may lead to excessive power
consumption. If boundary scan test is used, SATA_VP and SATA_VPH must remain powered.
When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies should
be grounded. The input and output supplies for rest of the ports (PCIE_REXT, PCIE_RX_N,
PCIE_RX_P, PCIE_TX_N, and PCIE_TX_P) can be left floating. It is recommended not to turn
the PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive power
consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain
powered.
Integrated LDO Voltage Regulator Parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use
only and should not be used to power any external circuitry. See the i.MX 6Dual/6Quad reference manual
(IMX6DQRM) for details on the power tree scheme recommended operation.
NOTE
The *_CAP signals should not be powered externally. These signals are
intended for internal LDO or LDO bypass operation only.
4.3.1
Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because
of their construction). The advantages of the regulators are to reduce the input supply variation because of
their input supply ripple rejection and their on die trimming. This translates into more voltage for the die
producing higher operating frequencies. These regulators have three basic modes.
• Bypass. The regulation FET is switched fully on passing the external voltage, DCDC_LOW, to the
load unaltered. The analog part of the regulator is powered down in this state, removing any loss
other than the IR drop through the power grid and FET.
• Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
31
Electrical Characteristics
•
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV
steps.
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.3.2
4.3.2.1
Regulators for Analog Modules
LDO_1P1
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, LVDS Phy, HDMI
Phy, MIPI Phy, and PLLs. A programmable brown-out detector is included in the regulator that can be used
by the system to determine when the load capability of the regulator is being exceeded to take the
necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up,
if needed. Active-pull-down can also be enabled for systems requiring this feature.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.3.2.2
LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V
with the nominal default setting as 2.5 V. The LDO_2P5 supplies the SATA Phy, USB Phy, LVDS Phy,
HDMI Phy, MIPI Phy, E-fuse module and PLLs. A programmable brown-out detector is included in the
regulator that can be used by the system to determine when the load capability of the regulator is being
exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current
requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this
feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for
applications needing to keep the output voltage alive during low-power modes where the main regulator
driver and its associated global bandgap reference module are disabled. The output of the weak-regulator
is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V
input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 .
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
32
Freescale Semiconductor
Electrical Characteristics
4.3.2.3
LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the
USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output
voltage. A programmable brown-out detector is included in the regulator that can be used by the system
to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This
regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS
supply, when both are present. If only one of the VBUS voltages is present, then the regulator
automatically selects this supply. Current limit is also included to help the system meet in-rush current
targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator
from being enabled.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.4
4.4.1
PLL Electrical Characteristics
Audio/Video PLL Electrical Parameters
Table 15. Audio/Video PLL Electrical Parameters
4.4.2
Parameter
Value
Clock output range
650 MHz ~1.3 GHz
Reference clock
24 MHz
Lock time
<11250 reference cycles
528 MHz PLL
Table 16. 528 MHz PLL Electrical Parameters
Parameter
Value
Clock output range
528 MHz PLL output
Reference clock
24 MHz
Lock time
<11250 reference cycles
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
33
Electrical Characteristics
4.4.3
Ethernet PLL
Table 17. Ethernet PLL Electrical Parameters
4.4.4
Parameter
Value
Clock output range
500 MHz
Reference clock
24 MHz
Lock time
<11250 reference cycles
480 MHz PLL
Table 18. 480 MHz PLL Electrical Parameters
4.4.5
Parameter
Value
Clock output range
480 MHz PLL output
Reference clock
24 MHz
Lock time
<383 reference cycles
MLB PLL
The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and
external clock edges, effectively tuning out the delay of the differential clock receiver and is also
responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is
not 1:1.
Table 19. MLB PLL Electrical Parameters
4.4.6
Parameter
Value
Lock time
<1.5 ms
ARM PLL
Table 20. ARM PLL Electrical Parameters
Parameter
Value
Clock output range
650 MHz~1.3 GHz
Reference clock
24 MHz
Lock time
<2250 reference cycles
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
34
Freescale Semiconductor
Electrical Characteristics
4.5
On-Chip Oscillators
4.5.1
OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.5.2
OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes
power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when
VDD_HIGH_IN is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz
clock will automatically switch to a crude internal ring oscillator. The frequency range of this block is
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.
The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN
power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen
VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs
depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic
ML621:
• Average Discharge Voltage is 2.5 V
• Maximum Charge Current is 0.6 mA
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k
NOTE
Always refer to the chosen coin cell manufacturer's data sheet for the latest
information.
Table 21. OSC32K Main Characteristics
Parameter
Min
Typ
Max
Comments
Fosc
—
32.768 kHz
—
This frequency is nominal and determined mainly by the crystal selected. 32.0 K
would work as well.
Current
consumption
—
4 A
—
The typical value shown is only for the oscillator, driven by an external crystal. If
the internal ring oscillator is used instead of an external crystal, then
approximately 25 A should be added to this value.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
35
Electrical Characteristics
Table 21. OSC32K Main Characteristics (continued)
Parameter
Min
Typ
Max
Comments
Bias resistor
—
14 M
—
This the integrated bias resistor that sets the amplifier into a high gain state. Any
leakage through the ESD network, external board leakage, or even a scope probe
that is significant relative to this value will debias the amplifier. The debiasing will
result in low gain, and will impact the circuit's ability to start up and maintain
oscillations.
Target Crystal Properties
Cload
—
10 pF
ESR
—
50 k
4.6
—
Usually crystals can be purchased tuned for different Cloads. This Cload value is
typically 1/2 of the capacitances realized on the PCB on either side of the quartz.
A higher Cload will decrease oscillation margin, but increases current oscillating
through the crystal.
100 k Equivalent series resistance of the crystal. Choosing a crystal with a higher value
will decrease the oscillating margin.
I/O DC Parameters
This section includes the DC parameters of the following I/O types:
• General Purpose I/O (GPIO)
• Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
• LVDS I/O
• MLB I/O
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output.
ovdd
pmos (Rpu)
1
or
0
pdat
Predriver
Voh min
Vol max
pad
nmos (Rpd)
ovss
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
36
Freescale Semiconductor
Electrical Characteristics
4.6.1
XTALI and RTC_XTALI (Clock Inputs) DC Parameters
Table 22 shows the DC parameters for the clock inputs.
Table 22. XTALI and RTC_XTALI DC Parameters
Parameter
Symbol
Test Conditions
Min
Max
Unit
XTALI high-level DC input voltage
Vih
—
0.8 x NVCC_PLL_OUT
NVCC_PLL_ OUT
V
XTALI low-level DC input voltage
Vil
—
0
0.2V
V
RTC_XTALI high-level DC input voltage
Vih
—
0.8 x VDD_SNVS_CAP
VDD_SNVS_CAP
V
RTC_XTALI low-level DC input voltage
Vil
—
0
0.2V
V
4.6.2
General Purpose I/O (GPIO) DC Parameters
Table 23 shows DC parameters for GPIO pads. The parameters in Table 23 are guaranteed per the
operating ranges in Table 6, unless otherwise noted.
Table 23. GPIO I/O DC Parameters
Parameter
Symbol
Test Conditions
Min
Max
Unit
High-level output voltage1
Voh
Ioh = -0.1 mA (DSE2 = 001, 010)
Ioh = -1 mA
(DSE = 011, 100, 101, 110, 111)
OVDD – 0.15
—
V
Low-level output voltage1
Vol
Iol = 0.1 mA (DSE2 = 001, 010)
Iol = 1mA
(DSE = 011, 100, 101, 110, 111)
—
0.15
V
High-Level DC input voltage1, 3
Vih
—
0.7  OVDD
OVDD
V
voltage1, 3
Vil
—
0
0.3  OVDD
V
Vhys
OVDD = 1.8 V
OVDD = 3.3 V
0.25
—
V
Schmitt trigger VT+3, 4
VT+
—
0.5  OVDD
—
V
3, 4
VT–
—
—
0.5  OVDD
V
Input current (no pull-up/down)
Iin
Vin = OVDD or 0
-1
1
A
Input current (22 k pull-up)
Iin
Vin = 0 V
Vin = OVDD
—
212
1
A
Input current (47 k pull-up)
Iin
Vin = 0 V
Vin = OVDD
—
100
1
A
Input current (100 k pull-up)
Iin
Vin = 0 V
Vin= OVDD
—
48
1
A
Input current (100 k pull-down)
Iin
Vin = 0 V
Vin = OVDD
—
1
48
A
Rkeep
Vin = 0.3 x OVDD
Vin = 0.7 x OVDD
105
175
Low-Level DC input
Input Hysteresis
Schmitt trigger VT–
Keeper circuit resistance
k
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
37
Electrical Characteristics
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2 DSE is the Drive Strength Field setting in the associated IOMUX control register.
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
4
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
4.6.3
DDR I/O DC Parameters
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.
4.6.3.1
LPDDR2 Mode I/O DC Parameters
The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June,
2009. The parameters in Table 24 are guaranteed per the operating ranges in Table 6, unless otherwise
noted.
Table 24. LPDDR2 I/O DC Electrical Parameters1
Parameters
Symbol
Test Conditions
Min
Max
Unit
High-level output voltage
Voh
Ioh = -0.1 mA
0.9  OVDD
—
V
Low-level output voltage
Vol
Iol = 0.1 mA
—
0.1  OVDD
V
Input reference voltage
Vref
—
0.49  OVDD
0.51  OVDD
DC input High Voltage
Vih(dc)
—
Vref+0.13V
OVDD
V
DC input Low Voltage
Vil(dc)
—
OVSS
Vref-0.13V
V
Vih(diff)
—
0.26
See Note 2
—
-0.26
—
Differential Input Logic High
Differential Input Logic Low
Input current (no pull-up/down)
Pull-up/pull-down impedance mismatch
240  unit calibration resolution
Keeper circuit resistance
1
2
See Note
2
Vil(diff)
—
Iin
Vin = 0 or OVDD
-2.5
2.5
A
MMpupd
—
-15
+15
%
Rres
—
—
10

Rkeep
—
110
175
k
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Table 30).
4.6.3.2
DDR3/DDR3L Mode I/O DC Parameters
The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April,
2008. The parameters in Table 25 are guaranteed per the operating ranges in Table 6, unless otherwise
noted.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
38
Freescale Semiconductor
Electrical Characteristics
Table 25. DDR3/DDR3L I/O DC Electrical Parameters
Parameters
Symbol
High-level output voltage
Test Conditions
Ioh = -0.1 mA
Voh (DSE = 001)
Voh
Min
Max
Unit
0.8  OVDD1
—
V
—
0.2  OVDD
V
Ioh = -1 mA
Voh (for all except DSE = 001)
Low-level output voltage
Iol = 0.1 mA
Vol (DSE = 001)
Vol
Iol = 1 mA
Vol (for all except DSE = 001)
Vref2
—
0.49  OVDD
0.51  OVDD
DC input Logic High
Vih(dc)
—
Vref+0.1
OVDD
V
DC input Logic Low
Vil(dc)
—
OVSS
Vref-0.1
V
Differential input Logic High
Vih(diff)
—
0.2
See Note3
V
Input reference voltage
3
Vil(diff)
—
See Note
-0.2
V
Termination Voltage
Vtt
Vtt tracking OVDD/2
0.49  OVDD
0.51  OVDD
V
Input current (no pull-up/down)
Iin
Vin = 0 or OVDD
-2.9
2.9
A
MMpupd
—
-10
10

Rres
—
—
10

Rkeep
—
105
175
k
Differential input Logic Low
Pull-up/pull-down impedance mismatch
240  unit calibration resolution
Keeper circuit resistance
1
OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)
Vref – DDR3/DDR3L external reference voltage
3 The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Table 31).
2
4.6.4
LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 26 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
Table 26. LVDS I/O DC Parameters
Parameter
Symbol
Test Conditions
Min
Max
Unit
Output Differential Voltage
VOD
Rload=100 between padP and padN
250
450
mV
Output High Voltage
VOH
IOH = 0 mA
1.25
1.6
Output Low Voltage
VOL
IOL = 0 mA
0.9
1.25
Offset Voltage
VOS
—
1.125
1.375
V
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
39
Electrical Characteristics
4.6.5
MLB 6-Pin I/O DC Parameters
The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification
version 4.1. See 6-pin differential MLB specification v4.1, “MediaLB 6-pin interface Electrical
Characteristics” for details.
NOTE
The MLB 6-pin interface does not support speed mode 8192fs.
Table 27 shows the Media Local Bus (MLB) I/O DC parameters.
Table 27. MLB I/O DC Parameters
Parameter
Symbol
Test Conditions
Min
Max
Unit
Output Differential Voltage
VOD
Rload = 50 between padP and padN
300
500
mV
Output High Voltage
VOH
1.15
1.75
V
Output Low Voltage
VOL
0.75
1.35
V
Common-mode Output Voltage
((Vpad_P + Vpad_N) / 2))
VOCM
1
1.5
Differential Output Impedance
ZO
1.6
—
4.7
—
V
k
I/O AC Parameters
This section includes the AC parameters of the following I/O types:
• General Purpose I/O (GPIO)
• Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
• LVDS I/O
• MLB I/O
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and
Figure 5.
From Output
Under Test
Test Point
CL
CL includes package, probe and fixture capacitance
Figure 4. Load Circuit for Output
OVDD
80%
80%
Output (at pad)
20%
0V
20%
tr
tf
Figure 5. Output Transition Time Waveform
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
40
Freescale Semiconductor
Electrical Characteristics
4.7.1
General Purpose I/O AC Parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 28 and Table 29,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
Table 28. General Purpose I/O AC Parameters 1.8 V Mode
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=111)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
2.72/2.79
1.51/1.54
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=101)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=100)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=011)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
4.32/4.50
3.16/3.17
Input Transition Times1
trm
—
—
—
25
ns
Unit
ns
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
Table 29. General Purpose I/O AC Parameters 3.3 V Mode
Parameter
Symbol
Test Condition
Min
Typ
Max
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=101)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
1.70/1.79
1.06/1.15
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=011)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=010)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=001)
tr, tf
15 pF Cload, slow slew rate
15 pF Cload, fast slew rate
—
—
5.14/5.57
4.77/5.15
Input Transition Times1
trm
—
—
—
25
1
ns
ns
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
41
Electrical Characteristics
4.7.2
DDR I/O AC Parameters
The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June,
2009. The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release
April, 2008.
Table 30 shows the AC parameters for DDR I/O operating in LPDDR2 mode.
Table 30. DDR I/O LPDDR2 Mode AC Parameters1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
AC input logic high
Vih(ac)
—
Vref + 0.22
—
OVDD
V
AC input logic low
Vil(ac)
—
0
—
Vref – 0.22
V
AC differential input high voltage2
Vidh(ac)
—
0.44
—
—
V
AC differential input low voltage
Vidl(ac)
—
—
—
0.44
V
Input AC differential cross point voltage3
Vix(ac)
Relative to Vref
-0.12
—
0.12
V
Over/undershoot peak
Vpeak
—
—
—
0.35
V
Over/undershoot area (above OVDD
or below OVSS)
Varea
533 MHz
—
—
0.3
V-ns
tsr
50 to Vref.
5 pF load.
Drive impedance = 4 0 30%
1.5
—
3.5
V/ns
50 to Vref.
5pF load.
Drive impedance = 60 30%
1
—
2.5
clk = 533 MHz
—
—
0.1
Single output slew rate, measured
between Vol(ac) and Voh(ac)
Skew between pad rise/fall asymmetry +
skew caused by SSN
tSKD
ns
1
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Vid(ac) specifies the input differential voltage |Vtr – Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac).
3
The typical value of Vix(ac) is expected to be about 0.5  OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
2
Table 31 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.
Table 31. DDR I/O DDR3/DDR3L Mode AC Parameters1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Vih(ac)
—
Vref + 0.175
—
OVDD
V
Vil(ac)
—
0
—
Vref – 0.175
V
Vid(ac)
—
0.35
—
—
V
Input AC differential cross point voltage3
Vix(ac)
Relative to Vref
Vref – 0.15
—
Vref + 0.15
V
Over/undershoot peak
Vpeak
—
—
—
0.4
V
Over/undershoot area (above OVDD
or below OVSS)
Varea
533 MHz
—
—
0.5
V-ns
AC input logic high
AC input logic low
AC differential input
voltage2
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
42
Freescale Semiconductor
Electrical Characteristics
Table 31. DDR I/O DDR3/DDR3L Mode AC Parameters1 (continued)
Parameter
Single output slew rate, measured between
Vol(ac) and Voh(ac)
Skew between pad rise/fall asymmetry +
skew caused by SSN
Symbol
Test Condition
Min
Typ
Max
Unit
tsr
Driver impedance =
34 
2.5
—
5
V/ns
tSKD
clk = 533 MHz
—
—
0.1
ns
1
Note that the JEDEC JESD79_3C specification supersedes any specification in this document.
Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) – Vil(ac).
3
The typical value of Vix(ac) is expected to be about 0.5  OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
2
4.7.3
LVDS I/O AC Parameters
The differential output transition time waveform is shown in Figure 6.
padp
VOH
0V
0V (Differential)
padn
VOL
80%
80%
0V
0V
VDIFF
20%
VDIFF = {padp} - {padn}
20%
tTHL
tTLH
Figure 6. Differential LVDS Driver Transition Time Waveform
Table 32 shows the AC parameters for LVDS I/O.
Table 32. I/O AC Parameters of LVDS Pad
Parameter
Symbol Test Condition
Differential pulse skew1
tSKD
Transition Low to High Time2
tTLH
Transition High to Low Time2
tTHL
Operating Frequency
Offset voltage imbalance
Rload = 100 ,
Cload = 2 pF
Min
Typ
Max
—
—
0.25
—
—
0.5
—
—
0.5
Unit
ns
f
—
—
600
800
MHz
Vos
—
—
—
150
mV
1
tSKD = | tPHLD – tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and
the negative going edge of the same channel.
2 Measurement levels are 20–80% from output voltage.
4.7.4
MLB 6-Pin I/O AC Parameters
The differential output transition time waveform is shown in Figure 7.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
43
Electrical Characteristics
padp
VOH
0V
0V (Differential)
padn
VOL
80%
80%
0V
0V
VDIFF
20%
VDIFF = {padp} - {padn}
20%
tTHL
tTLH
Figure 7. Differential MLB Driver Transition Time Waveform
A 4-stage pipeline is utilized in the MLB 6-pin implementation in order to facilitate design, maximize
throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock
from MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output
delay of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of
Signal/Data clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop.
MLB 6-pin pipeline diagram is shown in Figure 8.
Figure 8. MLB 6-Pin Pipeline Diagram
Table 33 shows the AC parameters for MLB I/O.
Table 33. I/O AC Parameters of MLB PHY
Parameter
Symbol Test Condition
Differential pulse skew1
tSKD
Transition Low to High Time2
tTLH
Transition High to Low Time
tTHL
Min
Typ
Max
Rload = 50 
between padP
and padN
—
—
0.1
—
—
1
—
—
1
Unit
ns
MLB external clock Operating Frequency
fclk_ext
—
—
—
102.4
MHz
MLB PLL clock Operating Frequency
fclk_pll
—
—
—
307.2
MHz
1
tSKD = | tPHLD – tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and
the negative going edge of the same channel.
2 Measurement levels are 20-80% from output voltage.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
44
Freescale Semiconductor
Electrical Characteristics
4.8
Output Buffer Impedance Parameters
This section defines the I/O impedance parameters of the i.MX 6Dual/6Quad processors for the following
I/O types:
• General Purpose I/O (GPIO)
• Double Data Rate I/O (DDR) for LPDDR2, and DDR3 modes
• LVDS I/O
• MLB I/O
NOTE
GPIO and DDR I/O output driver impedance is measured with “long”
transmission line of impedance Ztl attached to I/O pad and incident wave
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that
defines specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 9).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
45
Electrical Characteristics
OVDD
PMOS (Rpu)
Ztl , L = 20 inches
ipp_do
pad
predriver
Cload = 1p
NMOS (Rpd)
OVSS
U,(V)
Vin (do)
VDD
t,(ns)
0
U,(V)
Vout (pad)
OVDD
Vref2
Vref1
Vref
t,(ns)
0
Vovdd – Vref1
Rpu =
 Ztl
Vref1
Rpd =
Vref2
 Ztl
Vovdd – Vref2
Figure 9. Impedance Matching Load for Measurement
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
46
Freescale Semiconductor
Electrical Characteristics
4.8.1
GPIO Output Buffer Impedance
Table 34 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 34. GPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter
Output Driver
Impedance
Symbol
Drive Strength (ipp_dse)
Typ Value
Unit
Rdrv
001
010
011
100
101
110
111
260
130
90
60
50
40
33

Table 35 shows the GPIO output buffer impedance (OVDD 3.3 V).
Table 35. GPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter
Output Driver
Impedance
Symbol
Drive Strength (ipp_dse)
Typ Value
Unit
Rdrv
001
010
011
100
101
110
111
150
75
50
37
30
25
20

i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
47
Electrical Characteristics
4.8.2
DDR I/O Output Buffer Impedance
The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009.
The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.
Table 36 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.
Table 36. DDR I/O Output Buffer Impedance
Typical
Parameter
Output Driver
Impedance
Symbol
Test Conditions
Rdrv
Drive Strength (DSE) =
000
001
010
011
100
101
110
111
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Unit

Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 W external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4.8.3
LVDS I/O Output Buffer Impedance
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
4.8.4
MLB 6-Pin I/O Differential Output Impedance
Table 37 shows MLB 6-pin I/O differential output impedance of i.MX 6Dual/6Quad processors.
Table 37. MLB 6-Pin I/O Differential Output Impedance
Parameter
Differential Output Impedance
Symbol
Test Conditions
Min
Typ
Max
Unit
ZO
—
1.6
—
—
k
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
48
Freescale Semiconductor
Electrical Characteristics
4.9
System Modules Timing
This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad
processor.
4.9.1
Reset Timing Parameters
Figure 10 shows the reset timing and Table 38 lists the timing parameters.
SRC_POR_B
(Input)
CC1
Figure 10. Reset Timing Diagram
Table 38. Reset Timing Parameters
ID
Parameter
Min Max
CC1 Duration of SRC_POR_B to be qualified as valid1
1
1
—
Unit
XTALOSC_RTC_ XTALI cycle
SRC_POR_B rise/fall times must be 5ns or less.
4.9.2
WDOG Reset Timing Parameters
Figure 11 shows the WDOG reset timing and Table 39 lists the timing parameters.
WDOG1_B
(Output)
CC3
Figure 11. WDOG1_B Timing Diagram
Table 39. WDOG1_B Timing Parameters
ID
CC3
Parameter
Duration of WDOG1_B Assertion
Min
Max
Unit
1
—
XTALOSC_RTC_ XTALI cycle
NOTE
XTALOSC_RTC_XTALI is approximately 32 kHz.
XTALOSC_RTC_XTALI cycle is one period or approximately 30 s.
NOTE
WDOG1_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
49
Electrical Characteristics
4.9.3
External Interface Module (EIM)
The following subsections provide information on the EIM.
4.9.3.1
EIM Interface Pads Allocation
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.
Table 40 provides EIM interface pads allocation in different modes.
Table 40. EIM Internal Module Multiplexing1
Multiplexed
Address/Data mode
Non Multiplexed Address/Data Mode
Setup
8 Bit
16 Bit
32 Bit
16 Bit
32 Bit
MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 1, MUM = 1,
DSZ = 100 DSZ = 101 DSZ = 110 DSZ = 111 DSZ = 001 DSZ = 010 DSZ = 011 DSZ = 001 DSZ = 011
EIM_ADDR
EIM_AD
EIM_AD
EIM_AD
EIM_AD
EIM_AD
EIM_AD
EIM_AD
EIM_AD
EIM_AD
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
[15:00]
EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_DATA
[25:16]
[25:16]
[25:16]
[25:16]
[25:16]
[25:16]
[25:16]
[25:16]
[25:16]
[09:00]
EIM_DATA EIM_DATA
—
—
—
EIM_DATA
—
EIM_DATA EIM_AD
EIM_AD
[07:00],
[07:00]
[07:00]
[07:00]
[07:00]
[07:00]
EIM_EB0_B
EIM_DATA
—
EIM_DATA
—
—
EIM_DATA
—
EIM_DATA EIM_AD
EIM_AD
[15:08],
[15:08]
[15:08]
[15:08]
[15:08]
[15:08]
EIM_EB1_B
—
EIM_DATA
EIM_DATA
—
—
EIM_DATA
—
—
EIM_DATA EIM_DATA
[07:00]
[23:16],
[23:16]
[23:16]
[23:16]
EIM_EB2_B
EIM_DATA
—
—
—
EIM_DATA
—
EIM_DATA EIM_DATA
—
EIM_DATA
[31:24],
[31:24]
[31:24]
[31:24]
[15:08]
EIM_EB3_B
1
For more information on configuration ports mentioned in this table, see the i.MX 6Dual/6Quad reference manual
(IMX6DQRM).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
50
Freescale Semiconductor
Electrical Characteristics
4.9.3.2
General EIM Timing-Synchronous Mode
Figure 12, Figure 13, and Table 41 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge
according to corresponding assertion/negation control fields.
WE2
EIM_BCLK
...
WE4
WE3
WE1
WE5
EIM_ADDRxx
WE6
WE7
WE8
WE9
WE10
WE11
WE12
WE13
WE14
WE15
WE16
WE17
EIM_CSx_B
EIM_WE_B
EIM_OE_B
EIM_EBx_B
EIM_LBA_B
Output Data
Figure 12. EIM Output Timing Diagram
EIM_BCLK
WE18
Input Data
WE19
WE20
EIM_WAIT_B
WE21
Figure 13. EIM Input Timing Diagram
4.9.3.3
Examples of EIM Synchronous Accesses
Table 41. EIM Bus Timing Parameters
ID
Parameter
Min1
Max1
Unit
t  (k+1)
—
ns
WE1
EIM_BCLK cycle time2
WE2
EIM_BCLK high level width
0.4  t  (k+1)
—
ns
WE3
EIM_BCLK low level width
0.4  t  (k+1)
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
51
Electrical Characteristics
Table 41. EIM Bus Timing Parameters (continued)
ID
1
2
Parameter
Min1
Max1
Unit
—
-0.5  t  (k+1)/2+2.25
ns
0.5  t  (k+1)/2-1.25
—
ns
—
-0.5  t  (k+1)/2+2.25
ns
0.5  t  (k+1)/2-1.25
—
ns
—
-0.5  t  (k+1)/2+2.25
ns
0.5  t  (k+1)/2-1.25
—
ns
—
-0.5  t  (k+1)/2+2.25
ns
WE4
Clock rise to address valid
WE5
Clock rise to address invalid
WE6
Clock rise to EIM_CSx_B valid
WE7
Clock rise to EIM_CSx_B invalid
WE8
Clock rise to EIM_WE_B valid
WE9
Clock rise to EIM_WE_B invalid
WE10
Clock rise to EIM_OE_B valid
WE11
Clock rise to EIM_OE_B invalid
0.5  t  (k+1)/2-1.25
—
ns
WE12
Clock rise to EIM_EBx_B valid
—
-0.5  t  (k+1)/2+2.25
ns
WE13
Clock rise to EIM_EBx_B invalid
0.5  t  (k+1)/2-1.25
—
ns
WE14
Clock rise to EIM_LBA_B valid
—
-0.5  t  (k+1)/2+2.25
ns
WE15
Clock rise to EIM_LBA_B invalid
0.5  t  (k+1)/2-1.25
—
ns
WE16
Clock rise to output data valid
—
-(k+1)  t/2+2.75
ns
WE17
Clock rise to output data invalid
(k+1)  t/2-1.25
—
ns
WE18
Input data setup time to clock rise
2.3
—
ns
WE19
Input data hold time from clock rise
2
—
ns
WE20
EIM_WAIT_B setup time to clock rise
2
—
ns
WE21
EIM_WAIT_B hold time from clock rise
2
—
ns
k represents BCD value
EIM maximum operating frequency is 104 MHz (t = 9.165 ns)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
52
Freescale Semiconductor
Electrical Characteristics
Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
EIM_BCLK
EIM_ADDRxx
WE5
WE4
Address v1
Last Valid Address
WE6
WE6
WE7
EIM_CSx_B
EIM_WE_B
WE14
WE15
EIM_LBA_B
WE10
WE11
WE12
WE13
EIM_OE_B
EIM_EBx_B
WE18
WE19
D(v1)
EIM_DATAxx
Figure 14. Synchronous Memory Read Access, WSC=1
EIM_BCLK
WE4
EIM_ADDRxx Last Valid Address
WE5
Address V1
WE6
WE7
WE8
WE9
EIM_CSx_B
EIM_WE_B
WE14
WE15
EIM_LBA_B
EIM_OE_B
WE13
WE12
EIM_EBx_B
WE16
EIM_DATAxx
WE17
D(V1)
Figure 15. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
53
Electrical Characteristics
EIM_BCLK
EIM_ADDRxx/
EIM_ADxx Last Valid Address
EIM_CSx_B
EIM_WE_B
WE17
WE16
WE5
WE4
Write Data
Address V1
WE6
WE7
WE8
WE9
WE15
WE14
EIM_LBA_B
EIM_OE_B
WE10
WE11
EIM_EBx_B
Figure 16. Muxed Address/Data (A/D) Mode, Synchronous Write Access,
WSC=6,ADVA=0, ADVN=1, and ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the
data bus.
EIM_BCLK
WE4
WE19
WE5
EIM_ADDRxx/ Last Valid Address Address V1
EIM_ADxx
WE6
Data
WE18
EIM_CSx_B
EIM_WE_B
WE7
WE14
WE15
WE10
EIM_LBA_B
WE11
EIM_OE_B
WE12
WE13
EIM_EBx_B
Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access,
WSC=7, RADVN=1, ADH=1, OEA=0
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
54
Freescale Semiconductor
Electrical Characteristics
4.9.3.4
General EIM Timing-Asynchronous Mode
Figure 18 through Figure 22 and Table 42 provide timing parameters relative to the chip select (CS) state
for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing
parameters mentioned above.
Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through
Figure 21 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual
(IMX6DQRM) for the EIM programming model.
end of
access
start of
access
INT_CLK
MAXCSO
EIM_CSx_B
EIM_ADDRxx/
EIM_ADxx
WE31
Last Valid Address
WE32
Address V1
Next Address
EIM_WE_B
EIM_LBA_B
WE39
WE40
WE35
WE36
WE37
WE38
EIM_OE_B
EIM_EBx_B
WE44
MAXCO
EIM_DATA[07:00]
D(V1)
WE43
MAXDI
Figure 18. Asynchronous Memory Read Access (RWSC = 5)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
55
Electrical Characteristics
end of
access
start of
access
INT_CLK
MAXCSO
EIM_CSx_B
MAXDI
WE31
EIM_ADDRxx/
EIM_ADxx
D(V1)
Addr. V1
WE44
WE32A
EIM_WE_B
WE40A
WE39
EIM_LBA_B
WE35A
WE36
EIM_OE_B
WE37
EIM_EBx_B
WE38
MAXCO
Figure 19. Asynchronous A/D Muxed Read Access (RWSC = 5)
EIM_CSx_B
WE31
EIM_ADDRxx Last Valid Address
WE32
Next Address
Address V1
WE33
WE34
WE39
WE40
WE45
WE46
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
WE42
EIM_DATAxx
WE41
D(V1)
Figure 20. Asynchronous Memory Write Access
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
56
Freescale Semiconductor
Electrical Characteristics
EIM_CSx_B
WE31
EIM_ADDRxx/
EIM_DATAxx
WE41A
D(V1)
Addr. V1
WE42
WE32A
WE33
WE34
EIM_WE_B
WE39
EIM_LBA_B
WE40A
EIM_OE_B
WE45
WE46
EIM_EBx_B
Figure 21. Asynchronous A/D Muxed Write Access
EIM_CSx_B
WE31
EIM_ADDRxx
Last Valid Address
WE32
Next Address
Address V1
EIM_WE_B
WE39
WE40
WE35
WE36
WE37
WE38
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
WE44
D(V1)
EIM_DATAxx[07:00]
WE43
WE48
EIM_DTACK_B
WE47
Figure 22. DTACK Mode Read Access (DAP=0)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
57
Electrical Characteristics
EIM_CSx_B
WE31
EIM_ADDRxx Last Valid Address
WE32
Next Address
Address V1
WE33
WE34
WE39
WE40
WE45
WE46
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
WE42
EIM_DATAxx
WE41
D(V1)
WE48
EIM_DTACK_B
WE47
Figure 23. DTACK Mode Write Access (DAP=0)
Table 42. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2
Ref No.
Parameter
Determination by
Synchronous measured
parameters
Min
WE31
EIM_CSx_B valid to Address Valid
WE4 - WE6 - CSA
—
3 - CSA
ns
WE32
Address Invalid to EIM_CSx_B
Invalid
WE7 - WE5 - CSN
—
3 - CSN
ns
—
ns
WE32A EIM_CSx_B valid to Address
(muxed Invalid
A/D)
Max
(If 132 MHz is
Unit
supported by SoC)
t + WE4 - WE7 + (ADVN + ADVA
-3 + (ADVN +
+ 1 - CSA)
ADVA + 1 - CSA)
WE33
EIM_CSx_B Valid to EIM_WE_B
Valid
WE8 - WE6 + (WEA - WCSA)
—
3 + (WEA - WCSA)
ns
WE34
EIM_WE_B Invalid to EIM_CSx_B
Invalid
WE7 - WE9 + (WEN - WCSN)
—
3 - (WEN_WCSN)
ns
WE35
EIM_CSx_B Valid to EIM_OE_B
Valid
WE10 - WE6 + (OEA - RCSA)
—
3 + (OEA - RCSA)
ns
WE35A EIM_CSx_B Valid to EIM_OE_B
(muxed Valid
A/D)
WE10 - WE6 + (OEA + RADVN
-3 + (OEA +
3 + (OEA +
+ RADVA + ADH + 1 - RCSA) RADVN+RADVA RADVN+RADVA+AD
+ADH+1-RCSA)
H+1-RCSA)
ns
WE36
EIM_OE_B Invalid to EIM_CSx_B
Invalid
WE7 - WE11 + (OEN - RCSN)
—
3 - (OEN - RCSN)
ns
WE37
EIM_CSx_B Valid to EIM_EBx_B
Valid (Read access)
WE12 - WE6 + (RBEA - RCSA)
—
3 + (RBEA - RCSA)
ns
WE38
EIM_EBx_B Invalid to EIM_CSx_B WE7 - WE13 + (RBEN - RCSN)
Invalid (Read access)
—
3 - (RBEN - RCSN)
ns
WE39
EIM_CSx_B Valid to EIM_LBA_B
Valid
—
3 + (ADVA - CSA)
ns
WE14 - WE6 + (ADVA - CSA)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
58
Freescale Semiconductor
Electrical Characteristics
Table 42. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2 (continued)
Ref No.
Parameter
WE40
EIM_LBA_B Invalid to EIM_CSx_B
Invalid (ADVL is asserted)
WE40A EIM_CSx_B Valid to EIM_LBA_B
(muxed Invalid
A/D)
WE41
EIM_CSx_B Valid to Output Data
Valid
WE41A EIM_CSx_B Valid to Output Data
(muxed Valid
A/D)
WE42
Output Data Invalid to EIM_CSx_B
Invalid
MAXCO Output maximum delay from
internal driving
EIM_ADDRxx/control flip-flops to
chip outputs.
MAXCSO Output maximum delay from
internal chip selects driving
flip-flops to EIM_CSx_B out.
Min
WE7 - WE15 - CSN
—
Max
(If 132 MHz is
Unit
supported by SoC)
3 - CSN
WE14 - WE6 + (ADVN + ADVA +
-3 + (ADVN + 3 + (ADVN + ADVA + 1
1 - CSA)
ADVA + 1 - CSA)
- CSA)
ns
ns
WE16 - WE6 - WCSA
—
3 - WCSA
ns
WE16 - WE6 + (WADVN +
WADVA + ADH + 1 - WCSA)
—
3 + (WADVN +
WADVA + ADH + 1 WCSA)
ns
WE17 - WE7 - CSN
—
3 - CSN
ns
10
—
—
ns
10
—
—
ns
5
—
—
ns
MAXCO - MAXCSO + MAXDI
MAXCO MAXCSO +
MAXDI
—
ns
MAXDI
EIM_DATAxx MAXIMUM delay
from chip input data to its internal
flip-flop
WE43
Input Data Valid to EIM_CSx_B
Invalid
WE44
EIM_CSx_B Invalid to Input Data
Invalid
0
0
—
ns
WE45
EIM_CSx_B Valid to EIM_EBx_B
Valid (Write access)
WE12 - WE6 + (WBEA - WCSA)
—
3 + (WBEA - WCSA)
ns
WE46
EIM_EBx_B Invalid to EIM_CSx_B WE7 - WE13 + (WBEN - WCSN)
Invalid (Write access)
—
-3 + (WBEN - WCSN)
ns
10
—
—
—
MAXCO - MAXCSO + MAXDTI
MAXCO MAXCSO +
MAXDTI
—
ns
0
0
—
ns
MAXDTI Maximum delay from
EIM_DTACK_B input to its internal
flip-flop + 2 cycles for
synchronization
1
Determination by
Synchronous measured
parameters
WE47
EIM_DTACK_B Active to
EIM_CSx_B Invalid
WE48
EIM_CSx_B Invalid to
EIM_DTACK_B invalid
For more information on configuration parameters mentioned in this table, see the i.MX 6Solo/6DualLite reference manual
(IMX6DQRM).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
59
Electrical Characteristics
2
In this table:
— CSA means WCSA when write operation or RCSA when read operation
— CSN means WCSN when write operation or RCSN when read operation
— t means axi_clk cycle time
— ADVN means WADVN when write operation or RADVN when read operation
— ADVA means WADVA when write operation or RADVA when read operation
4.9.4
DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)
4.9.4.1
DDR3/DDR3L Parameters
Figure 24 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear
in Table 43.
DDR1
DRAM_SDCLKx_N
DRAM_SDCLKx_P
DDR2
DDR4
DRAM_CSx_B
DDR5
DRAM_RAS_B
DDR5
DDR4
DRAM_CAS_B
DDR4
DDR5
DDR5
DRAM_SDWE_B
DRAM_ODTx/
DRAM_SDCKEx
DDR4
DDR6
DDR7
DRAM_ADDRxx
ROW/BA
COL/BA
Figure 24. DDR3/DDR3L Command and Address Timing Diagram
Table 43. DDR3/DDR3L Timing Parameter Table
CK = 532 MHz
ID
Parameter
Symbol
Unit
Min
Max
DDR1
DRAM_SDCLKx_P clock high-level width
tCH
0.47
0.53
tCK
DDR2
DRAM_SDCLKx_P clock low-level width
tCL
0.47
0.53
tCK
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
60
Freescale Semiconductor
Electrical Characteristics
Table 43. DDR3/DDR3L Timing Parameter Table (continued)
CK = 532 MHz
ID
1
2
Parameter
Symbol
Unit
Min
Max
DDR4
DRAM_CSx_B, DRAM_RAS_B,
DRAM_CAS_B, DRAM_SDCKEx,
DRAM_SDWE_B, DRAM_ODTx setup time
tIS
500
—
ps
DDR5
DRAM_CSx_B, DRAM_RAS_B,
DRAM_CAS_B, DRAM_SDCKEx,
DRAM_SDWE_B, DRAM_ODTx hold time
tIH
400
—
ps
DDR6
Address output setup time
tIS
500
—
ps
DDR7
Address output hold time
tIH
400
—
ps
All measurements are in reference to Vref level.
Measurements were done using balanced load and 25  resistor from outputs to DRAM_VREF.
Figure 25 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear
in Table 44.
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DDR21
DDR22
DRAM_SDQSx_P (output)
DDR18
DRAM_DATAxx (output)
DDR17
DRAM_DQMx (output)
DDR17
DDR23
DDR17
DDR18
Data
Data
Data
Data
Data
Data
Data
Data
DM
DM
DM
DM
DM
DM
DM
DM
DDR18
DDR17
DDR18
Figure 25. DDR3/DDR3L Write Cycle
Table 44. DDR3/DDR3L Write Cycle
CK = 532 MHz
ID
Parameter
Symbol
Unit
Min
Max
DDR17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential
strobe)
tDS
240
—
ps
DDR18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential
strobe)
tDH
240
—
ps
tDQSS
-0.25
+0.25
tCK
DDR21 DRAM_SDQSx_P latching rising transitions to associated clock edges
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
61
Electrical Characteristics
Table 44. DDR3/DDR3L Write Cycle (continued)
CK = 532 MHz
ID
Parameter
Symbol
Unit
Min
Max
DDR22 DRAM_SDQSx_P high level width
tDQSH
0.45
0.55
tCK
DDR23 DRAM_SDQSx_P low level width
tDQSL
0.45
0.55
tCK
1
To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2
All measurements are in reference to Vref level.
3
Measurements were taken using balanced load and 25  resistor from outputs to DRAM_VREF.
Figure 26 shows the DDR3/DDR3L read timing diagram. The timing parameters for this diagram appear
in Table 45.
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P(input)
DRAM_DATAxx (input)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DDR26
Figure 26. DDR3/DDR3L Read Cycle
Table 45. DDR3/DDR3L Read Cycle
CK = 532 MHz
ID
DDR26
Parameter
Minimum required DRAM_DATAxx valid window width
Symbol
—
Unit
Min
Max
450
—
ps
1
To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2 All measurements are in reference to Vref level.
3
Measurements were done using balanced load and 25  resistor from outputs to DRAM_VREF.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
62
Freescale Semiconductor
Electrical Characteristics
4.9.4.2
LPDDR2 Parameters
Figure 27 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in
Table 46.
DRAM_SDCLKx_P
LP1
LP4
DRAM_CSx_B
LP2
LP3
DRAM__SDCKEx
LP3
LP4
LP3
DRAM_ADRxx
LP3
LP4
Figure 27. LPDDR2 Command and Address Timing Diagram
Table 46. LPDDR2 Timing Parameter
CK = 532 MHz
ID
1
2
Parameter
Symbol
Unit
Min
Max
LP1
DRAM_SDCLKx_P clock high-level width
tCH
0.45
0.55
tCK
LP2
DRAM_SDCLKx_P clock low-level width
tCL
0.45
0.55
tCK
LP3
DRAM_CSx_B, DRAM_ADDRxx setup time
tIS
270
—
ps
LP4
DRAM_CSx_B, DRAM_ADDRxx hold time
tIH
270
—
ps
LP3
DRAM_ADDRxx setup time
tIS
230
—
ps
LP4
DRAM_ADDRxx hold time
tIH
230
—
ps
All measurements are in reference to Vref level.
Measurements were done using balanced load and 25  resistor from outputs to DRAM_VREF.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
63
Electrical Characteristics
Figure 28 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in
Table 47.
DRAM_SDCLKx_P
DRAM_SDCLKx_N
LP21
LP22
LP23
DRAM_SDQSx_P (output)
LP18
LP17
DRAM_DATAxx (output)
DRAM_DQMx (output)
LP17
LP18
Data
Data
Data
Data
Data
Data
Data
Data
DM
DM
DM
DM
DM
DM
DM
DM
LP17
LP18
LP17
LP18
Figure 28. LPDDR2 Write Cycle
Table 47. LPDDR2 Write Cycle
CK = 532 MHz
ID
Parameter
Symbol
Unit
Min
Max
LP17
DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P
(differential strobe)
tDS
235
—
ps
LP18
DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P
(differential strobe)
tDH
235
—
ps
LP21
DRAM_SDQSx_P latching rising transitions to associated clock edges
tDQSS
-0.25
+0.25
tCK
LP22
DRAM_SDQSx_P high level width
tDQSH
0.4
—
tCK
LP23
DRAM_SDQSx_P low level width
tDQSL
0.4
—
tCK
1
To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2 All measurements are in reference to Vref level.
3 Measurements were done using balanced load and 25  resistor from outputs to DRAM_VREF.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
64
Freescale Semiconductor
Electrical Characteristics
Figure 29 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in
Table 48.
DRAM_SDCLKx_P
DRAM_SDCLKx_N
DRAM_SDQSx_P (input)
DRAM_DATAxx (input)
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
LP26
Figure 29. LPDDR2 Read Cycle
Table 48. LPDDR2 Read Cycle
CK = 532 MHz
ID
LP26
Parameter
Minimum required DRAM_DATAxx valid window width for LPDDR2
Symbol
—
Unit
Min
Max
250
—
ps
1
To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P
in the middle of DRAM_DATAxx window.
2 All measurements are in reference to Vref level.
3 Measurements were done using balanced load and 25  resistor from outputs to DRAM_VREF.
4.10
General-Purpose Media Interface (GPMI) Timing
The i.MX 6Dual/6Quad GPMI controller is a flexible interface NAND Flash controller with 8-bit data
width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode,
Source Synchronous timing mode, and Samsung Toggle timing mode separately described in the following
subsections.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
65
Electrical Characteristics
4.10.1
Asynchronous Mode AC Timing (ONFI 1.0 Compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 30 through Figure 33
depict the relative timing between GPMI signals at the module level for different operations under
Asynchronous mode. Table 49 describes the timing parameters (NF1–NF17) that are shown in the figures.
.!.$?#,%
.!.$?#%?"
E&ϯ
E&Ϯ
E&ϭ
.!.$?7%?"
E&ϱ
E&ϰ
E&ϲ
.!.$?!,%
E&ϳ
E&ϴ
E&ϵ
ŽŵŵĂŶĚ
.!.$?$!4!XX
Figure 30. Command Latch Cycle Timing Diagram
E&ϭ
.!.$?#,%
.!.$?#%?"
E&ϯ
E&ϭϬ
.!.$?7%?"
E&ϱ
.!.$?!,%
E&ϭϭ
E&ϴ
EEͺddždž
E&ϳ
E&ϲ
E&ϵ
ĚĚƌĞƐƐ
Figure 31. Address Latch Cycle Timing Diagram
E&ϭ
.!.$?#,%
.!.$?#%?"
E&ϯ
E&ϭϬ
.!.$?7%?"
.!.$?!,%
E&ϱ
E&ϲ
E&ϴ
.!.$?$!4!XX
E&ϭϭ
E&ϳ
E&ϵ
ĂƚĂƚŽE&
Figure 32. Write Data Latch Cycle Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
66
Freescale Semiconductor
Electrical Characteristics
.!.$?#,%
.!.$?#%?"
E&ϭϰ
.!.$?2%?"
.!.$?2%!$9?"
E&ϭϯ
E&ϭϱ
E&ϭϮ
E&ϭϲ
.!.$?$!4!XX
E&ϭϳ
ĂƚĂĨƌŽŵE&
Figure 33. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)
.!.$?#,%
.!.$?#%?"
E&ϭϰ
E&ϭϯ
.!.$?2%?"
.!.$?2%!$9?"
E&ϭϱ
E&ϭϮ
E&ϭϳ
E&ϭϲ
EEͺddždž
ĂƚĂĨƌŽŵE& Figure 34. Read Data Latch Cycle Timing Diagram (EDO Mode)
Table 49. Asynchronous Mode Timing Parameters1
ID
Parameter
Timing
T = GPMI Clock Cycle
Symbol
Min
Unit
Max
NF1
NAND_CLE setup time
tCLS
(AS + DS)  T - 0.12 [see 2,3]
ns
NF2
NAND_CLE hold time
tCLH
DH  T - 0.72 [see 2]
ns
NF3
NAND_CEx_B setup time
tCS
(AS + DS + 1)  T [see 3,2]
ns
NF4
NAND_CEx_B hold time
tCH
(DH+1)  T - 1 [see 2]
ns
NF5
NAND_WE_B pulse width
tWP
DS  T [see 2]
ns
NF6
NAND_ALE setup time
tALS
(AS + DS)  T - 0.49 [see 3,2]
ns
NF7
NAND_ALE hold time
tALH
(DH  T - 0.42 [see 2]
ns
NF8
Data setup time
tDS
DS  T - 0.26 [see 2]
ns
NF9
Data hold time
tDH
DH  T - 1.37 [see 2]
ns
NF10
Write cycle time
tWC
(DS + DH)  T [see 2]
ns
NF11
NAND_WE_B hold time
tWH
DH  T [see 2]
ns
NF12
Ready to NAND_RE_B low
tRR4
NF13
NAND_RE_B pulse width
tRP
DS  T [see 2]
ns
NF14
READ cycle time
tRC
(DS + DH)  T [see 2]
ns
NF15
NAND_RE_B high hold time
tREH
DH  T [see 2]
ns
(AS + 2)  T [see 3,2]
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
67
Electrical Characteristics
Table 49. Asynchronous Mode Timing Parameters1 (continued)
ID
Parameter
Timing
T = GPMI Clock Cycle
Symbol
Unit
Min
Max
NF16
Data setup on read
tDSR
—
(DS  T -0.67)/18.38 [see 5,6]
ns
NF17
Data hold on read
tDHR
0.82/11.83 [see 5,6]
—
ns
1
2
3
4
5
6
The GPMI asynchronous mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
AS minimum value can be 0, while DS/DH minimum value is 1.
T = GPMI clock period -0.075ns (half of maximum p-p jitter).
NF12 is met automatically by the design.
Non-EDO mode.
EDO mode, GPMI clock  100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
In EDO mode (Figure 34), NF16/NF17 are different from the definition in non-EDO mode (Figure 33).
They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The
typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO
mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an
internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter
of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). The typical value of this control register is
0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay
value should be made larger to compensate the board delay.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
68
Freescale Semiconductor
Electrical Characteristics
4.10.2
Source Synchronous Mode AC Timing (ONFI 2.x Compatible)
Figure 35 shows the write and read timing of Source Synchronous mode.
.!.$?#%?"
1)
1)
1)
1$1'B&/(
1)
1)
1)
1$1'B$/(
1) 1)
1$1'B:(5(B%
1)
1$1'B&/.
1$1'B'46
1$1'B'46
2XWSXWHQDEOH
1)
1)
1)
1)
1$1'B'$7$>@
&0'
$''
1$1'B'$7$>@
2XWSXWHQDEOH
Figure 35. Source Synchronous Mode Command and Address Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
69
Electrical Characteristics
.!.$?#%?"
1)
1)
1)
.!.$?#,%
1)
1)
1)
1)
1)
.!.$?!,%
1)
1)
1$1'B:(5(B%
1)
.!.$?#,+
1)
1)
.!.$?$13
.!.$?$13
2XWSXWHQDEOH
1)
1)
.!.$?$1;=
1)
1)
.!.$?$1;=
2XWSXWHQDEOH
Figure 36. Source Synchronous Mode Data Write Timing Diagram
.!.$?#%?"
1)
1)
1)
1)
.!.$?#,%
1$1'B$/(
.!.$?7%2%
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUT ENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUT ENABLE
Figure 37. Source Synchronous Mode Data Read Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
70
Freescale Semiconductor
Electrical Characteristics
.!.$?$13
E&ϯϬ
.!.$?$!4!;=
Ϭ
E&ϯϬ
ϭ
E&ϯϭ
Ϯ
ϯ
E&ϯϭ
Figure 38. NAND_DQS/NAND_DQ Read Valid Window
Table 50. Source Synchronous Mode Timing Parameters1
ID
Parameter
Symbol
Timing
T = GPMI Clock Cycle
Min
NF18 NAND_CEx_B access time
NF19 NAND_CEx_B hold time
tCE
tCH
Unit
Max
CE_DELAY  T - 0.79 [see 2]
0.5  tCK - 0.63 [see
2]
ns
ns
NF20 Command/address NAND_DATAxx setup time
tCAS
0.5  tCK - 0.05
ns
NF21 Command/address NAND_DATAxx hold time
tCAH
0.5  tCK - 1.23
ns
tCK
—
NF22 clock period
ns
tPRE
PRE_DELAY  T - 0.29 [see
NF24 postamble delay
tPOST
POST_DELAY  T - 0.78 [see
NF25 NAND_CLE and NAND_ALE setup time
tCALS
0.5  tCK - 0.86
ns
NF26 NAND_CLE and NAND_ALE hold time
tCALH
0.5  tCK - 0.37
ns
tDQSS
2]
ns
NF23 preamble delay
NF27 NAND_CLK to first NAND_DQS latching transition
T - 0.41 [see
2]
2]
ns
ns
NF28 Data write setup
tDS
0.25  tCK - 0.35
—
NF29 Data write hold
tDH
0.25  tCK - 0.85
—
NF30 NAND_DQS/NAND_DQ read setup skew
tDQSQ
—
2.06
—
NF31 NAND_DQS/NAND_DQ read hold skew
tQHS
—
1.95
—
1
The GPMI source synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
2 T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source
Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s.
GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal,
which can be provided by an internal DPLL. The delay value can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX
6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value of this register is equal
to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and
cannot be ignored, the delay value should be made larger to compensate the board delay.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
71
Electrical Characteristics
4.10.3
4.10.3.1
Samsung Toggle Mode AC Timing
Command and Address Timing
Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC
timing. See Section 4.10.1, “Asynchronous Mode AC Timing (ONFI 1.0 Compatible)” for details.
4.10.3.2
Read and Write Timing
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.&
.&
.!.$?$13
.!.$?$!4!;=
T#+
T#+
Figure 39. Samsung Toggle Mode Data Write Timing
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
72
Freescale Semiconductor
Electrical Characteristics
DEV?CLK
.!.$?#%X?"
.& .!.$?#,%
.!.$?!,%
.!.$?7%?"
T #+
.&
T #+
.& .!.$?2%?"
T #+
T #+
T #+
.!.$?$13
.!.$?$!4!;=
Figure 40. Samsung Toggle Mode Data Read Timing
Table 51. Samsung Toggle Mode Timing Parameters1
ID
Parameter
Symbol
Timing
T = GPMI Clock Cycle
Unit
Min
NF1
NF2
NF3
NF4
NF5
NF6
NF7
NF8
NF9
NAND_CLE setup time
NAND_CLE hold time
NAND_CEx_B setup time
NAND_CEx_B hold time
NAND_WE_B pulse width
NAND_ALE setup time
NAND_ALE hold time
Command/address NAND_DATAxx setup time
Command/address NAND_DATAxx hold time
tCLS
tCLH
tCS
DH  T - 0.72 [see
(AS + DS)  T - 0.58 [see
tWP
DS  T [see ]
tALS
—
2]
DH  T - 1 [see ]
—
3,2]
—
2
—
2
—
(AS + DS)  T - 0.49 [see
3,2]
—
tALH
DH  T - 0.42 [see
2]
tCAS
DS  T - 0.26 [see
2]
—
tCAH
DH  T - 1.37 [see
2]
—
tCE
NF22 clock period
tCK
NF24 postamble delay
(AS + DS)  T - 0.12 [see
tCH
NF18 NAND_CEx_B access time
NF23 preamble delay
Max
2,3]
tPRE
tPOST
CE_DELAY  T [see
4,2]
—
PRE_DELAY  T [see
5,2]
POST_DELAY  T +0.43 [see
2]
—
—
ns
—
ns
—
ns
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
73
Electrical Characteristics
Table 51. Samsung Toggle Mode Timing Parameters1 (continued)
ID
Parameter
Symbol
Timing
T = GPMI Clock Cycle
Unit
Min
Max
NF28 Data write setup
6
tDS
0.25  tCK - 0.32
—
ns
NF29 Data write hold
tDH6
0.25  tCK - 0.79
—
ns
NF30 NAND_DQS/NAND_DQ read setup skew
tDQSQ7
—
3.18
—
NF31 NAND_DQS/NAND_DQ read hold skew
tQHS7
—
3.27
—
1
2
3
4
5
6
7
The GPMI toggle mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
AS minimum value can be 0, while DS/DH minimum value is 1.
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is met automatically by the design. Read/Write operation is
started with enough time of ALE/CLE assertion to low level.
PRE_DELAY+1)  (AS+DS)
Shown in Figure 36.
Shown in Figure 37.
Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For DDR
Toggle mode, the typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI
will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which is
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX
6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value is equal to 0x7 which
means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored,
the delay value should be made larger to compensate the board delay.
4.11
External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.
4.11.1
AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI
electrical specifications found within this document.
4.11.2
ECSPI Timing Parameters
This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing
parameters for master and slave modes.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
74
Freescale Semiconductor
Electrical Characteristics
4.11.2.1
ECSPI Master Mode Timing
Figure 41 depicts the timing of ECSPI in master mode and Table 52 lists the ECSPI master mode timing
characteristics.
ECSPIx_RDY_B
CS10
ECSPIx_SS_B
CS1
CS2
CS3
CS5
CS6
CS4
ECSPIx_SCLK
CS7
CS2
CS3
ECSPIx_MOSI
CS8
CS9
ECSPIx_MISO
Figure 41. ECSPI Master Mode Timing Diagram
Table 52. ECSPI Master Mode Timing Parameters
ID
CS1
CS2
Parameter
Symbol
ECSPIx_SCLK Cycle Time–Read
• Slow group1
• Fast group2
ECSPIx_SCLK Cycle Time–Write
tclk
ECSPIx_SCLK High or Low Time–Read
• Slow group1
• Fast group2
ECSPIx_SCLK High or Low Time–Write
tSW
CS3
ECSPIx_SCLK Rise or Fall3
CS4
Min
Max Unit
—
ns
—
ns
55
40
15
26
20
7
tRISE/FALL
—
—
ns
ECSPIx_SSx pulse width
tCSLH
Half ECSPIx_SCLK period
—
ns
CS5
ECSPIx_SSx Lead Time (CS setup time)
tSCS
Half ECSPIx_SCLK period - 4
—
ns
CS6
ECSPIx_SSx Lag Time (CS hold time)
tHCS
Half ECSPIx_SCLK period - 2
—
ns
CS7
ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)
tPDmosi
-1
1
ns
CS8
ECSPIx_MISO Setup Time
• Slow group1
• Fast group2
tSmiso
—
ns
CS9
CS10
21.5
16
ECSPIx_MISO Hold Time
ECSPIx_RDY to ECSPIx_SSx
Time4
tHmiso
0
—
ns
tSDRY
5
—
ns
1
ECSPI slow includes:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/ ECSPI2/CSI0_DAT10,
ECSPI3/DISP0_DAT2
2 ECSPI fast includes:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
3
See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”
4 ECSPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
75
Electrical Characteristics
4.11.2.2
ECSPI Slave Mode Timing
Figure 42 depicts the timing of ECSPI in slave mode and Table 53 lists the ECSPI slave mode timing
characteristics.
ECSPIx_SS_B
CS2
CS1
CS5
CS6
CS4
ECSPIx_SCLK
CS2
CS9
ECSPIx_MISO
CS7
CS8
ECSPIx_MOSI
Figure 42. ECSPI Slave Mode Timing Diagram
Table 53. ECSPI Slave Mode Timing Parameters
ID
CS1
CS2
Parameter
Symbol
ECSPIx_SCLK Cycle Time–Read
• Slow group1
• Fast group2
ECSPIx_SCLK Cycle Time–Write
tclk
ECSPIx_SCLK High or Low Time–Read
• Slow group1
• Fast group2
ECSPIx_SCLK High or Low Time–Write
tSW
Min
Max
Unit
—
ns
—
ns
55
40
15
26
20
7
CS4
ECSPIx_SSx pulse width
tCSLH
Half ECSPIx_SCLK period
—
ns
CS5
ECSPIx_SSx Lead Time (CS setup time)
tSCS
5
—
ns
CS6
ECSPIx_SSx Lag Time (CS hold time)
tHCS
5
—
ns
CS7
ECSPIx_MOSI Setup Time
tSmosi
4
—
ns
CS8
ECSPIx_MOSI Hold Time
tHmosi
4
—
ns
CS9
ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)
• Slow group1
• Fast group2
tPDmiso
4
ns
25
17
1
ECSPI slow includes:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17,
ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2
2
ECSPI fast includes:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
76
Freescale Semiconductor
Electrical Characteristics
4.11.3
Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. Table 54 shows the interface timing values. The number field in the table refers to timing
signals found in Figure 43 and Figure 44.
Table 54. Enhanced Serial Audio Interface (ESAI) Timing
Parameter1,2
ID
Symbol
Expression2
Min
Max
Condition3 Unit
tSSICC
4  Tc
4  Tc
30.0
30.0
—
—
i ck
i ck
62
Clock cycle4
63
Clock high period:
• For internal clock
• For external clock
—
—
2  Tc 9.0
2  Tc
6
15
—
—
—
—
Clock low period:
• For internal clock
• For external clock
—
—
2  Tc 9.0
2  Tc
6
15
—
—
—
—
64
ns
ns
ns
65
ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high
—
—
—
—
—
—
19.0
7.0
x ck
i ck a
ns
66
ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low
—
—
—
—
—
—
19.0
7.0
x ck
i ck a
ns
67
ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr)
high5
—
—
—
—
—
—
19.0
9.0
x ck
i ck a
ns
68
ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5
—
—
—
—
—
—
19.0
9.0
x ck
i ck a
ns
69
ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high
—
—
—
—
—
—
19.0
6.0
x ck
i ck a
ns
70
ESAI_RX_CLK rising edge to ESAI_RX_FSout (wl) low
—
—
—
—
—
—
17.0
7.0
x ck
i ck a
ns
71
Data in setup time before ESAI_RX_CLK (serial clock in
synchronous mode) falling edge
—
—
—
—
12.0
19.0
—
—
x ck
i ck
ns
72
Data in hold time after ESAI_RX_CLK falling edge
—
—
—
—
3.5
9.0
—
—
x ck
i ck
ns
73
ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK
falling edge5
—
—
—
—
2.0
19.0
—
—
x ck
i ck a
ns
74
ESAI_RX_FS input (wl) high before ESAI_RX_CLK
falling edge
—
—
—
—
2.0
19.0
—
—
x ck
i ck a
ns
75
ESAI_RX_FS input hold time after ESAI_RX_CLK falling
edge
—
—
—
—
2.5
8.5
—
—
x ck
i ck a
ns
78
ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high
—
—
—
—
—
—
19.0
8.0
x ck
i ck
ns
79
ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low
—
—
—
—
—
—
20.0
10.0
x ck
i ck
ns
80
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr)
high5
—
—
—
—
—
—
20.0
10.0
x ck
i ck
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
77
Electrical Characteristics
Table 54. Enhanced Serial Audio Interface (ESAI) Timing (continued)
ID
Parameter1,2
Symbol
Expression2
Min
Max
81
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5
—
—
—
—
—
—
22.0
12.0
x ck
i ck
ns
82
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high
—
—
—
—
—
—
19.0
9.0
x ck
i ck
ns
83
ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low
—
—
—
—
—
—
20.0
10.0
x ck
i ck
ns
84
ESAI_TX_CLK rising edge to data out enable from high
impedance
—
—
—
—
—
—
22.0
17.0
x ck
i ck
ns
86
ESAI_TX_CLK rising edge to data out valid
—
—
—
—
—
—
19.0
13.0
x ck
i ck
ns
87
ESAI_TX_CLK rising edge to data out high impedance 67
—
—
—
—
—
—
21.0
16.0
x ck
i ck
ns
89
ESAI_TX_FS input (bl, wr) setup time before
ESAI_TX_CLK falling edge5
—
—
—
—
2.0
18.0
—
—
x ck
i ck
ns
90
ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK
falling edge
—
—
—
—
2.0
18.0
—
—
x ck
i ck
ns
91
ESAI_TX_FS input hold time after ESAI_TX_CLK falling
edge
—
—
—
—
4.0
5.0
—
—
x ck
i ck
ns
95
ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle
—
2 x TC
15
—
—
ns
96
ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK
output
—
—
—
18.0
—
ns
97
ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK
output
—
—
—
18.0
—
ns
1
2
3
4
5
6
Condition3 Unit
i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)
i ck s = internal clock, synchronous mode
(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)
bl = bit length
wl = word length
wr = word length relative
ESAI_TX_CLK(ESAI_TX_CLK pin) = transmit clock
ESAI_RX_CLK(ESAI_RX_CLK pin) = receive clock
ESAI_TX_FS(ESAI_TX_FS pin) = transmit frame sync
ESAI_RX_FS(ESAI_RX_FS pin) = receive frame sync
ESAI_TX_HF_CLK(ESAI_TX_HF_CLK pin) = transmit high frequency clock
ESAI_RX_HF_CLK(ESAI_RX_HF_CLK pin) = receive high frequency clock
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the
second-to-last bit clock of the first word in the frame.
Periodically sampled and not 100% tested.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
78
Freescale Semiconductor
Electrical Characteristics
62
63
64
ESAI_TX_CLK
(Input/Output)
78
ESAI_TX_FS
(Bit)
Out
79
82
ESAI_TX_FS
(Word)
Out
83
86
86
84
87
First Bit
Data Out
Last Bit
89
ESAI_TX_FS
(Bit) In
91
90
91
ESAI_TX_FS
(Word) In
Figure 43. ESAI Transmitter Timing
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
79
Electrical Characteristics
62
63
64
ESAI_RX_CLK
(Input/Output)
65
ESAI_RX_FS
(Bit) Out
66
69
70
ESAI_RX_FS
(Word) Out
72
71
First Bit
Data In
Last Bit
75
73
ESAI_RX_FS
(Bit) In
74
75
ESAI_RX_FS
(Word) In
Figure 44. ESAI Receiver Timing
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
80
Freescale Semiconductor
Electrical Characteristics
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
4.11.4
Timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing and eMMC4.4/4.1 (Dual Date Rate) timing.
4.11.4.1
SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 45 depicts the timing of SD/eMMC4.3, and Table 55 lists the SD/eMMC4.3 timing characteristics.
SD4
SD2
SD1
SD5
SDx_CLK
SD3
SD6
Output from uSDHC to card
SDx_DATA[7:0]
SD7
SD8
Input from card to uSDHC
SDx_DATA[7:0]
Figure 45. SD/eMMC4.3 Timing
Table 55. SD/eMMC4.3 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Clock Frequency (Low Speed)
fPP1
0
400
kHz
Clock Frequency (SD/SDIO Full Speed/High Speed)
fPP2
0
25/50
MHz
Clock Frequency (MMC Full Speed/High Speed)
fPP3
0
20/52
MHz
Clock Frequency (Identification Mode)
fOD
100
400
kHz
SD2
Clock Low Time
tWL
7
—
ns
SD3
Clock High Time
tWH
7
—
ns
SD4
Clock Rise Time
tTLH
—
3
ns
SD5
Clock Fall Time
tTHL
—
3
ns
3.6
ns
Card Input Clock
SD1
eSDHC Output/Card Inputs SD_CMD, SD_DATAx (Reference to SDx_CLK)
SD6
eSDHC Output Delay
tOD
–6.6
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
81
Electrical Characteristics
Table 55. SD/eMMC4.3 Interface Timing Specification (continued)
ID
Parameter
Symbols
Min
Max
Unit
eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)
SD7
eSDHC Input Setup Time
SD8
4
eSDHC Input Hold Time
tISU
2.5
—
ns
tIH
1.5
—
ns
1
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode,
clock frequency can be any value between 0–50 MHz.
3
In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock
frequency can be any value between 0–52 MHz.
4
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
2
4.11.4.2
eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing
Figure 46 depicts the timing of eMMC4.4/4.41. Table 56 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD).
SD1
SDx_CLK
SD2
SD2
Output from eSDHCv3 to card
SDx_DATA[7:0]
......
SD3
SD4
Input from card to eSDHCv3
SDx_DATA[7:0]
......
Figure 46. eMMC4.4/4.41 Timing
Table 56. eMMC4.4/4.41 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Card Input Clock
SD1
Clock Frequency (EMMC4.4 DDR)
fPP
0
52
MHz
SD1
Clock Frequency (SD3.0 DDR)
fPP
0
50
MHz
uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK)
SD2
uSDHC Output Delay
tOD
2.5
7.1
ns
uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK)
SD3
uSDHC Input Setup Time
tISU
2.6
—
ns
SD4
uSDHC Input Hold Time
tIH
1.5
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
82
Freescale Semiconductor
Electrical Characteristics
4.11.4.3
SDR50/SDR104 AC Timing
Figure 47 depicts the timing of SDR50/SDR104, and Table 55 lists the SDR50/SDR104 timing
characteristics.
3$
3$
3$
SDx_SCLK
3#+
3$
3$
/UTPUT &ROM U3$(# TO #ARD
3$
3$
)NPUT FROM #ARD TO U3$(#
3$
Figure 47. SDR50/SDR104 Timing
Table 57. SDR50/SDR104 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Card Input Clock
SD1
Clock Frequency Period
tCLK
4.8
—
ns
SD2
Clock Low Time
tCL
0.3  tCLK
0.7  tCLK
ns
SD2
Clock High Time
tCH
0.3  tCLK
0.7  tCLK
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)
SD4
uSDHC Output Delay
tOD
–3
1
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)
SD5
uSDHC Output Delay
tOD
–1.6
1
ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)
SD6
uSDHC Input Setup Time
tISU
2.5
—
ns
SD7
uSDHC Input Hold Time
tIH
1.5
—
ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1
SD8
1Data
Card Output Data Window
tODW
0.5  tCLK
—
ns
window in SDR100 mode is variable.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
83
Electrical Characteristics
4.11.4.4
Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are
identical to those shown in Table 23, "GPIO I/O DC Parameters," on page 37.
4.11.5
Ethernet Controller (ENET) AC Electrical Specifications
4.11.5.1
ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.11.5.1.1
MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 48 shows MII receive signal timings. Table 58 describes the timing parameters (M1–M4) shown in
the figure.
M3
ENET_RX_CLK (input)
M4
ENET_RX_DATA3,2,1,0
(inputs)
ENET_RX_EN
ENET_RX_ER
M1
M2
Figure 48. MII Receive Signal Timing Diagram
Table 58. MII Receive Signal Timing
Characteristic1
ID
Min
Max
Unit
M1
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5
—
ns
M2
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5
—
ns
M3
ENET_RX_CLK pulse width high
35%
65%
ENET_RX_CLK period
M4
ENET_RX_CLK pulse width low
35%
65%
ENET_RX_CLK period
1 ENET_RX_EN,
ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
84
Freescale Semiconductor
Electrical Characteristics
4.11.5.1.2
MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Figure 49 shows MII transmit signal timings. Table 59 describes the timing parameters (M5–M8) shown
in the figure.
M7
ENET_TX_CLK (input)
M5
M8
ENET_TX_DATA3,2,1,0
(outputs)
ENET_TX_EN
ENET_TX_ER
M6
Figure 49. MII Transmit Signal Timing Diagram
Table 59. MII Transmit Signal Timing
Characteristic1
ID
Min
Max
Unit
M5
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5
—
ns
M6
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—
20
ns
M7
ENET_TX_CLK pulse width high
35%
65%
ENET_TX_CLK period
M8
ENET_TX_CLK pulse width low
35%
65%
ENET_TX_CLK period
1 ENET_TX_EN,
4.11.5.1.3
ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)
Figure 50 shows MII asynchronous input timings. Table 60 describes the timing parameter (M9) shown in
the figure.
ENET_CRS, ENET_COL
M9
Figure 50. MII Async Inputs Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
85
Electrical Characteristics
Table 60. MII Asynchronous Inputs Signal Timing
ID
M91
1
Characteristic
ENET_CRS to ENET_COL minimum pulse width
Min
Max
Unit
1.5
—
ENET_TX_CLK period
ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
4.11.5.1.4
MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 51 shows MII asynchronous input timings. Table 61 describes the timing parameters (M10–M15)
shown in the figure.
M14
M15
ENET_MDC (output)
M10
ENET_MDIO (output)
M11
ENET_MDIO (input)
M12
M13
Figure 51. MII Serial Management Channel Timing Diagram
Table 61. MII Serial Management Channel Timing
ID
Characteristic
Min
Max
Unit
M10
ENET_MDC falling edge to ENET_MDIO output invalid
(minimum propagation delay)
0
—
ns
M11
ENET_MDC falling edge to ENET_MDIO output valid
(maximum propagation delay)
—
5
ns
M12
ENET_MDIO (input) to ENET_MDC rising edge setup
18
—
ns
M13
ENET_MDIO (input) to ENET_MDC rising edge hold
0
—
ns
M14
ENET_MDC pulse width high
40%
60%
ENET_MDC period
M15
ENET_MDC pulse width low
40%
60%
ENET_MDC period
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
86
Freescale Semiconductor
Electrical Characteristics
4.11.5.2
RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER.
Figure 52 shows RMII mode timings. Table 62 describes the timing parameters (M16–M21) shown in the
figure.
M16
M17
ENET_CLK (input)
M18
ENET0_TXD[1:0] (output)
ENET_TX_EN
M19
ENET_RX_EN (input)
ENET_RXD[1:0]
ENET_RX_ER
M20
M21
Figure 52. RMII Mode Signal Timing Diagram
Table 62. RMII Signal Timing
ID
Characteristic
Min
Max
Unit
M16
ENET_CLK pulse width high
35%
65%
ENET_CLK period
M17
ENET_CLK pulse width low
35%
65%
ENET_CLK period
M18
ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid
4
—
ns
M19
ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid
—
15
ns
M20
ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
4
—
ns
M21
ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold
2
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
87
Electrical Characteristics
4.11.5.3
RGMII Signal Switching Specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 63. RGMII Signal Switching Specifications1
Symbol
Tcyc2
Description
Clock cycle duration
TskewT3
Data to clock output skew at transmitter
TskewR3
Min
Max
Unit
7.2
8.8
ns
-100
900
ps
Data to clock input skew at receiver
1
2.6
ns
4
Duty cycle for Gigabit
45
55
%
4
Duty_T
Duty cycle for 10/100T
40
60
%
Tr/Tf
Rise/fall time (20–80%)
—
0.75
ns
Duty_G
1
The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
2
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
3 For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional
delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is
unspecified.
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
Figure 53. RGMII Transmit Signal Timing Diagram Original
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
88
Freescale Semiconductor
Electrical Characteristics
Figure 54. RGMII Receive Signal Timing Diagram Original
Figure 55. RGMII Receive Signal Timing Diagram with Internal Delay
4.11.6
Flexible Controller Area Network (FlexCAN) AC Electrical
Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0B protocol specification.The processor has two CAN modules
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See
the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM) to see which pins
expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.
4.11.7
4.11.7.1
HDMI Module Timing Parameters
Latencies and Timing Information
Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx
PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
89
Electrical Characteristics
Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported
(340 MHz) is 133 s.
4.11.7.2
Electrical Characteristics
The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures
illustrate various definitions and measurement conditions specified in the table below.
Figure 56. Driver Measuring Conditions
Figure 57. Driver Definitions
Figure 58. Source Termination
Table 64. Electrical Characteristics
Symbol
Parameter
Condition
Min
Typ
Max
Unit
3.15
3.3
3.45
V
Operating conditions for HDMI
avddtmds Termination supply voltage
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
90
Freescale Semiconductor
Electrical Characteristics
Table 64. Electrical Characteristics (continued)
Symbol
RT
Parameter
Termination resistance
Condition
Min
Typ
Max
Unit
—
45
50
55

TMDS drivers DC specifications
VOFF
VSWING
VH
VL
RTERM
RT = 50 
For measurement conditions and
Single-ended output swing voltage definitions, see the first two figures
above.
Compliance point TP1 as defined in
the HDMI specification, version 1.3a,
section 4.2.4.
Single-ended standby voltage
avddtmds ± 10 mV
400
—
600
mV
Single-ended output high voltage
For definition, see the second
figure above.
If attached sink supports TMDSCLK <
or = 165 MHz
If attached sink supports TMDSCLK >
165 MHz
avddtmds
– 200 mV
—
avddtmds
+ 10 mV
mV
Single-ended output low voltage
For definition, see the second
figure above.
If attached sink supports TMDSCLK <
or = 165 MHz
avddtmds
– 600 mV
—
avddtmds
– 400mV
mV
If attached sink supports TMDSCLK >
165 MHz
avddtmds
– 700 mV
—
avddtmds
– 400 mV
mV
—
50
—
200

Differential source termination load
(inside HDMI 3D Tx PHY)
Although the HDMI 3D Tx PHY
includes differential source
termination, the user-defined value
is set for each single line (for
illustration, see the third figure
above).
Note: RTERM can also be
configured to be open and not
present on TMDS channels.
avddtmds ± 10 mV
mV
mV
Hot plug detect specifications
HPDVH
Hot plug detect high range
—
2.0
—
5.3
V
VHPD
VL
Hot plug detect low range
—
0
—
0.8
V
Z
Hot plug detect input impedance
—
10
—
—
k
Hot plug detect time delay
—
—
—
100
µs
HPD
HPD
t
4.11.8
Switching Characteristics
Table 65 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate
various parameters specified in table.
NOTE
All dynamic parameters related to the TMDS line drivers’ performance
imply the use of assembly guidelines.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
91
Electrical Characteristics
PTMDSCLK
50%
tCPL
tCPH
Figure 59. TMDS Clock Signal Definitions
Figure 60. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1
Figure 61. Intra-Pair Skew Definition
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
92
Freescale Semiconductor
Electrical Characteristics
Figure 62. Inter-Pair Skew Definition
Figure 63. TMDS Output Signals Rise and Fall Time Definition
Table 65. Switching Characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
—
—
3.4
Gbps
25
—
340
MHz
2.94
—
40
ns
40
50
60
%
TMDS Drivers Specifications
—
F
TMDSCLK
P
TMDSCLK
t
CDC
t
—
TMDSCLK frequency
On TMDSCLKP/N outputs
TMDSCLK period
RL = 50 
See Figure 59.
TMDSCLK duty cycle
t
CDC
=t
CPH
/P
TMDSCLK
RL = 50 
See Figure 59.
TMDSCLK high time
RL = 50 
See Figure 59.
4
5
6
UI
CPL
TMDSCLK low time
RL = 50 
See Figure 59.
4
5
6
UI
—
TMDSCLK jitter1
RL = 50 
—
—
0.25
UI
SK(p)
Intra-pair (pulse) skew
RL = 50 
See Figure 61.
—
—
0.15
UI
SK(pp)
Inter-pair skew
RL = 50 
See Figure 62.
—
—
1
UI
Differential output signal rise
time
20–80%
RL = 50 
See Figure 63.
75
—
0.4 UI
ps
CPH
t
t
t
Maximum serial data rate
tR
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
93
Electrical Characteristics
Table 65. Switching Characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
75
—
0.4 UI
ps
tF
Differential output signal fall time 20–80%
RL = 50 
See Figure 63.
—
Differential signal overshoot
Referred to 2x VSWING
—
—
15
%
—
Differential signal undershoot
Referred to 2x VSWING
—
—
25
%
—
—
3.35
ms
Data and Control Interface Specifications
tPower-up2
1
2
HDMI 3D Tx PHY power-up time From power-down to
HSI_TX_READY assertion
Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.
For information about latencies and associated timings, see Section 4.11.7.1, “Latencies and Timing Information.”
4.11.9
I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 64 depicts the timing of I2C
module, and Table 66 lists the I2C module timing characteristics.
I2Cx_SDA
IC11
IC10
IC2
IC7
IC4
IC8
IC9
IC3
I2Cx_SCL
START
IC10
IC11
IC6
STOP
START
START
IC5
IC1
Figure 64. I2C Bus Timing
Table 66. I2C Module Timing Parameters
Standard Mode
ID
Fast Mode
Parameter
Unit
Min
Max
Min
Max
IC1
I2Cx_SCL cycle time
10
—
2.5
—
µs
IC2
Hold time (repeated) START condition
4.0
—
0.6
—
µs
IC3
Set-up time for STOP condition
4.0
—
0.6
—
µs
IC4
Data hold time
01
3.452
01
0.92
µs
IC5
HIGH Period of I2Cx_SCL Clock
4.0
—
0.6
—
µs
IC6
LOW Period of the I2Cx_SCL Clock
4.7
—
1.3
—
µs
IC7
Set-up time for a repeated START condition
4.7
—
0.6
—
µs
—
1003
—
ns
IC8
Data set-up time
250
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
94
Freescale Semiconductor
Electrical Characteristics
Table 66. I2C Module Timing Parameters (continued)
Standard Mode
ID
IC9
Fast Mode
Parameter
Bus free time between a STOP and START condition
Unit
Min
Max
Min
4.7
—
1.3
Max
—
µs
4
300
ns
IC10
Rise time of both I2Cx_SDA and I2Cx_SCL signals
—
1000
20 + 0.1Cb
IC11
Fall time of both I2Cx_SDA and I2Cx_SCL signals
—
300
20 + 0.1Cb4
300
ns
IC12
Capacitive load for each bus line (Cb)
—
400
—
400
pF
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal in order to bridge the undefined region of
the falling edge of I2Cx_SCL.
2
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.
3
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2Cx_SCL line is released.
4 C = total capacitance of one bus line in pF.
b
4.11.10 Image Processing Unit (IPU) Module Parameters
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor
and/or to a display device. This support covers all aspects of these activities:
• Connectivity to relevant devices—cameras, displays, graphics accelerators, and TV encoders.
• Related image processing and manipulation: sensor image signal processing, display processing,
image conversions, and other related functions.
• Synchronization and control capabilities, such as avoidance of tearing artifacts.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
95
Electrical Characteristics
4.11.10.1 IPU Sensor Interface Signal Mapping
The IPU supports a number of sensor input formats. Table 67 defines the mapping of the Sensor Interface
Pins used for various supported interface formats.
Table 67. Camera Input Signal Cross Reference, Format, and Bits Per Cycle
RGB565
8 bits
2 cycles
RGB5652
8 bits
3 cycles
RGB6663
8 bits
3 cycles
RGB888
8 bits
3 cycles
YCbCr4
8 bits
2 cycles
RGB5655
16 bits
2 cycles
YCbCr6
16 bits
1 cycle
YCbCr7
16 bits
1 cycle
YCbCr8
20 bits
1 cycle
IPUx_CSIx_
DATA00
—
—
—
—
—
—
—
0
C[0]
IPUx_CSIx_
DATA01
—
—
—
—
—
—
—
0
C[1]
IPUx_CSIx_
DATA02
—
—
—
—
—
—
—
C[0]
C[2]
IPUx_CSIx_
DATA03
—
—
—
—
—
—
—
C[1]
C[3]
IPUx_CSIx_
DATA04
—
—
—
—
—
B[0]
C[0]
C[2]
C[4]
IPU2_CSIx_
DATA_05
—
—
—
—
—
B[1]
C[1]
C[3]
C[5]
IPUx_CSIx_
DATA06
—
—
—
—
—
B[2]
C[2]
C[4]
C[6]
IPUx_CSIx_
DATA07
—
—
—
—
—
B[3]
C[3]
C[5]
C[7]
IPUx_CSIx_
DATA08
—
—
—
—
—
B[4]
C[4]
C[6]
C[8]
IPUx_CSIx_
DATA09
—
—
—
—
—
G[0]
C[5]
C[7]
C[9]
IPUx_CSIx_
DATA10
—
—
—
—
—
G[1]
C[6]
0
Y[0]
IPUx_CSIx_
DATA11
—
—
—
—
—
G[2]
C[7]
0
Y[1]
IPUx_CSIx_
DATA12
B[0], G[3]
R[2],G[4],B[2]
R/G/B[4]
R/G/B[0]
Y/C[0]
G[3]
Y[0]
Y[0]
Y[2]
IPUx_CSIx_
DATA13
B[1], G[4]
R[3],G[5],B[3]
R/G/B[5]
R/G/B[1]
Y/C[1]
G[4]
Y[1]
Y[1]
Y[3]
IPUx_CSIx_
DATA14
B[2], G[5]
R[4],G[0],B[4]
R/G/B[0]
R/G/B[2]
Y/C[2]
G[5]
Y[2]
Y[2]
Y[4]
IPUx_CSIx_
DATA15
B[3], R[0]
R[0],G[1],B[0]
R/G/B[1]
R/G/B[3]
Y/C[3]
R[0]
Y[3]
Y[3]
Y[5]
IPUx_CSIx_
DATA16
B[4], R[1]
R[1],G[2],B[1]
R/G/B[2]
R/G/B[4]
Y/C[4]
R[1]
Y[4]
Y[4]
Y[6]
IPUx_CSIx_
DATA17
G[0], R[2]
R[2],G[3],B[2]
R/G/B[3]
R/G/B[5]
Y/C[5]
R[2]
Y[5]
Y[5]
Y[7]
IPUx_CSIx_
DATA18
G[1], R[3]
R[3],G[4],B[3]
R/G/B[4]
R/G/B[6]
Y/C[6]
R[3]
Y[6]
Y[6]
Y[8]
IPUx_CSIx_
DATA19
G[2], R[4]
R[4],G[5],B[4]
R/G/B[5]
R/G/B[7]
Y/C[7]
R[4]
Y[7]
Y[7]
Y[9]
Signal
Name1
1
IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
96
Freescale Semiconductor
Electrical Characteristics
2
3
4
5
6
7
8
The MSB bits are duplicated on LSB bits implementing color extension.
The two MSB bits are duplicated on LSB bits implementing color extension.
YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
RGB, 16 bits—Supported in two ways: (1) As a “generic data” input—with no on-the-fly processing; (2) With on-the-fly
processing, but only under some restrictions on the control protocol.
YCbCr, 16 bits—Supported as a “generic-data” input—with no on-the-fly processing.
YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).
4.11.10.2 Sensor Interface Timings
There are three camera timing modes supported by the IPU.
4.11.10.2.1 BT.656 and BT.1120 Video Mode
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use
an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The
timing syntax is defined by the BT.656/BT.1120 standards.
This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only
control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the
data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital
blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding
from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal
use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120
two components per cycle are received over the IPU2_CSIx_DATA_EN bus.
4.11.10.2.2 Gated Clock Mode
The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this
mode. See Figure 65.
!CTIVE ,INE
3TART OF &RAME
NTH FRAME
N TH FRAME
)05?#3)X?639.#
)05?#3)X?(39.#
)05?#3)X?0)8?#,+
)05?#3)X?$!4!;=
INVALID
INVALID
ST BYTE
ST BYTE
Figure 65. Gated Clock Mode Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
97
Electrical Characteristics
A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity
of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel
clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel
clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI
stops receiving data from the stream. For the next line, the IPU2_CSIx_HSYNC timing repeats. For the
next frame, the IPU2_CSIx_VSYNC timing repeats.
4.11.10.2.3 Non-Gated Clock Mode
The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, “Gated Clock Mode,”)
except for the IPU2_CSIx_HSYNC signal, which is not used (see Figure 66). All incoming pixel clocks
are valid and cause data to be latched into the input FIFO. The IPU2_CSIx_PIX_CLK signal is inactive
(states low) until valid data is going to be transmitted over the bus.
Start of Frame
nth frame
n+1th frame
IPU2_CSIx_VSYNC
IPU2_CSIx_PIX_CLK
IPU2_CSIx_DATA_EN[19:0]
invalid
invalid
1st byte
1st byte
Figure 66. Non-Gated Clock Mode Timing Diagram
The timing described in Figure 66 is that of a typical sensor. Some other sensors may have a slightly
different timing. The CSI can be programmed to support rising/falling-edge triggered
IPU2_CSIx_VSYNC; active-high/low IPU2_CSIx_HSYNC; and rising/falling-edge triggered
IPU2_CSIx_PIX_CLK.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
98
Freescale Semiconductor
Electrical Characteristics
4.11.10.3 Electrical Characteristics
Figure 67 depicts the sensor interface timing. IPU2_CSIx_PIX_CLK signal described here is not
generated by the IPU. Table 68 lists the sensor interface timing characteristics.
IPUx_CSIx_PIX_CLK
(Sensor Output)
1/IP1
IP2
IP3
IPUx_CSIx_DATA_EN,
IPUx_CSIx_VSYNC,
IPUx_CSIx_HSYNC
Figure 67. Sensor Interface Timing Diagram
Table 68. Sensor Interface Timing Characteristics
ID
Parameter
Symbol
Min
Max
Unit
IP1
Sensor output (pixel) clock frequency
Fpck
0.01
180
MHz
IP2
Data and control setup time
Tsu
2
—
ns
IP3
Data and control holdup time
Thd
1
—
ns
4.11.10.4 IPU Display Interface Signal Mapping
The IPU supports a number of display output video formats. Table 69 defines the mapping of the Display
Interface Pins used during various supported video interface formats.
Table 69. Video Signal Cross-Reference
i.MX 6Dual/6Quad
LCD
Comment1, 2
RGB/TV Signal Allocation (Example)
RGB,
Signal
Name
(General)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
IPUx_DISPx_DAT00
DAT[0]
B[0]
B[0]
B[0]
Y/C[0]
C[0]
C[0]
—
IPUx_DISPx_DAT01
DAT[1]
B[1]
B[1]
B[1]
Y/C[1]
C[1]
C[1]
—
IPUx_DISPx_DAT02
DAT[2]
B[2]
B[2]
B[2]
Y/C[2]
C[2]
C[2]
—
IPUx_DISPx_DAT03
DAT[3]
B[3]
B[3]
B[3]
Y/C[3]
C[3]
C[3]
—
IPUx_DISPx_DAT04
DAT[4]
B[4]
B[4]
B[4]
Y/C[4]
C[4]
C[4]
—
IPUx_DISPx_DAT05
DAT[5]
G[0]
B[5]
B[5]
Y/C[5]
C[5]
C[5]
—
IPUx_DISPx_DAT06
DAT[6]
G[1]
G[0]
B[6]
Y/C[6]
C[6]
C[6]
—
Port Name
(x = 0, 1)
16-bit 20-bit
YCrCb YCrCb
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
99
Electrical Characteristics
Table 69. Video Signal Cross-Reference (continued)
i.MX 6Dual/6Quad
LCD
Comment1, 2
RGB/TV Signal Allocation (Example)
RGB,
Signal
Name
(General)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
IPUx_DISPx_DAT07
DAT[7]
G[2]
G[1]
B[7]
Y/C[7]
C[7]
C[7]
—
IPUx_DISPx_DAT08
DAT[8]
G[3]
G[2]
G[0]
—
Y[0]
C[8]
—
IPUx_DISPx_DAT09
DAT[9]
G[4]
G[3]
G[1]
—
Y[1]
C[9]
—
IPUx_DISPx_DAT10
DAT[10]
G[5]
G[4]
G[2]
—
Y[2]
Y[0]
—
IPUx_DISPx_DAT11
DAT[11]
R[0]
G[5]
G[3]
—
Y[3]
Y[1]
—
IPUx_DISPx_DAT12
DAT[12]
R[1]
R[0]
G[4]
—
Y[4]
Y[2]
—
IPUx_DISPx_DAT13
DAT[13]
R[2]
R[1]
G[5]
—
Y[5]
Y[3]
—
IPUx_DISPx_DAT14
DAT[14]
R[3]
R[2]
G[6]
—
Y[6]
Y[4]
—
IPUx_DISPx_DAT15
DAT[15]
R[4]
R[3]
G[7]
—
Y[7]
Y[5]
—
IPUx_DISPx_DAT16
DAT[16]
—
R[4]
R[0]
—
—
Y[6]
—
IPUx_DISPx_DAT17
DAT[17]
—
R[5]
R[1]
—
—
Y[7]
—
IPUx_DISPx_DAT18
DAT[18]
—
—
R[2]
—
—
Y[8]
—
IPUx_DISPx_DAT19
DAT[19]
—
—
R[3]
—
—
Y[9]
—
IPUx_DISPx_DAT20
DAT[20]
—
—
R[4]
—
—
—
—
IPUx_DISPx_DAT21
DAT[21]
—
—
R[5]
—
—
—
—
IPUx_DISPx_DAT22
DAT[22]
—
—
R[6]
—
—
—
—
IPUx_DISPx_DAT23
DAT[23]
—
—
R[7]
—
—
—
—
Port Name
(x = 0, 1)
IPUx_DIx_DISP_CLK
16-bit 20-bit
YCrCb YCrCb
PixCLK
—
IPUx_DIx_PIN01
—
May be required for anti-tearing
IPUx_DIx_PIN02
HSYNC
—
IPUx_DIx_PIN03
VSYNC
VSYNC out
IPUx_DIx_PIN04
—
IPUx_DIx_PIN05
—
IPUx_DIx_PIN06
—
IPUx_DIx_PIN07
—
IPUx_DIx_PIN08
—
Additional frame/row synchronous
signals with programmable timing
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
100
Freescale Semiconductor
Electrical Characteristics
Table 69. Video Signal Cross-Reference (continued)
i.MX 6Dual/6Quad
LCD
RGB,
Signal
Name
(General)
Port Name
(x = 0, 1)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
Comment1, 2
16-bit 20-bit
YCrCb YCrCb
IPUx_DIx_D0_CS
—
—
IPUx_DIx_D1_CS
—
Alternate mode of PWM output for
contrast or brightness control
IPUx_DIx_PIN11
—
—
IPUx_DIx_PIN12
—
IPUx_DIx_PIN13
—
IPUx_DIx_PIN14
—
IPUx_DIx_PIN15
DRDY/DV
IPUx_DIx_PIN16
—
IPUx_DIx_PIN17
Q
—
Register select signal
Optional RS2
Data validation/blank, data enable
Additional data synchronous
signals with programmable
features/timing
1
Signal mapping (both data and control/synchronization) is flexible. The table provides examples.
Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:
• A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.
• The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.
3 This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line
start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data
during blanking intervals is not supported.
2
NOTE
Table 69 provides information for both the DISP0 and DISP1 ports.
However, DISP1 port has reduced pinout depending on IOMUXC
configuration and therefore may not support all configurations. See the
IOMUXC table for details.
4.11.10.5 IPU Display Interface Timing
The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There
are two groups of external interface pins to provide synchronous and asynchronous controls.
4.11.10.5.1 Synchronous Controls
The synchronous control changes its value as a function of a system or of an external clock. This control
has a permanent period and a permanent waveform.
There are special physical outputs to provide synchronous controls:
• The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display
(component, pixel) clock for a display.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
101
Electrical Characteristics
•
The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide
HSYNC, VSYNC, DRDY or any else independent signal to a display.
The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC)
calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control
starts from the local start point with predefined UP and DOWN values to calculate control’s changing
points with half DI_CLK resolution. A full description of the counter system can be found in the IPU
chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.11.10.5.2 Asynchronous Controls
The asynchronous control is a data-oriented signal that changes its value with an output data according to
additional internal flags coming with the data.
There are special physical outputs to provide asynchronous controls, as follows:
• The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
• The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide
WR. RD, RS or any other data-oriented signal to display.
NOTE
The IPU has independent signal generators for asynchronous signals
toggling. When a DI decides to put a new asynchronous data on the bus, a
new internal start (local start point) is generated. The signal generators
calculate predefined UP and DOWN values to change pins states with half
DI_CLK resolution.
4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels
4.11.10.6.1 IPU Display Operating Signals
The IPU uses four control signals and data to operate a standard synchronous interface:
• IPP_DISP_CLK—Clock to display
• HSYNC—Horizontal synchronization
• VSYNC—Vertical synchronization
• DRDY—Active data
All synchronous display controls are generated on the base of an internally generated “local start point”.
The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters.
The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved
relative to the local start point. The data bus of the synchronous interface is output direction only.
4.11.10.6.2 LCD Interface Functional Description
Figure 68 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure,
signals are shown with negative polarity. The sequence of events for active matrix interface timing is:
• DI_CLK internal DI clock is used for calculation of other controls.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
102
Freescale Semiconductor
Electrical Characteristics
•
•
•
•
IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is
selected). In active mode, IPP_DISP_CLK runs continuously.
HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.)
VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
(Usually IPUx_DIx_PIN03 is used as VSYNC.)
DRDY acts like an output enable signal to the CRT display. This output enables the data to be
shifted onto the display. When disabled, the data is invalid and the trace is off.
(DRDY can be used either synchronous or asynchronous generic purpose pin as well.)
VSYNC
HSYNC
LINE 1
LINE 2
LINE 3
LINE 4
LINE n-1
LINE n
HSYNC
DRDY
1
2
3
m–1
m
IPP_DISP_CLK
IPP_DATA
Figure 68. Interface Timing Diagram for TFT (Active Matrix) Panels
4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams
Figure 69 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and
the data. All the parameters shown in the figure are programmable. All controls are started by
corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of
the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
103
Electrical Characteristics
IP13o
IP7
IP5o
IP8o
IP5
IP8
DI clock
IPP_DISP_CLK
VSYNC
HSYNC
DRDY
IPP_DATA
D0
local start point
local start point
Dn
IP9o
IP9
local start point
D1
IP10
IP6
Figure 69. TFT Panels Timing Diagram—Horizontal Sync Pulse
Figure 70 depicts the vertical timing (timing of one frame). All parameters shown in the figure are
programmable.
Start of frame
End of frame
IP13
VSYNC
DRDY
IP11
HSYNC
IP15
IP14
IP12
Figure 70. TFT Panels Timing Diagram—Vertical Sync Pulse
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
104
Freescale Semiconductor
Electrical Characteristics
Table 70 shows timing characteristics of signals presented in Figure 69 and Figure 70.
Table 70. Synchronous Display Interface Timing Characteristics (Pixel Level)
ID
Parameter
Symbol
Value
IP5
Display interface clock period
Tdicp
(see1)
IP6
Display pixel clock period
Tdpcp
IP7
Screen width time
Tsw
(SCREEN_WIDTH)
 Tdicp
IP8
HSYNC width time
Thsw
(HSYNC_WIDTH)
IP9
Horizontal blank interval 1
Thbi1
BGXP  Tdicp
IP10
Horizontal blank interval 2
Thbi2
IP12
Screen height
IP13
Description
Display interface clock IPP_DISP_CLK
DISP_CLK_PER_PIXEL Time of translation of one pixel to display,
 Tdicp
DISP_CLK_PER_PIXEL—number of pixel
components in one pixel (1.n).
The DISP_CLK_PER_PIXEL is virtual
parameter to define display pixel clock
period.
The DISP_CLK_PER_PIXEL is received by
DC/DI one access division to n
components.
Unit
ns
ns
SCREEN_WIDTH—screen width in,
interface clocks. horizontal blanking
included.
The SCREEN_WIDTH should be built by
suitable DI’s counter2.
ns
HSYNC_WIDTH—Hsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
BGXP—width of a horizontal blanking
before a first active data in a line (in
interface clocks). The BGXP should be built
by suitable DI’s counter.
ns
(SCREEN_WIDTH –
BGXP – FW)  Tdicp
Width a horizontal blanking after a last
active data in a line (in interface clocks)
FW—with of active line in interface clocks.
The FW should be built by suitable DI’s
counter.
ns
Tsh
(SCREEN_HEIGHT)
 Tsw
SCREEN_HEIGHT— screen height in lines
with blanking.
The SCREEN_HEIGHT is a distance
between 2 VSYNCs.
The SCREEN_HEIGHT should be built by
suitable DI’s counter.
ns
VSYNC width
Tvsw
VSYNC_WIDTH
VSYNC_WIDTH—Vsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
IP14
Vertical blank interval 1
Tvbi1
BGYP  Tsw
BGYP—width of first Vertical
blanking interval in line. The BGYP should
be built by suitable DI’s counter.
ns
IP15
Vertical blank interval 2
Tvbi2
Width of second vertical blanking interval in
line. The FH should be built by suitable DI’s
counter.
ns
(SCREEN_HEIGHT –
BGYP – FH)  Tsw
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
105
Electrical Characteristics
Table 70. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)
ID
Symbol
Value
Todicp
DISP_CLK_OFFSET
Tdiclk
IP13o Offset of VSYNC
Tovs
IP8o
Offset of HSYNC
IP9o
Offset of DRDY
IP5o
1
Parameter
Offset of IPP_DISP_CLK
Description
Unit
DISP_CLK_OFFSET—offset of
IPP_DISP_CLK edges from local start
point, in DI_CLK2
(0.5 DI_CLK Resolution).
Defined by DISP_CLK counter.
ns
VSYNC_OFFSET
Tdiclk
VSYNC_OFFSET—offset of Vsync edges
from a local start point, when a Vsync
should be active, in DI_CLK2
(0.5 DI_CLK Resolution). The
VSYNC_OFFSET should be built by
suitable DI’s counter.
ns
Tohs
HSYNC_OFFSET
 Tdiclk
HSYNC_OFFSET—offset of Hsync edges
from a local start point, when a Hsync
should be active, in DI_CLK2
(0.5 DI_CLK Resolution). The
HSYNC_OFFSET should be built by
suitable DI’s counter.
ns
Todrdy
DRDY_OFFSET
 Tdiclk
DRDY_OFFSET—offset of DRDY edges
from a suitable local start point, when a
corresponding data has been set on the
bus, in DI_CLK2
(0.5 DI_CLK Resolution).
The DRDY_OFFSET should be built by
suitable DI’s counter.
ns
Display interface clock period immediate value.

DISP_CLK_PERIOD
 T diclk  ----------------------------------------------------,
DI_CLK_PERIOD

Tdicp = 
DISP_CLK_PERIOD
T


--------------------------------------------------- diclk  floor DI_CLK_PERIOD + 0.5  0.5 ,

for integer DISP_CLK_PERIOD
---------------------------------------------------DI_CLK_PERIOD
for fractional DISP_CLK_PERIOD
---------------------------------------------------DI_CLK_PERIOD
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK.
DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency
Display interface clock period average value.
DISP_CLK_PERIOD
Tdicp = T diclk  ---------------------------------------------------DI_CLK_PERIOD
2
DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the
counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by
corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance between
HSYNCs is a SCREEN_WIDTH.
The maximum accuracy of UP/DOWN edge of controls is:
Accuracy =  0.5  T diclk   0.62ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
106
Freescale Semiconductor
Electrical Characteristics
The maximum accuracy of UP/DOWN edge of IPP_DISP_DATA is:
Accuracy = T diclk  0.62ns
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled.
Figure 71 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and
DISP_CLK_UP parameters are register-controlled. Table 71 lists the synchronous display interface timing
characteristics.
IP20o IP20
VSYNC
HSYNC
DRDY
other controls
IPP_DISP_CLK
Tdicu
Tdicd
IPP_DATA
IP16
IP17
IP19
IP18
local start point
Figure 71. Synchronous Display Interface Timing Diagram—Access Level
Table 71. Synchronous Display Interface Timing Characteristics (Access Level)
ID
Parameter
Symbol
Typ1
Min
Max
Unit
IP16
Display interface clock low Tckl
time
Tdicd-Tdicu-1.24
Tdicd2-Tdicu3
IP17
Display interface clock
high time
Tckh
Tdicp-Tdicd+Tdicu-1.24
Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2
ns
IP18
Data setup time
Tdsu
Tdicd-1.24
Tdicu
—
ns
IP19
Data holdup time
Tdhd
Tdicp-Tdicd-1.24
Tdicp-Tdicu
—
ns
IP20o
Control signals offset
times (defined for each
pin)
Tocsu
Tocsu-1.24
Tocsu
IP20
Control signals setup time Tcsu
to display interface clock
(defined for each pin)
Tdicd-1.24-Tocsu%Tdicp Tdicu
Tdicd-Tdicu+1.24
Tocsu+1.24
—
ns
ns
ns
1
The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
2
Display interface clock down time
2  DISP_CLK_DOWN
Tdicd = 1---  T diclk  ceil ----------------------------------------------------------- 

DI_CLK_PERIOD
2
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
107
Electrical Characteristics
3
Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.
2  DISP_CLK_UP
Tdicu = 1---  T diclk  ceil ------------------------------------------------ 
DI_CLK_PERIOD 
2
4.11.11 LVDS Display Bridge (LDB) Module Parameters
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits.”
Table 72. LVDS Display Bridge (LDB) Electrical Specification
Parameter
Symbol
Differential Voltage Output Voltage
VOD
Output Voltage High
Test Condition
Min
Max
Units
100  Differential load
250
450
mV
Voh
100  differential load
(0 V Diff—Output High Voltage static)
1.25
1.6
mV
Output Voltage Low
Vol
100  differential load
(0 V Diff—Output Low Voltage static)
0.9
1.25
mV
Offset Static Voltage
VOS
Two 49.9  resistors in series between N-P
terminal, with output in either Zero or One state, the
voltage measured between the 2 resistors.
1.15
1.375
V
VOS Differential
VOSDIFF Difference in VOS between a One and a Zero state
-50
50
mV
Output short-circuited to GND
ISA ISB With the output common shorted to GND
-24
24
mA
VT Full Load Test
VTLoad 100  Differential load with a 3.74 k load between
GND and I/O supply voltage
247
454
mV
4.11.12 MIPI D-PHY Timing Parameters
This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0,
D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY
specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for
MIPI display port x2 lanes).
4.11.12.1 Electrical and Timing Information
Table 73. Electrical and Timing Information
Symbol
Parameters
Test Conditions
Min
Typ
Max
Unit
Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs
VI
Input signal voltage range
Transient voltage range is limited from -300
mV to 1600 mV
-50
—
VLEAK
Input leakage current
VGNDSH(min) = VI = VGNDSH(max) +
VOH(absmax)
Lane module in LP Receive Mode
-10
—
10
mA
VGNDSH
Ground Shift
-50
—
50
mV
—
1350 mV
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
108
Freescale Semiconductor
Electrical Characteristics
Table 73. Electrical and Timing Information (continued)
Symbol
Parameters
Test Conditions
Min
Typ
Max
Unit
VOH(absmax)
Maximum transient output
voltage level
—
—
—
1.45
V
tvoh(absmax)
Maximum transient time
above VOH(absmax)
—
—
—
20
ns
HS Line Drivers DC Specifications
|VOD|
HS Transmit Differential
output voltage magnitude
80 = RL< = 125 
140
200
270
mV
|VOD|
Change in Differential output
voltage magnitude between
logic states
80 = RL< = 125 
—
—
10
mV
VCMTX
Steady-state common-mode
output voltage.
80 = RL< = 125 
150
200
250
mV
VCMTX(1,0)
Changes in steady-state
common-mode output voltage
between logic states
80 = RL< = 125 
—
—
5
mV
VOHHS
HS output high voltage
80 = RL< = 125 
—
—
360
mV
ZOS
Single-ended output
impedance.
—
40
50
62.5

ZOS
Single-ended output
impedance mismatch.
—
—
—
10
%
50
mV
LP Line Drivers DC Specifications
VOL
Output low-level SE voltage
—
-50
VOH
Output high-level SE voltage
—
1.1
1.2
1.3
V
ZOLP
Single-ended output
impedance.
—
110
—
—

ZOLP(01-10)
Single-ended output
impedance mismatch driving
opposite level
—
—
—
20
%
ZOLP(0-11)
Single-ended output
impedance mismatch driving
same level
—
—
—
5
%
HS Line Receiver DC Specifications
VIDTH
Differential input high voltage
threshold
—
—
—
70
mV
VIDTL
Differential input low voltage
threshold
—
-70
—
—
mV
VIHHS
Single ended input high
voltage
—
—
—
460
mV
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
109
Electrical Characteristics
Table 73. Electrical and Timing Information (continued)
Symbol
Parameters
Test Conditions
Min
Typ
Max
Unit
VILHS
Single ended input low
voltage
—
-40
—
—
mV
VCMRXDC
Input common mode voltage
—
70
—
330
mV
ZID
Differential input impedance
—
80
—
125

LP Line Receiver DC Specifications
VIL
Input low voltage
—
—
—
550
mV
VIH
Input high voltage
—
920
—
—
mV
VHYST
Input hysteresis
—
25
—
—
mV
200
—
450
mV
Contention Line Receiver DC Specifications
VILF
Input low fault threshold
—
4.11.12.2 D-PHY Signaling Levels
The signal levels are different for differential HS mode and single-ended LP mode. Figure 72 shows both
the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below
the LP low-level input threshold such that LP receiver always detects low on HS signals.
VOH,MAX
LP
VOL
VOH,MIN
LP
VIH
VIH
LP Threshold
Region
VIL
Max VOD
HS Vout
Range
VOHHS
VCMTX,MAX
HS Vcm
Range
Min VOD
HS Differential Signaling
LP VIL
VGNDSH,MA
VCMTX,MIN
VOLHS
LP VOL
X
GND
VGNDSH,MIN
LP Single-ended Signaling
Figure 72. D-PHY Signaling Levels
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
110
Freescale Semiconductor
Electrical Characteristics
4.11.12.3 HS Line Driver Characteristics
Ideal Single-Ended High Speed Signals
VDN
VCMTX = (VDP + VDN)/2
VOD(0)
VOD(1)
VDP
Ideal Differential High Speed Signals
VOD(1)
0V
(Differential)
VOD(0)
VOD = VDP - VDN
Figure 73. Ideal Single-ended and Resulting Differential HS Signals
4.11.12.4
Possible VCMTX and VOD Distortions of the Single-ended HS Signals
VOD (SE HS Signals)
VOD/2
V OD (1)
VD N
VCM TX
VOD(0)
VD P
V OD /2
Static V CMT X (SE HS Signals)
VD N
VC MTX
VOD(0)
V DP
DynamicVCMT X (SE HS Signals)
VDN
VCM TX
VD P
Figure 74. Possible VCMTX and VOD Distortions of the Single-ended HS Signals
4.11.12.5 D-PHY Switching Characteristics
Table 74. Electrical and Timing Information
Symbol
Parameters
Test Conditions
Min
Typ
Max
Unit
HS Line Drivers AC Specifications
—
Maximum serial data rate (forward
direction)
On DATAP/N outputs.
80  <= RL <= 125 
80
—
1000
Mbps
FDDRCLK
DDR CLK frequency
On DATAP/N outputs.
40
—
500
MHz
PDDRCLK
DDR CLK period
80 = RL< = 125 
2
—
25
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
111
Electrical Characteristics
Table 74. Electrical and Timing Information (continued)
Symbol
Parameters
Test Conditions
tCDCtCPHPDDRCLK
Min
Typ
Max
Unit
—
50
—
%
tCDC
DDR CLK duty cycle
tCPH
DDR CLK high time
—
—
1
—
UI
tCPL
DDR CLK low time
—
—
1
—
UI
—
DDR CLK / DATA Jitter
—
—
75
—
ps pk-pk
tSKEW[PN]
Intra-Pair (Pulse) skew
—
—
0.075
—
UI
tSKEW[TX]
Data to Clock Skew
—
0.350
—
0.650
UI
tSETUP[RX]
Data to Clock Receiver Setup time
—
0.15
—
—
UI
tHOLD[RX]
Clock to Data Receiver Hold time
—
0.15
—
—
UI
tr
Differential output signal rise time
20% to 80%, RL = 50 
150
—
0.3UI
ps
tf
Differential output signal fall time
20% to 80%, RL = 50 
150
—
0.3UI
ps
VCMTX(HF)
Common level variation above 450 MHz 80 <= RL< = 125 
—
—
15
mVrms
VCMTX(LF)
Common level variation between 50
MHz and 450 MHz
80 <= RL< = 125 
—
—
25
mVp
15% to 85%, CL<70 pF
—
—
25
ns
30% to 85%, CL<70 pF
—
—
35
ns
15% to 85%, CL<70 pF
—
—
120
mV/ns
0
—
70
pF
LP Line Drivers AC Specifications
trlp,tflp
Single ended output rise/fall time
treo
—
V/tSR
Signal slew rate
CL
Load capacitance
—
HS Line Receiver AC Specifications
VCMRX(HF)
Common mode interference beyond
450 MHz
—
—
—
200
mVpp
VCMRX(LF)
Common mode interference between
50 MHz and 450 MHz
—
-50
—
50
mVpp
CCM
Common mode termination
—
—
—
60
pF
LP Line Receiver AC Specifications
eSPIKE
Input pulse rejection
—
—
—
300
Vps
TMIN
Minimum pulse response
—
50
—
—
ns
VINT
Pk-to-Pk interference voltage
—
—
—
400
mV
fINT
Interference frequency
—
450
—
—
MHz
Model Parameters used for Driver Load switching performance evaluation
CPAD
Equivalent Single ended I/O PAD
capacitance.
—
—
—
1
pF
CPIN
Equivalent Single ended Package +
PCB capacitance.
—
—
—
2
pF
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
112
Freescale Semiconductor
Electrical Characteristics
Table 74. Electrical and Timing Information (continued)
Symbol
Parameters
Test Conditions
Min
Typ
Max
Unit
LS
Equivalent wire bond series inductance
—
—
—
1.5
nH
RS
Equivalent wire bond series resistance
—
—
—
0.15

RL
Load Resistance
—
80
100
125

4.11.12.6 High-Speed Clock Timing
CLKp
CLKn
1 Data Bit Time = 1UI
1 Data Bit Time = 1UI
UIINST(1)
UIINST(2)
1 DDR Clock Period = UIINST(1) + UIINST(2)
Figure 75. DDR Clock Definition
4.11.12.7 Forward High-Speed Data Transmission Timing
The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in
Figure 76:
2EFERENCE 4IME
4 3%450
4 (/,$
#,+P
#,+N
5) ).34
43+%7
5) ).34
4#,+P
Figure 76. Data to Clock Timing Definitions
4.11.12.8 Reverse High-Speed Data Transmission Timing
TTD
NRZ Data
CLKn
CLKp
Clock to Data
Skew
2UI
2UI
Figure 77. Reverse High-Speed Data Transmission Timing at Slave Side
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
113
Electrical Characteristics
4.11.12.9 Low-Power Receiver Timing
2*TLPX
eSPIKE
2*TLPX
Input
TMIN-RX
eSPIKE
TMIN-RX
VIH
VIL
Output
Figure 78. Input Glitch Rejection of Low-Power Receivers
4.11.13 HSI Host Controller Timing Parameters
This section describes the timing parameters of the HSI Host Controller which are compliant with
High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.
4.11.13.1 Synchronous Data Flow
First bit of
frame
t
Last bit of
frame
First bit of
frame
Last bit of
frame
NomBit
DATA
FLAG
N-bits Frame
N-bits Frame
READY
Receiver has
detected the start
of the Frame
Receiver has captured
and stored a complete
Frame
Figure 79. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)
4.11.13.2 Pipelined Data Flow
First bit of
frame
t
Last bit of
frame
First bit of
frame
Last bit of
frame
Last bit of
frame
D. Ready shall
maintain zero of if
receiver does not
have free space
E.
Ready F. Ready G. Ready
shall
can change
can
change maintain
its value
NomBit
DATA
FLAG
N-bits Frame
N-bits Frame
READY
A Ready can change
B Ready shall not
change to zero
C. Ready can change
Figure 80. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
114
Freescale Semiconductor
Electrical Characteristics
4.11.13.3 Receiver Real-Time Data Flow
First bit of
frame
t
Last bit of
frame
First bit of
frame
Last bit of
frame
NomBit
DATA
FLAG
N-bits Frame
N-bits Frame
READY
Receiver has
detected the start
of the Frame
Receiver has captured a
complete Frame
Figure 81. Receiver Real-Time Data Flow READY Signal Timing
4.11.13.4 Synchronized Data Flow Transmission with Wake
TX state
A
B
C
PHY Frame
A
D
PHY Frame
DATA
FLAG
3. First bit
received
READY
WAKE
RX state
1. Transmitter has
B data to transmit
A
A: Sleep state(non-operational)
B: Wake-up state
6. Receiver
can no longer
receive date
5. Transmitter
has no more
data to
transmit
4. Received
frame stored
2. Receiver in active
start state
C
C: Active state (full operational)
D
A
D: Disable State(No communication ability)
Figure 82. Synchronized Data Flow Transmission with WAKE
4.11.13.5 Stream Transmission Mode Frame Transfer
Channel
Description
bits
Payload Data Bits
DATA
FLAG
Complete N-bits Frame
Complete N-bits Frame
READY
Figure 83. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
115
Electrical Characteristics
4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)
Frame
start bit
Channel
Description
bits
Payload Data Bits
DATA
FLAG
Complete N-bits Frame
Complete N-bits Frame
READY
Figure 84. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)
4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)
Frame
start bit
Channel
Description
bits
Payload Data Bits
DATA
FLAG
Complete N-bits Frame
Complete N-bits Frame
READY
Figure 85. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)
4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load
Table 75. DATA and FLAG Timing
Parameter
tBit, nom
Description
1 Mbit/s 100 Mbit/s
Nominal bit time
1000 ns
10 ns
2 ns
2 ns
Maximum skew between transmitter and receiver package pins
50 ns
0.5 ns
tEageSepTx, min
Minimum allowed separation of signal transitions at transmitter package pins,
including all timing defects, for example, jitter and skew, inside the transmitter.
400 ns
4 ns
tEageSepRx, min
Minimum separation of signal transitions, measured at the receiver package pins,
including all timing defects, for example, jitter and skew, inside the receiver.
350 ns
3.5 ns
tRise, min and tFall, min Minimum allowed rise and fall time
tTxToRxSkew, maxfq
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
116
Freescale Semiconductor
Electrical Characteristics
4.11.13.9 DATA and FLAG Signal Timing
t
50%
DATA
(TX)
80%
50%
t
Note1
50%
FLAG
(TX)
t
50%
Note2
Rise
80%
80%
20%
t
Bit
t
DATA
(RX)
EdgeSepTx
20%
20%
Fall
t
TxToRxSkew
EdgeSepRx
80%
50%
Note2
Note1
50%
FLAG
(RX)
20%
Figure 86. DATA and FLAG Signal Timing
4.11.14 MediaLB (MLB) Characteristics
4.11.14.1 MediaLB (MLB) DC Characteristics
Table 76 lists the MediaLB 3-pin interface electrical characteristics.
Table 76. MediaLB 3-Pin Interface Electrical DC Specifications
Parameter
Symbol
Test Conditions
Min
Max
Unit
Maximum input voltage
—
—
—
3.6
V
Low level input threshold
VIL
—
—
0.7
V
High level input threshold
VIH
See Note1
1.8
—
V
Low level output threshold
VOL
IOL = 6 mA
—
0.4
V
High level output threshold
VOH
IOH = –6 mA
2.0
—
V
IL
0 < Vin < VDD
—
±10
A
Input leakage current
1
Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be
evaluated and assumed by the customer.
Table 77 lists the MediaLB 6-pin interface electrical characteristics.
Table 77. MediaLB 6-Pin Interface Electrical DC Specifications
Parameter
Symbol
Test Conditions
Min
Max
Unit
Driver Characteristics
Differential output voltage (steady-state):
I VO+ - VO- I
VOD
See Note1
300
500
mV
Difference in differential output voltage
between (high/low) steady-states:
I VOD, high - VOD, low I
VOD
—
-50
50
mV
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
117
Electrical Characteristics
Table 77. MediaLB 6-Pin Interface Electrical DC Specifications (continued)
Parameter
Symbol
Test Conditions
Min
Max
Unit
Common-mode output voltage:
(VO+ - VO-) / 2
VOCM
—
1.0
1.5
V
Difference in common-mode output between
(high/low) steady-states:
I VOCM, high - VOCM, low I
VOCM
—
-50
50
mV
Variations on common-mode output during a
logic state transitions
VCMV
See Note2
—
150
mVpp
Short circuit current
|IOS|
See Note3
—
43
mA
ZO
—
1.6
—
k
-50
Differential output impedance
Receiver Characteristics
See Note4
Differential clock input:
• logic low steady-state
• logic high steady-state
• hysteresis
VILC
VIHC
VHSC
Differential signal/data input:
• logic low steady-state
• logic high steady-state
VILS
VIHS
Signal-ended input voltage (steady-state):
• MLB_SIG_P, MLB_DATA_P
• MLB_SIG_N, MLB_DATA_N
50
-25
25
mV
mV
mV
—
50
-50
—
mV
mV
0.5
0.5
2.0
2.0
V
V
—
—
VIN+
VIN-
1
The signal-ended output voltage of a driver is defined as VO+ on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The
signal-ended output voltage of a driver is defined as VO- on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N.
2 Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of
differences in the transition rate of VO+ and VO-.
3 Short circuit current is applicable when V
O+ and VO- are shorted together and/or shorted to ground.
4 The logic state of the receiver is undefined when -50 mV < V < 50 mV.
ID
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
118
Freescale Semiconductor
Electrical Characteristics
4.11.14.2 MediaLB (MLB) Controller AC Timing Electrical Specifications
This section describes the timing electrical information of the MediaLB module. Figure 87 show the
timing of MediaLB 3-pin interface, and Table 78 and Table 79 lists the MediaLB 3-pin interface timing
characteristics.
Figure 87. MediaLB 3-Pin Timing
Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing
parameters specified from the valid voltage threshold as listed below; unless otherwise noted.
Table 78. MLB 256/512 Fs Timing Parameters
Parameter
MLB_CLK operating frequency1
Symbol
Min
fmck
11.264
Max
Unit
Comment
MHz
256xFs at 44.0 kHz
512xFs at 50.0 kHz
25.6
MLB_CLK rise time
tmckr
—
3
ns
VIL TO VIH
MLB_CLK fall time
tmckf
—
3
ns
VIH TO VIL
MLB_CLK low time2
tmckl
30
14
—
ns
256xFs
512xFs
MLB_CLK high time
tmckh
30
14
—
ns
256xFs
512xFs
MLB_SIG/MLB_DATA receiver input
valid to MLB_CLK falling
tdsmcf
1
—
ns
—
MLB_SIG/MLB_DATA receiver input
hold from MLB_CLK low
tdhmcf
tmdzh
—
ns
—
MLB_SIG/MLB_DATA output high
impedance from MLB_CLK low
tmcfdz
0
tmckl
ns
(see 3)
Bus Hold from MLB_CLK low
tmdzh
4
—
ns
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
119
Electrical Characteristics
1
The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a
runt pulse can occur on MLB_CLK.
2
MLB_CLK low/high time includes the pulse width variation.
3
The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the
final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum
load capacitance listed.
Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing
parameters specified from the valid voltage threshold as listed in Table 79; unless otherwise noted.
Table 79. MLB 1024 Fs Timing Parameters
Parameter
Symbol
Min
Max
Unit
Comment
MLB_CLK Operating Frequency1
fmck
45.056
51.2
MHz
MLB_CLK rise time
tmckr
—
1
ns
VIL TO VIH
MLB_CLK fall time
tmckf
—
1
ns
VIH TO VIL
MLB_CLK low time
tmckl
6.1
—
ns
(see 2)
MLB_CLK high time
tmckh
9.3
—
ns
—
MLB_SIG/MLB_DATA receiver input valid to
MLB_CLK falling
tdsmcf
1
—
ns
—
MLB_SIG/MLB_DATA receiver input hold
from MLB_CLK low
tdhmcf
tmdzh
—
ns
—
MLB_SIG/MLB_DATA output high
impedance from MLB_CLK low
tmcfdz
0
tmckl
ns
(see 3)
Bus Hold from MLB_CLK low
tmdzh
2
—
ns
—
1024xfs at 44.0 kHz
1024xfs at 50.0 kHz
1
The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a
runt pulse can occur on MLB_CLK.
2 MLB_CLK low/high time includes the pulse width variation.
3 The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the
final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum
load capacitance listed.
Table 80 lists the MediaLB 6-pin interface timing characteristics, and Figure 88 shows the MLB 6-pin
delay, setup, and hold times.
Table 80. MLB 6-Pin Interface Timing Parameters
Parameter
Symbol
Min
Max
Unit
Comment
Cycle-to-cycle system jitter
tjitter
—
600
ps
—
Transmitter MLB_SIG_P/_N
(MLB_DATA_P/_N) output valid from transition
of MLB_CLK_P/_N (low-to-high)1
tdelay
0.6
1.3
ns
—
Disable turnaround time from transition of
MLB_CLK_P/_N (low-to-high)
tphz
0.6
3.5
ns
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
120
Freescale Semiconductor
Electrical Characteristics
Table 80. MLB 6-Pin Interface Timing Parameters (continued)
Parameter
Symbol
Min
Max
Unit
Comment
Enable turnaround time from transition of
MLB_CLK_P/_N (low-to-high)
tplz
0.6
5.6
ns
—
MLB_SIG_P/_N (MLB_DATA_P/_N) valid to
transition of MLB_CLK_P/_N (low-to-high)
tsu
0.05
—
ns
—
MLB_SIG_P/_N (MLB_DATA_P/_N) hold from
transition of MLB_CLK_P/_N (low-to-high)2
thd
0.6
—
ns
—
1
tdelay, tphz, tplz, tsu, and thd may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recovered-to-external clock ratios.
2
The transmitting device must ensure valid data on MLB_SIG_P/_N (MLB_DATA_P/_N) for at least thd(min) following the rising
edge of MLBCP/N; receivers must latch MLB_SIG_P/_N (MLB_DATA_P/_N) data within thd(min) of the rising edge of
MLB_CLK_P/_N.
Figure 88. MLB 6-Pin Delay, Setup, and Hold Times
4.11.15 PCIe PHY Parameters
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0
standard.
4.11.15.1 PCIE_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 200  1% precision resistor
on PCIE_REXT pads to ground. It is used for termination impedance calibration.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
121
Electrical Characteristics
4.11.16 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 89 depicts the timing of the PWM, and Table 81 lists the PWM timing parameters.
PWMn_OUT
Figure 89. PWM Timing
Table 81. PWM Output Timing Parameters
ID
Parameter
Min
Max
Unit
—
PWM Module Clock Frequency
0
ipg_clk
MHz
P1
PWM output pulse width high
15
—
ns
P2
PWM output pulse width low
15
—
ns
4.11.17 SATA PHY Parameters
This section describes SATA PHY electrical specifications.
4.11.17.1 Transmitter and Receiver Characteristics
The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA
specifications.
NOTE
The tables in the following sections indicate any exceptions to the SATA
specification or aspects of the SATA PHY that exceed the standard, as well
as provide information about parameters not defined in the standard.
The following subsections provide values obtained from a combination of simulations and silicon
characterization.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
122
Freescale Semiconductor
Electrical Characteristics
4.11.17.1.1 SATA PHY Transmitter Characteristics
Table 82 provides specifications for SATA PHY transmitter characteristics.
Table 82. SATA2 PHY Transmitter Characteristics
Parameters
Transmit common mode voltage
Symbol
Min
Typ
Max
Unit
VCTM
0.4
—
0.6
V
—
–0.5
—
0.5
dB
Transmitter pre-emphasis accuracy (measured
change in de-emphasized bit)
4.11.17.1.2 SATA PHY Receiver Characteristics
Table 83 provides specifications for SATA PHY receiver characteristics.
Table 83. SATA PHY Receiver Characteristics
Parameters
Minimum Rx eye height (differential peak-to-peak)
Symbol
Min
Typ
Max
Unit
VMIN_RX_EYE_HEIGHT
175
—
—
mV
PPM
–400
—
400
ppm
Tolerance
4.11.17.2 SATA_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 191 . 1% precision resistor
on SATA_REXT pad to ground.
Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an
internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT
pin. The calibration register value is then supplied to all Tx and Rx termination resistors.
During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the
external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.
4.11.18 SCAN JTAG Controller (SJC) Timing Parameters
Figure 90 depicts the SJC test clock input timing. Figure 91 depicts the SJC boundary scan timing.
Figure 92 depicts the SJC test access port. Signal parameters are listed in Table 84.
SJ1
SJ2
JTAG_TCK
(Input)
VM
VIH
SJ2
VM
VIL
SJ3
SJ3
Figure 90. Test Clock Input Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
123
Electrical Characteristics
JTAG_TCK
(Input)
VIH
VIL
SJ5
SJ4
Data
Inputs
Input Data Valid
SJ6
Data
Outputs
Output Data Valid
SJ7
Data
Outputs
SJ6
Data
Outputs
Output Data Valid
Figure 91. Boundary Scan (JTAG) Timing Diagram
JTAG_TCK
(Input)
VIH
VIL
SJ8
JTAG_TDI
JTAG_TMS
(Input)
SJ9
Input Data Valid
SJ10
JTAG_TDO
(Output)
Output Data Valid
SJ11
JTAG_TDO
(Output)
SJ10
JTAG_TDO
(Output)
Output Data Valid
Figure 92. Test Access Port Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
124
Freescale Semiconductor
Electrical Characteristics
JTAG_TCK
(Input)
SJ13
JTAG_TRST_B
(Input)
SJ12
Figure 93. JTAG_TRST_B Timing Diagram
Table 84. JTAG Timing
All Frequencies
Parameter1,2
ID
1
2
Unit
Min
Max
0.001
22
MHz
45
—
ns
22.5
—
ns
SJ0
JTAG_TCK frequency of operation 1/(3xTDC)1
SJ1
JTAG_TCK cycle time in crystal mode
SJ2
JTAG_TCK clock pulse width measured at VM2
SJ3
JTAG_TCK rise and fall times
—
3
ns
SJ4
Boundary scan input data set-up time
5
—
ns
SJ5
Boundary scan input data hold time
24
—
ns
SJ6
JTAG_TCK low to output data valid
—
40
ns
SJ7
JTAG_TCK low to output high impedance
—
40
ns
SJ8
JTAG_TMS, JTAG_TDI data set-up time
5
—
ns
SJ9
JTAG_TMS, JTAG_TDI data hold time
25
—
ns
SJ10
JTAG_TCK low to JTAG_TDO data valid
—
44
ns
SJ11
JTAG_TCK low to JTAG_TDO high impedance
—
44
ns
SJ12
JTAG_TRST_B assert time
100
—
ns
SJ13
JTAG_TRST_B set-up time to JTAG_TCK low
40
—
ns
TDC = target frequency of SJC
VM = mid-point voltage
4.11.19 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 85 and Figure 94 and Figure 95 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
125
Electrical Characteristics
Table 85. SPDIF Timing Parameters
Timing Parameter Range
Parameter
Symbol
Unit
Min
Max
SPDIF_IN Skew: asynchronous inputs, no specs apply
—
—
0.7
ns
SPDIF_OUT output (Load = 50pf)
• Skew
• Transition rising
• Transition falling
—
—
—
—
—
—
1.5
24.2
31.3
ns
SPDIF_OUT output (Load = 30pf)
• Skew
• Transition rising
• Transition falling
—
—
—
—
—
—
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period
srckp
40.0
—
ns
SPDIF_SR_CLK high period
srckph
16.0
—
ns
SPDIF_SR_CLK low period
srckpl
16.0
—
ns
Modulating Tx clock (SPDIF_ST_CLK) period
stclkp
40.0
—
ns
SPDIF_ST_CLK high period
stclkph
16.0
—
ns
SPDIF_ST_CLK low period
stclkpl
16.0
—
ns
srckp
SPDIF_SR_CLK
srckpl
srckph
VM
VM
(Output)
Figure 94. SPDIF_SR_CLK Timing Diagram
stclkp
SPDIF_ST_CLK
stclkpl
VM
stclkph
VM
(Input)
Figure 95. SPDIF_ST_CLK Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
126
Freescale Semiconductor
Electrical Characteristics
4.11.20 SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial
synchronous interfaces are summarized in Table 86.
Table 86. AUDMUX Port Allocation
Port
Signal Nomenclature
Type and Access
AUDMUX port 1
SSI 1
Internal
AUDMUX port 2
SSI 2
Internal
AUDMUX port 3
AUD3
External – AUD3 I/O
AUDMUX port 4
AUD4
External – EIM or CSPI1 I/O through IOMUXC
AUDMUX port 5
AUD5
External – EIM or SD1 I/O through IOMUXC
AUDMUX port 6
AUD6
External – EIM or DISP2 through IOMUXC
AUDMUX port 7
SSI 3
Internal
NOTE
The terms WL and BL used in the timing diagrams and tables refer to Word
Length (WL) and Bit Length (BL).
4.11.20.1 SSI Transmitter Timing with Internal Clock
Figure 96 depicts the SSI transmitter internal clock timing and Table 87 lists the timing parameters for
the SSI transmitter internal clock.
.
SS1
SS3
SS5
SS2
SS4
AUDx_TXC
(Output)
SS6
AUDx_TXFS (bl)
(Output)
SS8
SS10
SS12
SS14
AUDx_TXFS (wl)
(Output)
SS15
SS16
SS18
SS17
AUDx_TXD
(Output)
SS43
SS42
SS19
AUDx_RXD
(Input)
Note: AUDx_RXD input in synchronous mode only
Figure 96. SSI Transmitter Internal Clock Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
127
Electrical Characteristics
Table 87. SSI Transmitter Timing with Internal Clock
ID
Parameter
Min
Max
Unit
Internal Clock Operation
SS1
AUDx_TXC/AUDx_RXC clock period
81.4
—
ns
SS2
AUDx_TXC/AUDx_RXC clock high period
36.0
—
ns
SS4
AUDx_TXC/AUDx_RXC clock low period
36.0
—
ns
SS6
AUDx_TXC high to AUDx_TXFS (bl) high
—
15.0
ns
SS8
AUDx_TXC high to AUDx_TXFS (bl) low
—
15.0
ns
SS10
AUDx_TXC high to AUDx_TXFS (wl) high
—
15.0
ns
SS12
AUDx_TXC high to AUDx_TXFS (wl) low
—
15.0
ns
SS14
AUDx_TXC/AUDx_RXC Internal AUDx_TXFS rise time
—
6.0
ns
SS15
AUDx_TXC/AUDx_RXC Internal AUDx_TXFS fall time
—
6.0
ns
SS16
AUDx_TXC high to AUDx_TXD valid from high impedance
—
15.0
ns
SS17
AUDx_TXC high to AUDx_TXD high/low
—
15.0
ns
SS18
AUDx_TXC high to AUDx_TXD high impedance
—
15.0
ns
Synchronous Internal Clock Operation
SS42
AUDx_RXD setup before AUDx_TXC falling
10.0
—
ns
SS43
AUDx_RXD hold after AUDx_TXC falling
0.0
—
ns
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms, WL and BL, refer to Word Length(WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is the same as that of transmit data (for example, during AC97
mode of operation).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
128
Freescale Semiconductor
Electrical Characteristics
4.11.20.2 SSI Receiver Timing with Internal Clock
Figure 97 depicts the SSI receiver internal clock timing and Table 88 lists the timing parameters for the
receiver timing with the internal clock.
SS1
SS3
SS5
SS2
SS4
AUDx_TXC
(Output)
SS9
SS7
AUDx_TXFS (bl)
(Output)
SS11
SS13
AUDx_TXFS (wl)
(Output)
SS20
SS21
AUDx_RXD
(Input)
SS47
SS48
SS51
SS49
SS50
AUDx_RXC
(Output)
Figure 97. SSI Receiver Internal Clock Timing Diagram
Table 88. SSI Receiver Timing with Internal Clock
ID
Parameter
Min
Max
Unit
Internal Clock Operation
SS1
AUDx_TXC/AUDx_RXC clock period
81.4
—
ns
SS2
AUDx_TXC/AUDx_RXC clock high period
36.0
—
ns
SS3
AUDx_TXC/AUDx_RXC clock rise time
—
6.0
ns
SS4
AUDx_TXC/AUDx_RXC clock low period
36.0
—
ns
SS5
AUDx_TXC/AUDx_RXC clock fall time
—
6.0
ns
SS7
AUDx_RXC high to AUDx_TXFS (bl) high
—
15.0
ns
SS9
AUDx_RXC high to AUDx_TXFS (bl) low
—
15.0
ns
SS11
AUDx_RXC high to AUDx_TXFS (wl) high
—
15.0
ns
SS13
AUDx_RXC high to AUDx_TXFS (wl) low
—
15.0
ns
SS20
AUDx_RXD setup time before AUDx_RXC low
10.0
—
ns
SS21
AUDx_RXD hold time after AUDx_RXC low
0.0
—
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
129
Electrical Characteristics
Table 88. SSI Receiver Timing with Internal Clock (continued)
ID
Parameter
Min
Max
Unit
15.04
—
ns
Oversampling Clock Operation
SS47
Oversampling clock period
SS48
Oversampling clock high period
6.0
—
ns
SS49
Oversampling clock rise time
—
3.0
ns
SS50
Oversampling clock low period
6.0
—
ns
SS51
Oversampling clock fall time
—
3.0
ns
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
130
Freescale Semiconductor
Electrical Characteristics
4.11.20.3 SSI Transmitter Timing with External Clock
Figure 98 depicts the SSI transmitter external clock timing and Table 89 lists the timing parameters for
the transmitter timing with the external clock.
SS22
SS25
SS23
SS26
SS24
AUDx_TXC
(Input)
SS27
SS29
AUDx_TXFS (bl)
(Input)
SS33
SS31
AUDx_TXFS (wl)
(Input)
SS39
SS37
SS38
AUDx_TXD
(Output)
SS45
SS44
AUDx_RXD
(Input)
Note: AUDx_RXD Input in Synchronous mode only
SS46
Figure 98. SSI Transmitter External Clock Timing Diagram
Table 89. SSI Transmitter Timing with External Clock
ID
Parameter
Min
Max
Unit
External Clock Operation
SS22
AUDx_TXC/AUDx_RXC clock period
81.4
—
ns
SS23
AUDx_TXC/AUDx_RXC clock high period
36.0
—
ns
SS24
AUDx_TXC/AUDx_RXC clock rise time
—
6.0
ns
SS25
AUDx_TXC/AUDx_RXC clock low period
36.0
—
ns
SS26
AUDx_TXC/AUDx_RXC clock fall time
—
6.0
ns
SS27
AUDx_TXC high to AUDx_TXFS (bl) high
–10.0
15.0
ns
SS29
AUDx_TXC high to AUDx_TXFS (bl) low
10.0
—
ns
SS31
AUDx_TXC high to AUDx_TXFS (wl) high
–10.0
15.0
ns
SS33
AUDx_TXC high to AUDx_TXFS (wl) low
10.0
—
ns
SS37
AUDx_TXC high to AUDx_TXD valid from high impedance
—
15.0
ns
SS38
AUDx_TXC high to AUDx_TXD high/low
—
15.0
ns
SS39
AUDx_TXC high to AUDx_TXD high impedance
—
15.0
ns
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
131
Electrical Characteristics
Table 89. SSI Transmitter Timing with External Clock (continued)
ID
Parameter
Min
Max
Unit
Synchronous External Clock Operation
SS44
AUDx_RXD setup before AUDx_TXC falling
10.0
—
ns
SS45
AUDx_RXD hold after AUDx_TXC falling
2.0
—
ns
SS46
AUDx_RXD rise/fall time
—
6.0
ns
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
4.11.20.4 SSI Receiver Timing with External Clock
Figure 99 depicts the SSI receiver external clock timing and Table 90 lists the timing parameters for the
receiver timing with the external clock.
SS22
SS24
SS26
SS25
SS23
AUDx_TXC
(Input)
SS28
SS30
AUDx_TXFS (bl)
(Input)
SS32
AUDx_TXFS (wl)
(Input)
SS34
SS35
SS41
SS40
SS36
AUDx_RXD
(Input)
Figure 99. SSI Receiver External Clock Timing Diagram
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
132
Freescale Semiconductor
Electrical Characteristics
Table 90. SSI Receiver Timing with External Clock
ID
Parameter
Min
Max
Unit
81.4
—
ns
External Clock Operation
SS22
AUDx_TXC/AUDx_RXC clock period
SS23
AUDx_TXC/AUDx_RXC clock high period
36
—
ns
SS24
AUDx_TXC/AUDx_RXC clock rise time
—
6.0
ns
SS25
AUDx_TXC/AUDx_RXC clock low period
36
—
ns
SS26
AUDx_TXC/AUDx_RXC clock fall time
—
6.0
ns
SS28
AUDx_RXC high to AUDx_TXFS (bl) high
–10
15.0
ns
SS30
AUDx_RXC high to AUDx_TXFS (bl) low
10
—
ns
SS32
AUDx_RXC high to AUDx_TXFS (wl) high
–10
15.0
ns
SS34
AUDx_RXC high to AUDx_TXFS (wl) low
10
—
ns
SS35
AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time
—
6.0
ns
SS36
AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time
—
6.0
ns
SS40
AUDx_RXD setup time before AUDx_RXC low
10
—
ns
SS41
AUDx_RXD hold time after AUDx_RXC low
2
—
ns
•
•
•
•
•
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
133
Electrical Characteristics
4.11.21 UART I/O Configuration and Timing Parameters
4.11.21.1 UART RS-232 I/O Configuration in Different Modes
The i.MX 6Dual/6Quad UART interfaces can serve both as DTE or DCE device. This can be configured
by the DCEDTE control bit (default 0 – DCE mode). Table 91 shows the UART I/O configuration based
on the enabled mode.
Table 91. UART I/O Configuration vs. Mode
DTE Mode
DCE Mode
Port
Direction
Description
Direction
Description
UARTx_RTS_B
Output
RTS from DTE to DCE
Input
RTS from DTE to DCE
UARTx_CTS_B
Input
CTS from DCE to DTE
Output
CTS from DCE to DTE
UARTx_DTR_B
Output
DTR from DTE to DCE
Input
DTR from DTE to DCE
UARTx_DSR_B
Input
DSR from DCE to DTE
Output
DSR from DCE to DTE
UARTx_DCD_B
Input
DCD from DCE to DTE
Output
DCD from DCE to DTE
UARTx_RI_B
Input
RING from DCE to DTE
Output
RING from DCE to DTE
UARTx_TX_DATA
Input
Serial data from DCE to DTE
Output
Serial data from DCE to DTE
UARTx_RX_DATA
Output
Serial data from DTE to DCE
Input
Serial data from DTE to DCE
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
134
Freescale Semiconductor
Electrical Characteristics
4.11.21.2 UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode.
4.11.21.2.1 UART Transmitter
Figure 100 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit
format. Table 92 lists the UART RS-232 serial mode transmit timing characteristics.
UA1
UARTx_TX_DATA
(output)
POSSIBLE
PARITY
BIT
UA1
Start
Bit
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit
STOP
BIT
UA1
UA1
NEXT
START
BIT
Figure 100. UART RS-232 Serial Mode Transmit Timing Diagram
Table 92. RS-232 Serial Mode Transmit Timing Parameters
ID
Parameter
UA1
1
2
Transmit Bit Time
Symbol
Min
Max
Unit
tTbit
1/Fbaud_rate1 – Tref_clk2
1/Fbaud_rate + Tref_clk
—
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
4.11.21.2.2 UART Receiver
Figure 101 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 93 lists
serial mode receive timing characteristics.
UA2
UARTx_RX_DATA
(input)
Start
Bit
POSSIBLE
PARITY
BIT
UA2
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit
STOP
BIT
UA2
UA2
NEXT
START
BIT
Figure 101. UART RS-232 Serial Mode Receive Timing Diagram
Table 93. RS-232 Serial Mode Receive Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
UA2
Receive Bit Time1
tRbit
1/Fbaud_rate2 –
1/(16  Fbaud_rate)
1/Fbaud_rate +
1/(16  Fbaud_rate)
—
The UART receiver can tolerate 1/(16  Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16  Fbaud_rate).
2 F
baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
135
Electrical Characteristics
4.11.21.2.3 UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode.
UART IrDA Mode Transmitter
Figure 102 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 94 lists
the transmit timing characteristics.
UA3
UA3
UA4
UA3
UA3
UARTx_TX_DATA
(output)
Start
Bit
Bit 0
Bit 1
Bit 3
Bit 2
Bit 4
Bit 5
Bit 6
Bit 7
POSSIBLE
PARITY
BIT
STOP
BIT
Figure 102. UART IrDA Mode Transmit Timing Diagram
Table 94. IrDA Mode Transmit Timing Parameters
1
2
ID
Parameter
Symbol
Min
Max
Unit
UA3
Transmit Bit Time in IrDA mode
tTIRbit
1/Fbaud_rate1 – Tref_clk2
1/Fbaud_rate + Tref_clk
—
UA4
Transmit IR Pulse Duration
tTIRpulse
(3/16)  (1/Fbaud_rate) – Tref_clk
(3/16)  (1/Fbaud_rate) + Tref_clk
—
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
UART IrDA Mode Receiver
Figure 103 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 95 lists
the receive timing characteristics.
UA5
UA6
UA5
UA5
UA5
UARTx_RX_DATA
(input)
Start
Bit
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
POSSIBLE
PARITY
BIT
STOP
BIT
Figure 103. UART IrDA Mode Receive Timing Diagram
Table 95. IrDA Mode Receive Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
UA5
Receive Bit Time1 in IrDA mode
tRIRbit
1/Fbaud_rate2 –
1/(16  Fbaud_rate)
1/Fbaud_rate +
1/(16  Fbaud_rate)
—
UA6
Receive IR Pulse Duration
tRIRpulse
1.41 s
(5/16)  (1/Fbaud_rate)
—
The UART receiver can tolerate 1/(16  Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16  Fbaud_rate).
2 F
baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
136
Freescale Semiconductor
Electrical Characteristics
4.11.22 USB HSIC Timings
This section describes the electrical information of the USB HSIC port.
NOTE
HSIC is a DDR signal. The following timing specification is for both rising
and falling edges.
4.11.22.1 Transmit Timing
Tstrobe
USB_H_STROBE
Todelay
Todelay
USB_H_DATA
Figure 104. USB HSIC Transmit Waveform
Table 96. USB HSIC Transmit Parameters
Name
Parameter
Min
Max
Unit
Comment
4.166
4.167
ns
—
Measured at 50% point
Tstrobe
strobe period
Todelay
data output delay time
550
1350
ps
strobe/data rising/falling time
0.7
2
V/ns
Tslew
Averaged from 30% – 70% points
4.11.22.2 Receive Timing
Tstrobe
USB_H_STROBE
Thold
USB_H_DATA
Tsetup
Figure 105. USB HSIC Receive Waveform
Table 97. USB HSIC Receive Parameters1
Name
1
Parameter
Min
Max
Unit
Comment
Tstrobe
strobe period
4.166
4.167
ns
—
Thold
data hold time
300
—
ps
Measured at 50% point
Tsetup
data setup time
365
—
ps
Measured at 50% point
Tslew
strobe/data rising/falling time
0.7
2
V/ns
Averaged from 30% – 70% points
The timings in the table are guaranteed when:
—AC I/O voltage is between 0.9x to 1x of the I/O supply
—DDR_SEL configuration bits of the I/O are set to (10)b
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
137
Electrical Characteristics
4.11.23 USB PHY Parameters
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB
Revision 2.0 Specification is not applicable to Host port).
• USB ENGINEERING CHANGE NOTICE
— Title: 5V Short Circuit Withstand Requirement Change
— Applies to: Universal Serial Bus Specification, Revision 2.0
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
• USB ENGINEERING CHANGE NOTICE
— Title: Pull-up/Pull-down resistors
— Applies to: Universal Serial Bus Specification, Revision 2.0
• USB ENGINEERING CHANGE NOTICE
— Title: Suspend Current Limit Changes
— Applies to: Universal Serial Bus Specification, Revision 2.0
• USB ENGINEERING CHANGE NOTICE
— Title: USB 2.0 Phase Locked SOFs
— Applies to: Universal Serial Bus Specification, Revision 2.0
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
— Revision 2.0 plus errata and ecn June 4, 2010
• Battery Charging Specification (available from USB-IF)
— Revision 1.2, December 7, 2010
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
138
Freescale Semiconductor
Boot Mode Configuration
5
Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1
Boot Mode Configuration Pins
Table 98 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX
6Dual/6Quad Fuse Map document and the System Boot chapter of the i.MX 6Dual/6Quad reference
manual (IMX6DQRM).
Table 98. Fuses and Associated Pins Used for Boot
Pin
Direction at Reset
eFuse Name
Boot Mode Selection
BOOT_MODE1
Input
Boot Mode Selection
BOOT_MODE0
Input
Boot Mode Selection
Boot Options1
EIM_DA0
Input
BOOT_CFG1[0]
EIM_DA1
Input
BOOT_CFG1[1]
EIM_DA2
Input
BOOT_CFG1[2]
EIM_DA3
Input
BOOT_CFG1[3]
EIM_DA4
Input
BOOT_CFG1[4]
EIM_DA5
Input
BOOT_CFG1[5]
EIM_DA6
Input
BOOT_CFG1[6]
EIM_DA7
Input
BOOT_CFG1[7]
EIM_DA8
Input
BOOT_CFG2[0]
EIM_DA9
Input
BOOT_CFG2[1]
EIM_DA10
Input
BOOT_CFG2[2]
EIM_DA11
Input
BOOT_CFG2[3]
EIM_DA12
Input
BOOT_CFG2[4]
EIM_DA13
Input
BOOT_CFG2[5]
EIM_DA14
Input
BOOT_CFG2[6]
EIM_DA15
Input
BOOT_CFG2[7]
EIM_A16
Input
BOOT_CFG3[0]
EIM_A17
Input
BOOT_CFG3[1]
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
139
Boot Mode Configuration
Table 98. Fuses and Associated Pins Used for Boot (continued)
1
Pin
Direction at Reset
eFuse Name
EIM_A18
Input
BOOT_CFG3[2]
EIM_A19
Input
BOOT_CFG3[3]
EIM_A20
Input
BOOT_CFG3[4]
EIM_A21
Input
BOOT_CFG3[5]
EIM_A22
Input
BOOT_CFG3[6]
EIM_A23
Input
BOOT_CFG3[7]
EIM_A24
Input
BOOT_CFG4[0]
EIM_WAIT
Input
BOOT_CFG4[1]
EIM_LBA
Input
BOOT_CFG4[2]
EIM_EB0
Input
BOOT_CFG4[3]
EIM_EB1
Input
BOOT_CFG4[4]
EIM_RW
Input
BOOT_CFG4[5]
EIM_EB2
Input
BOOT_CFG4[6]
EIM_EB3
Input
BOOT_CFG4[7]
Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power
Up. These are special I/O lines that control the boot up configuration during product development. In production,
the boot configuration can be controlled by fuses.
5.2
Boot Devices Interfaces Allocation
Table 99 lists the interfaces that can be used by the boot process in accordance with the specific boot
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
Table 99. Interfaces Allocation During Boot
Interface
IP Instance
Allocated Pads During Boot
Comment
SPI
ECSPI-1
EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19,
EIM_D24, EIM_D25
—
SPI
ECSPI-2
CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11,
EIM_LBA, EIM_D24, EIM_D25
—
SPI
ECSPI-3
DISP0_DAT2, DISP0_DAT1, DISP0_DAT0,
DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6
—
SPI
ECSPI-4
EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25,
EIM_D24, EIM_D25
—
SPI
ECSPI-5
SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1,
SD1_DAT2, SD1_DAT3, SD2_DAT3
—
EIM
EIM
EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4],
CSI0_DATA_EN, CSI0_VSYNC
Used for NOR, OneNAND boot
Only CS0 is supported
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
140
Freescale Semiconductor
Boot Mode Configuration
Table 99. Interfaces Allocation During Boot (continued)
Interface
IP Instance
Allocated Pads During Boot
Comment
NAND Flash
GPMI
NANDF_CLE, NANDF_ALE, NANDF_WP_B,
SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0,
NANDF_CS0, NANDF_CS1, NANDF_CS2,
NANDF_CS3, NANDF_D[7:0]
8 bit
Only CS0 is supported
SD/MMC
USDHC-1
SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1,
SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1,
NANDF_D2, NANDF_D3, KEY_COL1
1, 4, or 8 bit
SD/MMC
USDHC-2
SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1,
SD2_DAT2, SD2_DAT3, NANDF_D4, NANDF_D5,
NANDF_D6, NANDF_D7, KEY_ROW1
1, 4, or 8 bit
SD/MMC
USDHC-3
SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1,
SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5,
SD3_DAT6, SD3_DAT7, GPIO_18
1, 4, or 8 bit
SD/MMC
USDHC-4
SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1,
SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5,
SD4_DAT6, SD4_DAT7, NANDF_CS1
1, 4, or 8 bit
I2C
I2C-1
EIM_D28, EIM_D21
—
I2C
I2C-2
EIM_D16, EIM_EB2
—
I2C
I2C-3
EIM_D18, EIM_D17
—
SATA
SATA_PHY
SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM,
SATA_REXT
—
USB
USB-OTG
PHY
USB_OTG_DP
USB_OTG_DN
USB_OTG_VBUS
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
141
Package Information and Contact Assignments
6
Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
6.1
Updated Signal Naming Convention
The signal names of the i.MX6 series of products have been standardized to better align the signal names
within the family and across the documentation. Some of the benefits of these changes are as follows:
• The names are unique within the scope of an SoC and within the series of products
• Searches will return all occurrences of the named signal
• The names are consistent between i.MX 6 series products implementing the same modules
• The module instance is incorporated into the signal name
This change applies only to signal names. The original ball names have been preserved to prevent the need
to change schematics, BSDL models, IBIS models, etc.
Throughout this document, the updated signal names are used except where referenced as a ball name
(such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal
name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to
map the signal names used in older documentation to the new standardized naming conventions.
6.2
6.2.1
21 x 21 mm Package Information
Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
142
Freescale Semiconductor
Package Information and Contact Assignments
6.2.1.1
21 x 21 mm Lidded Package
Figure 106 shows the top, bottom, and side views of the 21 21 mm lidded package.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
143
Package Information and Contact Assignments
Figure 106. 21 x 21 mm Lidded Package Top, Bottom, and Side Views
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
144
Freescale Semiconductor
Package Information and Contact Assignments
6.2.2
21 x 21 mm Ground, Power, Sense, and Reference Contact
Assignments
Table 100 shows the device connection list for ground, power, sense, and reference contact signals.
Table 100. 21 x 21 mm Supplies Contact Assignment
Supply Rail Name
Ball(s) Position(s)
Remark
CSI_REXT
D4
—
DRAM_VREF
AC2
—
DSI_REXT
G4
—
FA_ANA
A5
—
GND
A13, A25, A4, A8, AA10, AA13, AA16, AA19, AA22, AD4, D3,
F8, J15, L10, M15, P15, T15, U8, W17, AA7, AD7, D6, G10,
J18, L12, M18, P18, T17, V19, W18, AB24, AE1, D8, G19, J2,
L15, M8, P8, T19, V8, W19, AB3, AE25, E5, G3, J8, L18, N10,
R12, T8, W10, W3, AD10, B4, E6, H12, K10, L2, N15, R15,
U11, W11, W7, AD13, C1, E7, H15, K12, L5, N18, R17, U12,
W12, W8, AD16, C10, F5, H18, K15, L8, N8, R8, U15, W13,
W9, AD19, C4, F6, H8, K18, M10, P10, T11, U17, W15, Y24,
AD22, C6, F7, J12, K8, M12, P12, T12, U19, W16, Y5
—
GPANAIO
C8
—
HDMI_DDCCEC
K2
HDMI_REF
J1
—
HDMI_VP
L7
—
HDMI_VPH
M7
—
NVCC_CSI
N7
Supply of the camera sensor interface
NVCC_DRAM
R18, T18, U18, V10, V11, V12, V13,
V14, V15, V16, V17, V18, V9
Supply of the DDR interface
NVCC_EIM0
K19
Supply of the EIM interface
NVCC_EIM1
L19
Supply of the EIM interface
NVCC_EIM2
M19
Supply of the EIM interface
NVCC_ENET
R19
Supply of the ENET interface
NVCC_GPIO
P7
Supply of the GPIO interface
NVCC_JTAG
J7
Supply of the JTAG tap controller
interface
NVCC_LCD
P19
Supply of the LCD interface
NVCC_LVDS2P5
V7
Supply of the LVDS display interface
and DDR pre-drivers. Even if the LVDS
interface is not used, this supply must
remain powered.
NVCC_MIPI
K7
Supply of the MIPI interface
Analog ground reference for the Hot
Plug detect signal
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
145
Package Information and Contact Assignments
Table 100. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name
Ball(s) Position(s)
Remark
NVCC_NANDF
G15
NVCC_PLL_OUT
E8
NVCC_RGMII
G18
Supply of the ENET interface
NVCC_SD1
G16
Supply of the SD card interface
NVCC_SD2
G17
Supply of the SD card interface
NVCC_SD3
G14
Supply of the SD card interface
PCIE_VP
H7
—
PCIE_REXT
A2
—
PCIE_VPH
G7
PCI PHY supply
PCIE_VPTX
G8
PCI PHY supply
SATA_REXT
C14
—
SATA_VP
G13
—
SATA_VPH
G12
—
USB_H1_VBUS
D10
—
USB_OTG_VBUS
E9
—
VDD_CACHE_CAP
N12
Cache supply input. This input should
be connected to (driven by)
VDD_SOC_CAP. The external
capacitor used for VDD_SOC_CAP is
sufficient for this supply.
VDD_FA
B5
—
VDD_SNVS_CAP
G9
Secondary supply for the SNVS
(internal regulator output—requires
capacitor if internal regulator is used)
VDD_SNVS_IN
G11
Primary supply for the SNVS regulator
VDDARM_CAP
H13, J13, K13, L13, M13, N13, P13, R13
Secondary supply for the ARM0 and
ARM1 cores (internal regulator
output—requires capacitor if internal
regulator is used)
VDDARM_IN
H14, J14, K14, L14, M14, N14, P14, R14
Primary supply for the ARM0 and
ARM1 core regulator
VDDARM23_CAP
H11, J11, K11, L11, M11, N11, P11, R11
Secondary supply for the ARM2 and
ARM3 cores (internal regulator
output—requires capacitor if internal
regulator is used)
VDDARM23_IN
K9, L9, M9, N9, P9, R9, T9, U9
Supply of the RAW NAND Flash
Memories interface
—
Primary supply for the ARM2 and
ARM3 core regulator
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
146
Freescale Semiconductor
Package Information and Contact Assignments
Table 100. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name
Ball(s) Position(s)
Remark
VDDHIGH_CAP
H10, J10
Secondary supply for the 2.5 V domain
(internal regulator output—requires
capacitor if internal regulator is used)
VDDHIGH_IN
H9, J9
Primary supply for the 2.5 V regulator
VDDPU_CAP
H17, J17, K17, L17, M17, N17, P17
Secondary supply for the VPU and
GPU (internal regulator output—
requires capacitor if internal regulator
is used)
VDDSOC_CAP
R10, T10, T13, T14, U10, U13, U14
Secondary supply for the SoC and PU
(internal regulator output—requires
capacitor if internal regulator is used)
VDDSOC_IN
H16, J16, K16, L16, M16, N16, P16, R16, T16, U16
VDDUSB_CAP
F9
Secondary supply for the 3 V domain
(internal regulator output—requires
capacitor if internal regulator is used)
ZQPAD
AE17
—
Primary supply for the SoC and PU
regulators
Table 101 displays an alpha-sorted list of the signal assignments including power rails. The table also
includes out of reset pad state.
Table 101. 21 x 21 mm Functional Contact Assignments
Out of Reset Condition1
Ball Name
Ball
BOOT_MODE0
C12
BOOT_MODE1
CLK1_N
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
VDD_SNVS_IN
GPIO
ALT0
SRC_BOOT_MODE0
Input
PD (100K)
F12
VDD_SNVS_IN
GPIO
ALT0
SRC_BOOT_MODE1
Input
PD (100K)
C7
VDD_HIGH_CAP
—
—
CLK1_N
—
—
CLK1_P
D7
VDD_HIGH_CAP
—
—
CLK1_P
—
—
CLK2_N
C5
VDD_HIGH_CAP
—
—
CLK2_N
—
—
CLK2_P
D5
VDD_HIGH_CAP
—
—
CLK2_P
—
—
CSI_CLK0M
F4
NVCC_MIPI
—
—
CSI_CLK_N
—
—
CSI_CLK0P
F3
NVCC_MIPI
—
—
CSI_CLK_P
—
—
CSI_D0M
E4
NVCC_MIPI
—
—
CSI_DATA0_N
—
—
CSI_D0P
E3
NVCC_MIPI
—
—
CSI_DATA0_P
—
—
CSI_D1M
D1
NVCC_MIPI
—
—
CSI_DATA1_N
—
—
CSI_D1P
D2
NVCC_MIPI
—
—
CSI_DATA1_P
—
—
CSI_D2M
E1
NVCC_MIPI
—
—
CSI_DATA2_N
—
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
147
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
CSI_D2P
E2
NVCC_MIPI
—
—
CSI_DATA2_P
—
—
CSI_D3M
F2
NVCC_MIPI
—
—
CSI_DATA3_N
—
—
CSI_D3P
F1
NVCC_MIPI
—
—
CSI_DATA3_P
—
—
CSI0_DAT10
M1
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA10
Input
PU (100K)
CSI0_DAT11
M3
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA11
Input
PU (100K)
CSI0_DAT12
M2
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA12
Input
PU (100K)
CSI0_DAT13
L1
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA13
Input
PU (100K)
CSI0_DAT14
M4
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA14
Input
PU (100K)
CSI0_DAT15
M5
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA15
Input
PU (100K)
CSI0_DAT16
L4
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA16
Input
PU (100K)
CSI0_DAT17
L3
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA17
Input
PU (100K)
CSI0_DAT18
M6
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA18
Input
PU (100K)
CSI0_DAT19
L6
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA19
Input
PU (100K)
CSI0_DAT4
N1
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA04
Input
PU (100K)
CSI0_DAT5
P2
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA05
Input
PU (100K)
CSI0_DAT6
N4
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA06
Input
PU (100K)
CSI0_DAT7
N3
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA07
Input
PU (100K)
CSI0_DAT8
N6
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA08
Input
PU (100K)
CSI0_DAT9
N5
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA09
Input
PU (100K)
CSI0_DATA_EN
P3
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_DATA_EN
Input
PU (100K)
CSI0_MCLK
P4
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_HSYNC
Input
PU (100K)
CSI0_PIXCLK
P1
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_PIXCLK
Input
PU (100K)
CSI0_VSYNC
N2
NVCC_CSI
GPIO
ALT5
IPU1_CSI0_VSYNC
Input
PU (100K)
DI0_DISP_CLK
N19
NVCC_LCD
GPIO
ALT5
IPU1_DI0_DISP_CLK
Input
PU (100K)
DI0_PIN15
N21
NVCC_LCD
GPIO
ALT5
IPU1_DI0_PIN15
Input
PU (100K)
DI0_PIN2
N25
NVCC_LCD
GPIO
ALT5
IPU1_DI0_PIN02
Input
PU (100K)
DI0_PIN3
N20
NVCC_LCD
GPIO
ALT5
IPU1_DI0_PIN03
Input
PU (100K)
DI0_PIN4
P25
NVCC_LCD
GPIO
ALT5
IPU1_DI0_PIN04
Input
PU (100K)
DISP0_DAT0
P24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA00
Input
PU (100K)
DISP0_DAT1
P22
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA01
Input
PU (100K)
DISP0_DAT10
R21
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA10
Input
PU (100K)
DISP0_DAT11
T23
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA11
Input
PU (100K)
DISP0_DAT12
T24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA12
Input
PU (100K)
DISP0_DAT13
R20
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA13
Input
PU (100K)
DISP0_DAT14
U25
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA14
Input
PU (100K)
DISP0_DAT15
T22
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA15
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
148
Freescale Semiconductor
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
DISP0_DAT16
T21
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA16
Input
PU (100K)
DISP0_DAT17
U24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA17
Input
PU (100K)
DISP0_DAT18
V25
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA18
Input
PU (100K)
DISP0_DAT19
U23
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA19
Input
PU (100K)
DISP0_DAT2
P23
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA02
Input
PU (100K)
DISP0_DAT20
U22
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA20
Input
PU (100K)
DISP0_DAT21
T20
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA21
Input
PU (100K)
DISP0_DAT22
V24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA22
Input
PU (100K)
DISP0_DAT23
W24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA23
Input
PU (100K)
DISP0_DAT3
P21
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA03
Input
PU (100K)
DISP0_DAT4
P20
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA04
Input
PU (100K)
DISP0_DAT5
R25
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA05
Input
PU (100K)
DISP0_DAT6
R23
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA06
Input
PU (100K)
DISP0_DAT7
R24
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA07
Input
PU (100K)
DISP0_DAT8
R22
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA08
Input
PU (100K)
DISP0_DAT9
T25
NVCC_LCD
GPIO
ALT5
IPU1_DISP0_DATA09
Input
PU (100K)
DRAM_A0
AC14
NVCC_DRAM
DDR
ALT0
DRAM_ADDR00
Output
0
DRAM_A1
AB14
NVCC_DRAM
DDR
ALT0
DRAM_ADDR01
Output
0
DRAM_A10
AA15
NVCC_DRAM
DDR
ALT0
DRAM_ADDR10
Output
0
DRAM_A11
AC12
NVCC_DRAM
DDR
ALT0
DRAM_ADDR11
Output
0
DRAM_A12
AD12
NVCC_DRAM
DDR
ALT0
DRAM_ADDR12
Output
0
DRAM_A13
AC17
NVCC_DRAM
DDR
ALT0
DRAM_ADDR13
Output
0
DRAM_A14
AA12
NVCC_DRAM
DDR
ALT0
DRAM_ADDR14
Output
0
DRAM_A15
Y12
NVCC_DRAM
DDR
ALT0
DRAM_ADDR15
Output
0
DRAM_A2
AA14
NVCC_DRAM
DDR
ALT0
DRAM_ADDR02
Output
0
DRAM_A3
Y14
NVCC_DRAM
DDR
ALT0
DRAM_ADDR03
Output
0
DRAM_A4
W14
NVCC_DRAM
DDR
ALT0
DRAM_ADDR04
Output
0
DRAM_A5
AE13
NVCC_DRAM
DDR
ALT0
DRAM_ADDR05
Output
0
DRAM_A6
AC13
NVCC_DRAM
DDR
ALT0
DRAM_ADDR06
Output
0
DRAM_A7
Y13
NVCC_DRAM
DDR
ALT0
DRAM_ADDR07
Output
0
DRAM_A8
AB13
NVCC_DRAM
DDR
ALT0
DRAM_ADDR08
Output
0
DRAM_A9
AE12
NVCC_DRAM
DDR
ALT0
DRAM_ADDR09
Output
0
DRAM_CAS
AE16
NVCC_DRAM
DDR
ALT0
DRAM_CAS_B
Output
0
DRAM_CS0
Y16
NVCC_DRAM
DDR
ALT0
DRAM_CS0_B
Output
0
DRAM_CS1
AD17
NVCC_DRAM
DDR
ALT0
DRAM_CS1_B
Output
0
DRAM_D0
AD2
NVCC_DRAM
DDR
ALT0
DRAM_DATA00
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
149
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
DRAM_D1
AE2
NVCC_DRAM
DDR
ALT0
DRAM_DATA01
Input
PU (100K)
DRAM_D10
AA6
NVCC_DRAM
DDR
ALT0
DRAM_DATA10
Input
PU (100K)
DRAM_D11
AE7
NVCC_DRAM
DDR
ALT0
DRAM_DATA11
Input
PU (100K)
DRAM_D12
AB5
NVCC_DRAM
DDR
ALT0
DRAM_DATA12
Input
PU (100K)
DRAM_D13
AC5
NVCC_DRAM
DDR
ALT0
DRAM_DATA13
Input
PU (100K)
DRAM_D14
AB6
NVCC_DRAM
DDR
ALT0
DRAM_DATA14
Input
PU (100K)
DRAM_D15
AC7
NVCC_DRAM
DDR
ALT0
DRAM_DATA15
Input
PU (100K)
DRAM_D16
AB7
NVCC_DRAM
DDR
ALT0
DRAM_DATA16
Input
PU (100K)
DRAM_D17
AA8
NVCC_DRAM
DDR
ALT0
DRAM_DATA17
Input
PU (100K)
DRAM_D18
AB9
NVCC_DRAM
DDR
ALT0
DRAM_DATA18
Input
PU (100K)
DRAM_D19
Y9
NVCC_DRAM
DDR
ALT0
DRAM_DATA19
Input
PU (100K)
DRAM_D2
AC4
NVCC_DRAM
DDR
ALT0
DRAM_DATA02
Input
PU (100K)
DRAM_D20
Y7
NVCC_DRAM
DDR
ALT0
DRAM_DATA20
Input
PU (100K)
DRAM_D21
Y8
NVCC_DRAM
DDR
ALT0
DRAM_DATA21
Input
PU (100K)
DRAM_D22
AC8
NVCC_DRAM
DDR
ALT0
DRAM_DATA22
Input
PU (100K)
DRAM_D23
AA9
NVCC_DRAM
DDR
ALT0
DRAM_DATA23
Input
PU (100K)
DRAM_D24
AE9
NVCC_DRAM
DDR
ALT0
DRAM_DATA24
Input
PU (100K)
DRAM_D25
Y10
NVCC_DRAM
DDR
ALT0
DRAM_DATA25
Input
PU (100K)
DRAM_D26
AE11
NVCC_DRAM
DDR
ALT0
DRAM_DATA26
Input
PU (100K)
DRAM_D27
AB11
NVCC_DRAM
DDR
ALT0
DRAM_DATA27
Input
PU (100K)
DRAM_D28
AC9
NVCC_DRAM
DDR
ALT0
DRAM_DATA28
Input
PU (100K)
DRAM_D29
AD9
NVCC_DRAM
DDR
ALT0
DRAM_DATA29
Input
PU (100K)
DRAM_D3
AA5
NVCC_DRAM
DDR
ALT0
DRAM_DATA03
Input
PU (100K)
DRAM_D30
AD11
NVCC_DRAM
DDR
ALT0
DRAM_DATA30
Input
PU (100K)
DRAM_D31
AC11
NVCC_DRAM
DDR
ALT0
DRAM_DATA31
Input
PU (100K)
DRAM_D32
AA17
NVCC_DRAM
DDR
ALT0
DRAM_DATA32
Input
PU (100K)
DRAM_D33
AA18
NVCC_DRAM
DDR
ALT0
DRAM_DATA33
Input
PU (100K)
DRAM_D34
AC18
NVCC_DRAM
DDR
ALT0
DRAM_DATA34
Input
PU (100K)
DRAM_D35
AE19
NVCC_DRAM
DDR
ALT0
DRAM_DATA35
Input
PU (100K)
DRAM_D36
Y17
NVCC_DRAM
DDR
ALT0
DRAM_DATA36
Input
PU (100K)
DRAM_D37
Y18
NVCC_DRAM
DDR
ALT0
DRAM_DATA37
Input
PU (100K)
DRAM_D38
AB19
NVCC_DRAM
DDR
ALT0
DRAM_DATA38
Input
PU (100K)
DRAM_D39
AC19
NVCC_DRAM
DDR
ALT0
DRAM_DATA39
Input
PU (100K)
DRAM_D4
AC1
NVCC_DRAM
DDR
ALT0
DRAM_DATA04
Input
PU (100K)
DRAM_D40
Y19
NVCC_DRAM
DDR
ALT0
DRAM_DATA40
Input
PU (100K)
DRAM_D41
AB20
NVCC_DRAM
DDR
ALT0
DRAM_DATA41
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
150
Freescale Semiconductor
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
DRAM_D42
AB21
NVCC_DRAM
DDR
ALT0
DRAM_DATA42
Input
PU (100K)
DRAM_D43
AD21
NVCC_DRAM
DDR
ALT0
DRAM_DATA43
Input
PU (100K)
DRAM_D44
Y20
NVCC_DRAM
DDR
ALT0
DRAM_DATA44
Input
PU (100K)
DRAM_D45
AA20
NVCC_DRAM
DDR
ALT0
DRAM_DATA45
Input
PU (100K)
DRAM_D46
AE21
NVCC_DRAM
DDR
ALT0
DRAM_DATA46
Input
PU (100K)
DRAM_D47
AC21
NVCC_DRAM
DDR
ALT0
DRAM_DATA47
Input
PU (100K)
DRAM_D48
AC22
NVCC_DRAM
DDR
ALT0
DRAM_DATA48
Input
PU (100K)
DRAM_D49
AE22
NVCC_DRAM
DDR
ALT0
DRAM_DATA49
Input
PU (100K)
DRAM_D5
AD1
NVCC_DRAM
DDR
ALT0
DRAM_DATA05
Input
PU (100K)
DRAM_D50
AE24
NVCC_DRAM
DDR
ALT0
DRAM_DATA50
Input
PU (100K)
DRAM_D51
AC24
NVCC_DRAM
DDR
ALT0
DRAM_DATA51
Input
PU (100K)
DRAM_D52
AB22
NVCC_DRAM
DDR
ALT0
DRAM_DATA52
Input
PU (100K)
DRAM_D53
AC23
NVCC_DRAM
DDR
ALT0
DRAM_DATA53
Input
PU (100K)
DRAM_D54
AD25
NVCC_DRAM
DDR
ALT0
DRAM_DATA54
Input
PU (100K)
DRAM_D55
AC25
NVCC_DRAM
DDR
ALT0
DRAM_DATA55
Input
PU (100K)
DRAM_D56
AB25
NVCC_DRAM
DDR
ALT0
DRAM_DATA56
Input
PU (100K)
DRAM_D57
AA21
NVCC_DRAM
DDR
ALT0
DRAM_DATA57
Input
PU (100K)
DRAM_D58
Y25
NVCC_DRAM
DDR
ALT0
DRAM_DATA58
Input
PU (100K)
DRAM_D59
Y22
NVCC_DRAM
DDR
ALT0
DRAM_DATA59
Input
PU (100K)
DRAM_D6
AB4
NVCC_DRAM
DDR
ALT0
DRAM_DATA06
Input
PU (100K)
DRAM_D60
AB23
NVCC_DRAM
DDR
ALT0
DRAM_DATA60
Input
PU (100K)
DRAM_D61
AA23
NVCC_DRAM
DDR
ALT0
DRAM_DATA61
Input
PU (100K)
DRAM_D62
Y23
NVCC_DRAM
DDR
ALT0
DRAM_DATA62
Input
PU (100K)
DRAM_D63
W25
NVCC_DRAM
DDR
ALT0
DRAM_DATA63
Input
PU (100K)
DRAM_D7
AE4
NVCC_DRAM
DDR
ALT0
DRAM_DATA07
Input
PU (100K)
DRAM_D8
AD5
NVCC_DRAM
DDR
ALT0
DRAM_DATA08
Input
PU (100K)
DRAM_D9
AE5
NVCC_DRAM
DDR
ALT0
DRAM_DATA09
Input
PU (100K)
DRAM_DQM0
AC3
NVCC_DRAM
DDR
ALT0
DRAM_DQM0
Output
0
DRAM_DQM1
AC6
NVCC_DRAM
DDR
ALT0
DRAM_DQM1
Output
0
DRAM_DQM2
AB8
NVCC_DRAM
DDR
ALT0
DRAM_DQM2
Output
0
DRAM_DQM3
AE10
NVCC_DRAM
DDR
ALT0
DRAM_DQM3
Output
0
DRAM_DQM4
AB18
NVCC_DRAM
DDR
ALT0
DRAM_DQM4
Output
0
DRAM_DQM5
AC20
NVCC_DRAM
DDR
ALT0
DRAM_DQM5
Output
0
DRAM_DQM6
AD24
NVCC_DRAM
DDR
ALT0
DRAM_DQM6
Output
0
DRAM_DQM7
Y21
NVCC_DRAM
DDR
ALT0
DRAM_DQM7
Output
0
DRAM_RAS
AB15
NVCC_DRAM
DDR
ALT0
DRAM_RAS_B
Output
0
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
151
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
DRAM_RESET
Y6
NVCC_DRAM
DDR
ALT0
DRAM_RESET
Output
0
DRAM_SDBA0
AC15
NVCC_DRAM
DDR
ALT0
DRAM_SDBA0
Output
0
DRAM_SDBA1
Y15
NVCC_DRAM
DDR
ALT0
DRAM_SDBA1
Output
0
DRAM_SDBA2
AB12
NVCC_DRAM
DDR
ALT0
DRAM_SDBA2
Output
0
DRAM_SDCKE0
Y11
NVCC_DRAM
DDR
ALT0
DRAM_SDCKE0
Output
0
DRAM_SDCKE1
AA11
NVCC_DRAM
DDR
ALT0
DRAM_SDCKE1
Output
0
DRAM_SDCLK_0
AD15
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDCLK0_P
Input
Hi-Z
DRAM_SDCLK_0_B AE15
NVCC_DRAM
DDRCLK
—
DRAM_SDCLK0_N
—
—
AD14
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDCLK1_P
Input
Hi-Z
DRAM_SDCLK_1_B AE14
NVCC_DRAM
DDRCLK
—
DRAM_SDCLK1_N
—
—
NVCC_DRAM
DDR
ALT0
DRAM_ODT0
Output
0
DRAM_SDCLK_1
DRAM_SDODT0
AC16
DRAM_SDODT1
AB17
NVCC_DRAM
DDR
ALT0
DRAM_ODT1
Output
0
DRAM_SDQS0
AE3
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS0_P
Input
Hi-Z
DRAM_SDQS0_B
AD3
NVCC_DRAM
DDRCLK
—
DRAM_SDQS0_N
—
—
DRAM_SDQS1
AD6
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS1_P
Input
Hi-Z
DRAM_SDQS1_B
AE6
NVCC_DRAM
DDRCLK
—
DRAM_SDQS1_N
—
—
DRAM_SDQS2
AD8
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS2_P
Input
Hi-Z
DRAM_SDQS2_B
AE8
NVCC_DRAM
DDRCLK
—
DRAM_SDQS2_N
—
—
DRAM_SDQS3
AC10
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS3_P
Input
Hi-Z
DRAM_SDQS3_B
AB10
NVCC_DRAM
DDRCLK
—
DRAM_SDQS3_N
—
—
DRAM_SDQS4
AD18
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS4_P
Input
Hi-Z
DRAM_SDQS4_B
AE18
NVCC_DRAM
DDRCLK
—
DRAM_SDQS4_N
—
—
DRAM_SDQS5
AD20
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS5_P
Input
Hi-Z
DRAM_SDQS5_B
AE20
NVCC_DRAM
DDRCLK
—
DRAM_SDQS5_N
—
—
DRAM_SDQS6
AD23
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS6_P
Input
Hi-Z
DRAM_SDQS6_B
AE23
NVCC_DRAM
DDRCLK
—
DRAM_SDQS6_N
—
—
DRAM_SDQS7
AA25
NVCC_DRAM
DDRCLK
ALT0
DRAM_SDQS7_P
Input
Hi-Z
DRAM_SDQS7_B
AA24
NVCC_DRAM
DDRCLK
—
DRAM_SDQS7_N
—
—
DRAM_SDWE
AB16
NVCC_DRAM
DDR
ALT0
DRAM_SDWE_B
Output
0
DSI_CLK0M
H3
NVCC_MIPI
—
—
DSI_CLK_N
—
—
DSI_CLK0P
H4
NVCC_MIPI
—
—
DSI_CLK_P
—
—
DSI_D0M
G2
NVCC_MIPI
—
—
DSI_DATA0_N
—
—
DSI_D0P
G1
NVCC_MIPI
—
—
DSI_DATA0_P
—
—
DSI_D1M
H2
NVCC_MIPI
—
—
DSI_DATA1_N
—
—
DSI_D1P
H1
NVCC_MIPI
—
—
DSI_DATA1_P
—
—
EIM_A16
H25
NVCC_EIM1
GPIO
ALT0
EIM_ADDR16
Output
0
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
152
Freescale Semiconductor
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
EIM_A17
G24
NVCC_EIM1
GPIO
ALT0
EIM_ADDR17
Output
0
EIM_A18
J22
NVCC_EIM1
GPIO
ALT0
EIM_ADDR18
Output
0
EIM_A19
G25
NVCC_EIM1
GPIO
ALT0
EIM_ADDR19
Output
0
EIM_A20
H22
NVCC_EIM1
GPIO
ALT0
EIM_ADDR20
Output
0
EIM_A21
H23
NVCC_EIM1
GPIO
ALT0
EIM_ADDR21
Output
0
EIM_A22
F24
NVCC_EIM1
GPIO
ALT0
EIM_ADDR22
Output
0
EIM_A23
J21
NVCC_EIM1
GPIO
ALT0
EIM_ADDR23
Output
0
EIM_A24
F25
NVCC_EIM1
GPIO
ALT0
EIM_ADDR24
Output
0
EIM_A25
H19
NVCC_EIM0
GPIO
ALT0
EIM_ADDR25
Output
0
EIM_BCLK
N22
NVCC_EIM2
GPIO
ALT0
EIM_BCLK
Output
0
EIM_CS0
H24
NVCC_EIM1
GPIO
ALT0
EIM_CS0_B
Output
1
EIM_CS1
J23
NVCC_EIM1
GPIO
ALT0
EIM_CS1_B
Output
1
EIM_D16
C25
NVCC_EIM0
GPIO
ALT5
EIM_DATA16
Input
PU (100K)
EIM_D17
F21
NVCC_EIM0
GPIO
ALT5
EIM_DATA17
Input
PU (100K)
EIM_D18
D24
NVCC_EIM0
GPIO
ALT5
EIM_DATA18
Input
PU (100K)
EIM_D19
G21
NVCC_EIM0
GPIO
ALT5
EIM_DATA19
Input
PU (100K)
EIM_D20
G20
NVCC_EIM0
GPIO
ALT5
EIM_DATA20
Input
PU (100K)
EIM_D21
H20
NVCC_EIM0
GPIO
ALT5
EIM_DATA21
Input
PU (100K)
EIM_D22
E23
NVCC_EIM0
GPIO
ALT5
EIM_DATA22
Input
PD (100K)
EIM_D23
D25
NVCC_EIM0
GPIO
ALT5
EIM_DATA23
Input
PU (100K)
EIM_D24
F22
NVCC_EIM0
GPIO
ALT5
EIM_DATA24
Input
PU (100K)
EIM_D25
G22
NVCC_EIM0
GPIO
ALT5
EIM_DATA25
Input
PU (100K)
EIM_D26
E24
NVCC_EIM0
GPIO
ALT5
EIM_DATA26
Input
PU (100K)
EIM_D27
E25
NVCC_EIM0
GPIO
ALT5
EIM_DATA27
Input
PU (100K)
EIM_D28
G23
NVCC_EIM0
GPIO
ALT5
EIM_DATA28
Input
PU (100K)
EIM_D29
J19
NVCC_EIM0
GPIO
ALT5
EIM_DATA29
Input
PU (100K)
EIM_D30
J20
NVCC_EIM0
GPIO
ALT5
EIM_DATA30
Input
PU (100K)
EIM_D31
H21
NVCC_EIM0
GPIO
ALT5
EIM_DATA31
Input
PD (100K)
EIM_DA0
L20
NVCC_EIM2
GPIO
ALT0
EIM_AD00
Input
PU (100K)
EIM_DA1
J25
NVCC_EIM2
GPIO
ALT0
EIM_AD01
Input
PU (100K)
EIM_DA2
L21
NVCC_EIM2
GPIO
ALT0
EIM_AD02
Input
PU (100K)
EIM_DA3
K24
NVCC_EIM2
GPIO
ALT0
EIM_AD03
Input
PU (100K)
EIM_DA4
L22
NVCC_EIM2
GPIO
ALT0
EIM_AD04
Input
PU (100K)
EIM_DA5
L23
NVCC_EIM2
GPIO
ALT0
EIM_AD05
Input
PU (100K)
EIM_DA6
K25
NVCC_EIM2
GPIO
ALT0
EIM_AD06
Input
PU (100K)
EIM_DA7
L25
NVCC_EIM2
GPIO
ALT0
EIM_AD07
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
153
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
EIM_DA8
L24
NVCC_EIM2
GPIO
ALT0
EIM_AD08
Input
PU (100K)
EIM_DA9
M21
NVCC_EIM2
GPIO
ALT0
EIM_AD09
Input
PU (100K)
EIM_DA10
M22
NVCC_EIM2
GPIO
ALT0
EIM_AD10
Input
PU (100K)
EIM_DA11
M20
NVCC_EIM2
GPIO
ALT0
EIM_AD11
Input
PU (100K)
EIM_DA12
M24
NVCC_EIM2
GPIO
ALT0
EIM_AD12
Input
PU (100K)
EIM_DA13
M23
NVCC_EIM2
GPIO
ALT0
EIM_AD13
Input
PU (100K)
EIM_DA14
N23
NVCC_EIM2
GPIO
ALT0
EIM_AD14
Input
PU (100K)
EIM_DA15
N24
NVCC_EIM2
GPIO
ALT0
EIM_AD15
Input
PU (100K)
EIM_EB0
K21
NVCC_EIM2
GPIO
ALT0
EIM_EB0_B
Output
1
EIM_EB1
K23
NVCC_EIM2
GPIO
ALT0
EIM_EB1_B
Output
1
EIM_EB2
E22
NVCC_EIM0
GPIO
ALT5
EIM_EB2_B
Input
PU (100K)
EIM_EB3
F23
NVCC_EIM0
GPIO
ALT5
EIM_EB3_B
Input
PU (100K)
EIM_LBA
K22
NVCC_EIM1
GPIO
ALT0
EIM_LBA_B
Output
1
EIM_OE
J24
NVCC_EIM1
GPIO
ALT0
EIM_OE
Output
1
EIM_RW
K20
NVCC_EIM1
GPIO
ALT0
EIM_RW
Output
1
EIM_WAIT
M25
NVCC_EIM2
GPIO
ALT0
EIM_WAIT
Input
PU (100K)
ENET_CRS_DV
U21
NVCC_ENET
GPIO
ALT5
ENET_RX_EN
Input
PU (100K)
ENET_MDC
V20
NVCC_ENET
GPIO
ALT5
ENET_MDC
Input
PU (100K)
V23
NVCC_ENET
GPIO
ALT5
ENET_MDIO
Input
PU (100K)
ENET_MDIO
3
V22
NVCC_ENET
GPIO
ALT5
ENET_TX_CLK
Input
PU (100K)
ENET_RX_ER
W23
NVCC_ENET
GPIO
ALT5
ENET_RX_ER
Input
PU (100K)
ENET_RXD0
W21
NVCC_ENET
GPIO
ALT5
ENET_RX_DATA0
Input
PU (100K)
ENET_RXD1
W22
NVCC_ENET
GPIO
ALT5
ENET_RX_DATA1
Input
PU (100K)
ENET_TX_EN
V21
NVCC_ENET
GPIO
ALT5
ENET_TX_EN
Input
PU (100K)
ENET_TXD0
U20
NVCC_ENET
GPIO
ALT5
ENET_TX_DATA0
Input
PU (100K)
ENET_TXD1
W20
NVCC_ENET
GPIO
ALT5
ENET_TX_DATA1
Input
PU (100K)
GPIO_0
T5
NVCC_GPIO
GPIO
ALT5
GPIO1_IO00
Input
PD (100K)
ENET_REF_CLK
GPIO_1
T4
NVCC_GPIO
GPIO
ALT5
GPIO1_IO01
Input
PU (100K)
GPIO_16
R2
NVCC_GPIO
GPIO
ALT5
GPIO7_IO11
Input
PU (100K)
GPIO_17
R1
NVCC_GPIO
GPIO
ALT5
GPIO7_IO12
Input
PU (100K)
GPIO_18
P6
NVCC_GPIO
GPIO
ALT5
GPIO7_IO13
Input
PU (100K)
GPIO_19
P5
NVCC_GPIO
GPIO
ALT5
GPIO4_IO05
Input
PU (100K)
GPIO_2
T1
NVCC_GPIO
GPIO
ALT5
GPIO1_IO02
Input
PU (100K)
GPIO_3
R7
NVCC_GPIO
GPIO
ALT5
GPIO1_IO03
Input
PU (100K)
GPIO_4
R6
NVCC_GPIO
GPIO
ALT5
GPIO1_IO04
Input
PU (100K)
GPIO_5
R4
NVCC_GPIO
GPIO
ALT5
GPIO1_IO05
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
154
Freescale Semiconductor
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
GPIO_6
T3
NVCC_GPIO
GPIO
ALT5
GPIO1_IO06
Input
PU (100K)
GPIO_7
R3
NVCC_GPIO
GPIO
ALT5
GPIO1_IO07
Input
PU (100K)
GPIO_8
R5
NVCC_GPIO
GPIO
ALT5
GPIO1_IO08
Input
PU (100K)
GPIO_9
T2
NVCC_GPIO
GPIO
ALT5
GPIO1_IO09
Input
PU (100K)
HDMI_CLKM
J5
HDMI_VPH
—
—
HDMI_TX_CLK_N
—
—
HDMI_CLKP
J6
HDMI_VPH
—
—
HDMI_TX_CLK_P
—
—
HDMI_D0M
K5
HDMI_VPH
—
—
HDMI_TX_DATA0_N
—
—
HDMI_D0P
K6
HDMI_VPH
—
—
HDMI_TX_DATA0_P
—
—
HDMI_D1M
J3
HDMI_VPH
—
—
HDMI_TX_DATA1_N
—
—
HDMI_D1P
J4
HDMI_VPH
—
—
HDMI_TX_DATA1_P
—
—
HDMI_D2M
K3
HDMI_VPH
—
—
HDMI_TX_DATA2_N
—
—
HDMI_D2P
K4
HDMI_VPH
—
—
HDMI_TX_DATA2_P
—
—
HDMI_HPD
K1
HDMI_VPH
—
—
HDMI_TX_HPD
—
—
JTAG_MOD
H6
NVCC_JTAG
GPIO
ALT0
JTAG_MODE
Input
PU (100K)
JTAG_TCK
H5
NVCC_JTAG
GPIO
ALT0
JTAG_TCK
Input
PU (47K)
JTAG_TDI
G5
NVCC_JTAG
GPIO
ALT0
JTAG_TDI
Input
PU (47K)
JTAG_TDO
G6
NVCC_JTAG
GPIO
ALT0
JTAG_TDO
Output
Keeper
JTAG_TMS
C3
NVCC_JTAG
GPIO
ALT0
JTAG_TMS
Input
PU (47K)
JTAG_TRSTB
C2
NVCC_JTAG
GPIO
ALT0
JTAG_TRST_B
Input
PU (47K)
KEY_COL0
W5
NVCC_GPIO
GPIO
ALT5
KEY_COL0
Input
PU (100K)
KEY_COL1
U7
NVCC_GPIO
GPIO
ALT5
KEY_COL1
Input
PU (100K)
KEY_COL2
W6
NVCC_GPIO
GPIO
ALT5
KEY_COL2
Input
PU (100K)
KEY_COL3
U5
NVCC_GPIO
GPIO
ALT5
KEY_COL3
Input
PU (100K)
KEY_COL4
T6
NVCC_GPIO
GPIO
ALT5
KEY_COL4
Input
PU (100K)
KEY_ROW0
V6
NVCC_GPIO
GPIO
ALT5
KEY_ROW0
Input
PU (100K)
KEY_ROW1
U6
NVCC_GPIO
GPIO
ALT5
KEY_ROW1
Input
PU (100K)
KEY_ROW2
W4
NVCC_GPIO
GPIO
ALT5
KEY_ROW2
Input
PU (100K)
KEY_ROW3
T7
NVCC_GPIO
GPIO
ALT5
KEY_ROW3
Input
PU (100K)
KEY_ROW4
V5
NVCC_GPIO
GPIO
ALT5
KEY_ROW4
Input
PD (100K)
LVDS0_CLK_N
V4
NVCC_LVDS_2P5
LVDS
—
LVDS0_CLK_N
—
—
LVDS0_CLK_P
V3
NVCC_LVDS_2P5
LVDS
ALT0
LVDS0_CLK_P
Input
Keeper
LVDS0_TX0_N
U2
NVCC_LVDS_2P5
LVDS
—
LVDS0_TX0_N
—
—
LVDS0_TX0_P
U1
NVCC_LVDS_2P5
LVDS
ALT0
LVDS0_TX0_P
Input
Keeper
LVDS0_TX1_N
U4
NVCC_LVDS_2P5
LVDS
—
LVDS0_TX1_N
—
—
LVDS0_TX1_P
U3
NVCC_LVDS_2P5
LVDS
ALT0
LVDS0_TX1_P
Input
Keeper
LVDS0_TX2_N
V2
NVCC_LVDS_2P5
LVDS
—
LVDS0_TX2_N
—
—
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
155
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
LVDS0_TX2_P
V1
NVCC_LVDS_2P5
LVDS
ALT0
LVDS0_TX2_P
Input
Keeper
LVDS0_TX3_N
W2
NVCC_LVDS_2P5
LVDS
—
LVDS0_TX3_N
—
—
LVDS0_TX3_P
W1
NVCC_LVDS_2P5
LVDS
ALT0
LVDS0_TX3_P
Input
Keeper
LVDS1_CLK_N
Y3
NVCC_LVDS_2P5
LVDS
—
LVDS1_CLK_N
—
—
LVDS1_CLK_P
Y4
NVCC_LVDS_2P5
LVDS
ALT0
LVDS1_CLK_P
Input
Keeper
LVDS1_TX0_N
Y1
NVCC_LVDS_2P5
LVDS
—
LVDS1_TX0_N
—
—
LVDS1_TX0_P
Y2
NVCC_LVDS_2P5
LVDS
ALT0
LVDS1_TX0_P
Input
Keeper
LVDS1_TX1_N
AA2 NVCC_LVDS_2P5
LVDS
—
LVDS1_TX1_N
—
—
LVDS1_TX1_P
AA1 NVCC_LVDS_2P5
LVDS
ALT0
LVDS1_TX1_P
Input
Keeper
LVDS1_TX2_N
AB1 NVCC_LVDS_2P5
LVDS
—
LVDS1_TX2_N
—
—
LVDS1_TX2_P
AB2 NVCC_LVDS_2P5
LVDS
ALT0
LVDS1_TX2_P
Input
Keeper
LVDS1_TX3_N
AA3 NVCC_LVDS_2P5
LVDS
—
LVDS1_TX3_N
—
—
LVDS1_TX3_P
AA4 NVCC_LVDS_2P5
LVDS
ALT0
LVDS1_TX3_P
Input
Keeper
MLB_CN
A11
VDD_HIGH_CAP
LVDS
—
MLB_CLK_N
—
—
MLB_CP
B11
VDD_HIGH_CAP
LVDS
—
MLB_CLK_P
—
—
MLB_DN
B10
VDD_HIGH_CAP
LVDS
—
MLB_DATA_N
—
—
MLB_DP
A10
VDD_HIGH_CAP
LVDS
—
MLB_DATA_P
—
—
MLB_SN
A9
VDD_HIGH_CAP
LVDS
—
MLB_SIG_N
—
—
MLB_SP
B9
VDD_HIGH_CAP
LVDS
—
MLB_SIG_P
—
—
NANDF_ALE
A16
NVCC_NANDF
GPIO
ALT5
NAND_ALE
Input
PU (100K)
NANDF_CLE
C15
NVCC_NANDF
GPIO
ALT5
NAND_CLE
Input
PU (100K)
NANDF_CS0
F15
NVCC_NANDF
GPIO
ALT5
NAND_CE0_B
Input
PU (100K)
NANDF_CS1
C16
NVCC_NANDF
GPIO
ALT5
NAND_CE1_B
Input
PU (100K)
NANDF_CS2
A17
NVCC_NANDF
GPIO
ALT5
NAND_CE2_B
Input
PU (100K)
NANDF_CS3
D16
NVCC_NANDF
GPIO
ALT5
NAND_CE3_B
Input
PU (100K)
NANDF_D0
A18
NVCC_NANDF
GPIO
ALT5
NAND_DATA00
Input
PU (100K)
NANDF_D1
C17
NVCC_NANDF
GPIO
ALT5
NAND_DATA01
Input
PU (100K)
NANDF_D2
F16
NVCC_NANDF
GPIO
ALT5
NAND_DATA02
Input
PU (100K)
NANDF_D3
D17
NVCC_NANDF
GPIO
ALT5
NAND_DATA03
Input
PU (100K)
NANDF_D4
A19
NVCC_NANDF
GPIO
ALT5
NAND_DATA04
Input
PU (100K)
NANDF_D5
B18
NVCC_NANDF
GPIO
ALT5
NAND_DATA05
Input
PU (100K)
NANDF_D6
E17
NVCC_NANDF
GPIO
ALT5
NAND_DATA06
Input
PU (100K)
NANDF_D7
C18
NVCC_NANDF
GPIO
ALT5
NAND_DATA07
Input
PU (100K)
NANDF_RB0
B16
NVCC_NANDF
GPIO
ALT5
NAND_READY
Input
PU (100K)
NANDF_WP_B
E15
NVCC_NANDF
GPIO
ALT5
NAND_WP_B
Input
PU (100K)
ONOFF
D12
VDD_SNVS_IN
GPIO
—
SRC_ONOFF
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
156
Freescale Semiconductor
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
PCIE_RXM
B1
PCIE_VPH
—
—
PCIE_RX_N
—
—
PCIE_RXP
B2
PCIE_VPH
—
—
PCIE_RX_P
—
—
PCIE_TXM
A3
PCIE_VPH
—
—
PCIE_TX_N
—
—
PCIE_TXP
B3
PCIE_VPH
—
—
PCIE_TX_P
—
—
PMIC_ON_REQ
D11
VDD_SNVS_IN
GPIO
ALT0
SNVS_PMIC_ON_REQ
Output
Open
Drain with
PU (100K)
PMIC_STBY_REQ
F11
VDD_SNVS_IN
GPIO
ALT0
CCM_PMIC_STBY_REQ
Output
0
POR_B
C11
VDD_SNVS_IN
GPIO
ALT0
SRC_POR_B
Input
PU (100K)
RGMII_RD0
C24
NVCC_RGMII
DDR
ALT5
RGMII_RD0
Input
PU (100K)
RGMII_RD1
B23
NVCC_RGMII
DDR
ALT5
RGMII_RD1
Input
PU (100K)
RGMII_RD2
B24
NVCC_RGMII
DDR
ALT5
RGMII_RD2
Input
PU (100K)
RGMII_RD3
D23
NVCC_RGMII
DDR
ALT5
RGMII_RD3
Input
PU (100K)
RGMII_RX_CTL
D22
NVCC_RGMII
DDR
ALT5
RGMII_RX_CTL
Input
PD (100K)
RGMII_RXC
B25
NVCC_RGMII
DDR
ALT5
RGMII_RXC
Input
PD (100K)
RGMII_TD0
C22
NVCC_RGMII
DDR
ALT5
RGMII_TD0
Input
PU (100K)
RGMII_TD1
F20
NVCC_RGMII
DDR
ALT5
RGMII_TD1
Input
PU (100K)
RGMII_TD2
E21
NVCC_RGMII
DDR
ALT5
RGMII_TD2
Input
PU (100K)
RGMII_TD3
A24
NVCC_RGMII
DDR
ALT5
RGMII_TD3
Input
PU (100K)
RGMII_TX_CTL
C23
NVCC_RGMII
DDR
ALT5
RGMII_TX_CTL
Input
PD (100K)
RGMII_TXC
D21
NVCC_RGMII
DDR
ALT5
RGMII_TXC
Input
PD (100K)
RTC_XTALI
D9
VDD_SNVS_CAP
—
—
RTC_XTALI
—
—
RTC_XTALO
C9
VDD_SNVS_CAP
—
—
RTC_XTALO
—
—
SATA_RXM
A14
SATA_VPH
—
—
SATA_PHY_RX_N
—
—
SATA_RXP
B14
SATA_VPH
—
—
SATA_PHY_RX_P
—
—
SATA_TXM
B12
SATA_VPH
—
—
SATA_PHY_TX_N
—
—
SATA_TXP
A12
SATA_VPH
—
—
SATA_PHY_TX_P
—
—
SD1_CLK
D20
NVCC_SD1
GPIO
ALT5
SD1_CLK
Input
PU (100K)
SD1_CMD
B21
NVCC_SD1
GPIO
ALT5
SD1_CMD
Input
PU (100K)
SD1_DAT0
A21
NVCC_SD1
GPIO
ALT5
SD1_DATA0
Input
PU (100K)
SD1_DAT1
C20
NVCC_SD1
GPIO
ALT5
SD1_DATA1
Input
PU (100K)
SD1_DAT2
E19
NVCC_SD1
GPIO
ALT5
SD1_DATA2
Input
PU (100K)
SD1_DAT3
F18
NVCC_SD1
GPIO
ALT5
SD1_DATA3
Input
PU (100K)
SD2_CLK
C21
NVCC_SD2
GPIO
ALT5
SD2_CLK
Input
PU (100K)
SD2_CMD
F19
NVCC_SD2
GPIO
ALT5
SD2_CMD
Input
PU (100K)
SD2_DAT0
A22
NVCC_SD2
GPIO
ALT5
SD2_DATA0
Input
PU (100K)
SD2_DAT1
E20
NVCC_SD2
GPIO
ALT5
SD2_DATA1
Input
PU (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
157
Package Information and Contact Assignments
Table 101. 21 x 21 mm Functional Contact Assignments (continued)
Out of Reset Condition1
Ball Name
1
Ball
Power Group
Ball Type
Default
Mode
(Reset
Mode)
Default Function
(Signal Name)
Input/Output
Value2
SD2_DAT2
A23
NVCC_SD2
GPIO
ALT5
SD2_DATA2
Input
PU (100K)
SD2_DAT3
B22
NVCC_SD2
GPIO
ALT5
SD2_DATA3
Input
PU (100K)
SD3_CLK
D14
NVCC_SD3
GPIO
ALT5
SD3_CLK
Input
PU (100K)
SD3_CMD
B13
NVCC_SD3
GPIO
ALT5
SD3_CMD
Input
PU (100K)
SD3_DAT0
E14
NVCC_SD3
GPIO
ALT5
SD3_DATA0
Input
PU (100K)
SD3_DAT1
F14
NVCC_SD3
GPIO
ALT5
SD3_DATA1
Input
PU (100K)
SD3_DAT2
A15
NVCC_SD3
GPIO
ALT5
SD3_DATA2
Input
PU (100K)
SD3_DAT3
B15
NVCC_SD3
GPIO
ALT5
SD3_DATA3
Input
PU (100K)
SD3_DAT4
D13
NVCC_SD3
GPIO
ALT5
SD3_DATA4
Input
PU (100K)
SD3_DAT5
C13
NVCC_SD3
GPIO
ALT5
SD3_DATA5
Input
PU (100K)
SD3_DAT6
E13
NVCC_SD3
GPIO
ALT5
SD3_DATA6
Input
PU (100K)
SD3_DAT7
F13
NVCC_SD3
GPIO
ALT5
SD3_DATA7
Input
PU (100K)
SD3_RST
D15
NVCC_SD3
GPIO
ALT5
SD3_RESET
Input
PU (100K)
SD4_CLK
E16
NVCC_NANDF
GPIO
ALT5
SD4_CLK
Input
PU (100K)
SD4_CMD
B17
NVCC_NANDF
GPIO
ALT5
SD4_CMD
Input
PU (100K)
SD4_DAT0
D18
NVCC_NANDF
GPIO
ALT5
SD4_DATA0
Input
PU (100K)
SD4_DAT1
B19
NVCC_NANDF
GPIO
ALT5
SD4_DATA1
Input
PU (100K)
SD4_DAT2
F17
NVCC_NANDF
GPIO
ALT5
SD4_DATA2
Input
PU (100K)
SD4_DAT3
A20
NVCC_NANDF
GPIO
ALT5
SD4_DATA3
Input
PU (100K)
SD4_DAT4
E18
NVCC_NANDF
GPIO
ALT5
SD4_DATA4
Input
PU (100K)
SD4_DAT5
C19
NVCC_NANDF
GPIO
ALT5
SD4_DATA5
Input
PU (100K)
SD4_DAT6
B20
NVCC_NANDF
GPIO
ALT5
SD4_DATA6
Input
PU (100K)
SD4_DAT7
D19
NVCC_NANDF
GPIO
ALT5
SD4_DATA7
Input
PU (100K)
TAMPER
E11
VDD_SNVS_IN
GPIO
ALT0
SNVS_TAMPER
Input
PD (100K)
TEST_MODE
E12
VDD_SNVS_IN
—
—
TCU_TEST_MODE
Input
PD (100K)
USB_H1_DN
F10
VDD_USB_CAP
—
—
USB_H1_DN
—
—
USB_H1_DP
E10
VDD_USB_CAP
—
—
USB_H1_DP
—
—
USB_OTG_CHD_B
B8
VDD_USB_CAP
—
—
USB_OTG_CHD_B
—
—
USB_OTG_DN
B6
VDD_USB_CAP
—
—
USB_OTG_DN
—
—
USB_OTG_DP
A6
VDD_USB_CAP
—
—
USB_OTG_DP
—
—
XTALI
A7
NVCC_PLL
—
—
XTALI
—
—
XTALO
B7
NVCC_PLL
—
—
XTALO
—
—
The state immediately after reset and before ROM firmware or software has executed.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
158
Freescale Semiconductor
Package Information and Contact Assignments
2
Variance of the pull-up and pull-down strengths are shown in the tables as follows:
• Table 23, "GPIO I/O DC Parameters," on page 37.
• Table 24, "LPDDR2 I/O DC Electrical Parameters," on page 38
• Table 25, "DDR3/DDR3L I/O DC Electrical Parameters," on page 39
3 ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RMII mode uses either GPIO_16 or RGMII_TX_CTL
as a clock source. For more information on these clocks, see the device Reference Manual and the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).
For most of the signals, the state during reset is same as the state after reset, given in Out of Reset
Condition column of Table 101. However, there are few signals for which the state during reset is different
from the state after reset. These signals along with their state during reset are given in Table 102.
Table 102. Signals with Differing Before Reset and After Reset States
Before Reset State
Ball Name
Input/Output
Value
EIM_A16
Input
PD (100K)
EIM_A17
Input
PD (100K)
EIM_A18
Input
PD (100K)
EIM_A19
Input
PD (100K)
EIM_A20
Input
PD (100K)
EIM_A21
Input
PD (100K)
EIM_A22
Input
PD (100K)
EIM_A23
Input
PD (100K)
EIM_A24
Input
PD (100K)
EIM_A25
Input
PD (100K)
EIM_DA0
Input
PD (100K)
EIM_DA1
Input
PD (100K)
EIM_DA2
Input
PD (100K)
EIM_DA3
Input
PD (100K)
EIM_DA4
Input
PD (100K)
EIM_DA5
Input
PD (100K)
EIM_DA6
Input
PD (100K)
EIM_DA7
Input
PD (100K)
EIM_DA8
Input
PD (100K)
EIM_DA9
Input
PD (100K)
EIM_DA10
Input
PD (100K)
EIM_DA11
Input
PD (100K)
EIM_DA12
Input
PD (100K)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
159
Package Information and Contact Assignments
Table 102. Signals with Differing Before Reset and After Reset States (continued)
Before Reset State
Ball Name
6.2.3
Input/Output
Value
EIM_DA13
Input
PD (100K)
EIM_DA14
Input
PD (100K)
EIM_DA15
Input
PD (100K)
EIM_EB0
Input
PD (100K)
EIM_EB1
Input
PD (100K)
EIM_EB2
Input
PD (100K)
EIM_EB3
Input
PD (100K)
EIM_LBA
Input
PD (100K)
EIM_RW
Input
PD (100K)
EIM_WAIT
Input
PD (100K)
GPIO_17
Output
Drive state unknown (x)
GPIO_19
Output
Drive state unknown (x)
KEY_COL0
Output
Drive state unknown (x)
21 x 21 mm, 0.8 mm Pitch Ball Map
Table 103 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map.
25
RGMII_RXC
EIM_D16
GND
24
RGMII_RD2
RGMII_RD0
RGMII_TD3
23
RGMII_RD1
RGMII_TX_CTL
SD2_DAT2
22
SD2_DAT3
SD2_DAT0
21
SD1_DAT0
RGMII_TD0
SD4_DAT6
SD1_DAT1
SD1_CMD
SD4_DAT1
SD4_DAT5
SD2_CLK
20
NANDF_D5
NANDF_D7
SD4_DAT3
19
SD4_CMD
NANDF_D1
NANDF_D4
18
NANDF_RB0
NANDF_CS1
NANDF_D0
SD3_DAT3
NANDF_CLE
NANDF_CS2 17
SATA_RXP
SATA_REXT
NANDF_ALE 16
15
SD3_CMD
SD3_DAT5
SD3_DAT2
14
SATA_TXM
BOOT_MODE0
SATA_RXM
13
MLB_CP
POR_B
GND
12
MLB_DN
GND
SATA_TXP
11
MLB_SP
RTC_XTALO
MLB_CN
10
USB_OTG_CHD_B
GPANAIO
MLB_DP
9
XTALO
CLK1_N
MLB_SN
8
USB_OTG_DN
GND
GND
7
VDD_FA
CLK2_N
XTALI
GND
GND
USB_OTG_DP 6
5
PCIE_TXP
JTAG_TMS
FA_ANA
4
PCIE_RXP
JTAG_TRSTB
GND
3
PCIE_RXM
GND
PCIE_TXM
2
B
C
A
PCIE_REXT
1
Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
160
Freescale Semiconductor
Freescale Semiconductor
HDMI_REF
GND
HDMI_D1M
HDMI_D1P
HDMI_CLKM
HDMI_CLKP
NVCC_JTAG
GND
VDDHIGH_IN
VDDHIGH_CAP
HDMI_HPD
HDMI_DDCCEC
HDMI_D2M
HDMI_D2P
HDMI_D0M
HDMI_D0P
NVCC_MIPI
GND
VDDARM23_IN
GND
VDDHIGH_CAP
VDDHIGH_IN
GND
PCIE_VP
JTAG_MOD
JTAG_TCK
DSI_CLK0P
DSI_CLK0M
DSI_D1M
DSI_D1P
H
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
EIM_D29
EIM_D30
EIM_A23
EIM_A18
EIM_CS1
EIM_OE
EIM_DA1
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM0
EIM_RW
EIM_EB0
EIM_LBA
EIM_EB1
EIM_DA3
EIM_DA6
EIM_A16
EIM_CS0
EIM_A21
EIM_A20
EIM_D31
EIM_D21
EIM_A25
GND
VDDPU_CAP
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
GND
VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP
J
K
EIM_A19
EIM_A17
EIM_D28
EIM_D25
EIM_D19
EIM_D20
GND
NVCC_RGMII
NVCC_SD2
NVCC_SD1
NVCC_NANDF
NVCC_SD3
SATA_VP
SATA_VPH
VDD_SNVS_IN
GND
VDD_SNVS_CAP
PCIE_VPTX
PCIE_VPH
JTAG_TDO
JTAG_TDI
DSI_REXT
GND
DSI_D0M
DSI_D0P
G
EIM_A24
EIM_A22
EIM_EB3
EIM_D24
EIM_D17
RGMII_TD1
SD2_CMD
SD1_DAT3
SD4_DAT2
NANDF_D2
NANDF_CS0
SD3_DAT1
SD3_DAT7
BOOT_MODE1
PMIC_STBY_REQ
USB_H1_DN
VDDUSB_CAP
GND
GND
GND
GND
CSI_CLK0M
CSI_CLK0P
CSI_D3M
CSI_D3P
F
EIM_D27
EIM_D26
EIM_D22
EIM_EB2
RGMII_TD2
SD2_DAT1
SD1_DAT2
SD4_DAT4
NANDF_D6
SD4_CLK
NANDF_WP_B
SD3_DAT0
SD3_DAT6
TEST_MODE
TAMPER
USB_H1_DP
USB_OTG_VBUS
NVCC_PLL_OUT
GND
GND
GND
CSI_D0M
CSI_D0P
CSI_D2P
CSI_D2M
E
9
8
7
6
5
4
3
2
1
21
20
19
18
17
16
15
14
13
12
EIM_D23
EIM_D18
RGMII_RD3
25
24
23
RGMII_RX_CTL 22
RGMII_TXC
SD1_CLK
SD4_DAT7
SD4_DAT0
NANDF_D3
NANDF_CS3
SD3_RST
SD3_CLK
SD3_DAT4
ONOFF
PMIC_ON_REQ 11
USB_H1_VBUS 10
RTC_XTALI
GND
CLK1_P
GND
CLK2_P
CSI_REXT
GND
CSI_D1P
CSI_D1M
D
Package Information and Contact Assignments
Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
161
162
LVDS0_TX1_N
KEY_COL3
KEY_ROW1
KEY_COL1
GND
LVDS0_CLK_N
KEY_ROW4
KEY_ROW0
NVCC_LVDS2P5
GND
GND
KEY_ROW3
KEY_COL4
GPIO_0
GPIO_1
GPIO_6
GND
NVCC_DRAM
GND
ENET_TXD0
NVCC_DRAM
NVCC_DRAM
GND
ENET_MDC
DISP0_DAT21
GND
NVCC_DRAM
GND
VDDSOC_IN
GND
DISP0_DAT19
DISP0_DAT17
DISP0_DAT14
ENET_MDIO
DISP0_DAT22
DISP0_DAT18
ENET_REF_CLK DISP0_DAT20
DISP0_DAT9
DISP0_DAT12
DISP0_DAT11
DISP0_DAT15
ENET_CRS_DV DISP0_DAT16
VDDSOC_IN
NVCC_DRAM
ENET_TX_EN
GND
NVCC_DRAM
VDDSOC_CAP VDDSOC_CAP
NVCC_DRAM
GND
VDDSOC_CAP VDDSOC_CAP
GND
NVCC_DRAM
GND
NVCC_DRAM
GND
NVCC_DRAM
VDDSOC_CAP VDDSOC_CAP
LVDS0_TX1_P
LVDS0_CLK_P
GPIO_9
NVCC_DRAM
LVDS0_TX0_N
LVDS0_TX2_N
GPIO_2
VDDARM23_IN VDDARM23_IN
LVDS0_TX0_P
LVDS0_TX2_P
T
NVCC_DRAM
U
V
GND
VDDARM23_IN
GND
NVCC_GPIO
GPIO_18
GPIO_19
CSI0_MCLK
CSI0_DATA_EN
CSI0_DAT5
CSI0_PIXCLK
P
GND
VDDARM23_IN
GND
NVCC_CSI
CSI0_DAT8
CSI0_DAT9
CSI0_DAT6
CSI0_DAT7
CSI0_VSYNC
CSI0_DAT4
N
GND
VDDARM23_IN
GND
HDMI_VPH
CSI0_DAT18
CSI0_DAT15
CSI0_DAT14
CSI0_DAT11
CSI0_DAT12
CSI0_DAT10
M
GND
VDDARM23_IN
GND
HDMI_VP
CSI0_DAT19
GND
CSI0_DAT16
CSI0_DAT17
GND
CSI0_DAT13
L
10
9
8
7
6
5
4
3
2
1
DISP0_DAT5
DISP0_DAT7
DISP0_DAT6
DISP0_DAT8
DISP0_DAT10
DISP0_DAT13
NVCC_ENET
NVCC_DRAM
GND
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
GND
DI0_PIN4
DISP0_DAT0
DISP0_DAT2
DISP0_DAT1
DISP0_DAT3
DISP0_DAT4
NVCC_LCD
GND
VDDPU_CAP
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
GND
DI0_PIN2
EIM_DA15
EIM_DA14
EIM_BCLK
DI0_PIN15
DI0_PIN3
DI0_DISP_CLK
GND
VDDPU_CAP
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
VDD_CACHE_CAP
EIM_WAIT
EIM_DA12
EIM_DA13
EIM_DA10
EIM_DA9
EIM_DA11
NVCC_EIM2
GND
VDDPU_CAP
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
GND
EIM_DA7
EIM_DA8
EIM_DA5
EIM_DA4
EIM_DA2
EIM_DA0
NVCC_EIM1
GND
VDDPU_CAP
VDDSOC_IN
GND
VDDARM_IN
VDDARM_CAP
GND
25
24
23
22
21
20
19
18
17
16
15
14
13
12
VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP VDDARM23_CAP 11
VDDSOC_CAP
VDDARM23_IN
GND
GPIO_3
GPIO_4
GPIO_8
GPIO_5
GPIO_7
GPIO_16
GPIO_17
R
Package Information and Contact Assignments
Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
Freescale Semiconductor
Freescale Semiconductor
DRAM_D5
DRAM_D0
DRAM_SDQS0_B
GND
DRAM_D8
DRAM_SDQS1
GND
DRAM_SDQS2
DRAM_D29
GND
DRAM_D30
DRAM_A12
GND
GND
DRAM_D1
DRAM_SDQS0
DRAM_D7
DRAM_D9
DRAM_SDQS1_B
DRAM_D11
DRAM_SDQS2_B
DRAM_D24
DRAM_DQM3
DRAM_D26
DRAM_A9
DRAM_A5
GND
DRAM_CS1
DRAM_SDQS4
GND
DRAM_SDQS5
DRAM_D43
GND
DRAM_SDQS6
DRAM_DQM6
DRAM_D54
DRAM_CAS
ZQPAD
DRAM_SDQS4_B
DRAM_D35
DRAM_SDQS5_B
DRAM_D46
DRAM_D49
DRAM_SDQS6_B
DRAM_D50
GND
DRAM_D18
DRAM_DQM2
DRAM_D16
DRAM_D14
DRAM_D12
DRAM_D6
GND
LVDS1_TX2_P
LVDS1_TX2_N
AB
DRAM_A0
DRAM_A6
DRAM_A11
DRAM_D31
DRAM_D55
DRAM_D51
DRAM_D53
DRAM_D48
DRAM_D47
DRAM_DQM5
DRAM_D39
DRAM_D34
DRAM_A13
DRAM_SDODT0
DRAM_D56
GND
DRAM_D60
DRAM_D52
DRAM_D42
DRAM_D41
DRAM_D38
DRAM_DQM4
DRAM_SDODT1
DRAM_SDWE
DRAM_RAS
DRAM_A1
DRAM_A8
DRAM_SDBA2
DRAM_D27
DRAM_SDQS3 DRAM_SDQS3_B
DRAM_D28
DRAM_D22
DRAM_D15
DRAM_DQM1
DRAM_D13
DRAM_D2
DRAM_DQM0
DRAM_VREF
DRAM_D4
AC
DRAM_SDCLK_0_B DRAM_SDCLK_0 DRAM_SDBA0
DRAM_SDCLK_1_B DRAM_SDCLK_1
AD
AE
DRAM_SDQS7
DRAM_SDQS7_B
DRAM_D61
GND
DRAM_D57
DRAM_D45
GND
DRAM_D33
DRAM_D32
GND
DRAM_A10
DRAM_A2
GND
DRAM_A14
W
DRAM_D25
DRAM_D19
DRAM_D21
DRAM_D20
DRAM_RESET
GND
LVDS1_CLK_P
LVDS1_CLK_N
DRAM_D58
GND
DRAM_D62
DRAM_D59
DRAM_DQM7
DRAM_D44
DRAM_D40
DRAM_D37
DRAM_D36
DRAM_CS0
DRAM_SDBA1
DRAM_A3
DRAM_A7
DRAM_A15
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
DRAM_D63
25
DISP0_DAT23 24
ENET_RX_ER 23
ENET_RXD1 22
ENET_RXD0 21
ENET_TXD1 20
GND
GND
GND
GND
GND
DRAM_A4
GND
GND
GND
GND
GND
GND
GND
KEY_COL2
KEY_COL0
KEY_ROW2
GND
LVDS1_TX0_P LVDS0_TX3_N 2
LVDS1_TX0_N LVDS0_TX3_P 1
Y
DRAM_SDCKE1 DRAM_SDCKE0
GND
DRAM_D23
DRAM_D17
GND
DRAM_D10
DRAM_D3
LVDS1_TX3_P
LVDS1_TX3_N
LVDS1_TX1_N
LVDS1_TX1_P
AA
Package Information and Contact Assignments
Table 103. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
163
Revision History
7
Revision History
Table 104 provides a revision history for this data sheet.
Table 104. i.MX 6Dual/6Quad Data Sheet Document Revision History
Rev.
Number
Rev. 2.3
Date
Substantive Change(s)
07/26
/2013
• Table 101, 21 x 21Functional Contact Assignments:
Restored NANDF_WP_B row and description.
• System Timing Parameters Table 38, Reset timing parameter, CC1 description clarified, change from:
"Duration of SRC_POR_B to be qualified as valid (input slope <= 5 ns)" to:
"Duration of SRC_POR_B to be qualified as valid"
and added a footnote to the parameter with the following text:
"SRC_POR_B rise and fall times must be 5 ns or less."
This change was made for clarity and does not represent a specification change.
Rev. 2.2 07/2013 • Editor corrections to revision history links. No technical content changes.
Rev. 2.1 07/2013 • Figure 1, Changed temperature references from Consumer to Commercial.
• Table 101, 21 x 21Functional Contact Assignments:
—Removed rows: DRAM_VREF, HDMI_DDCCEC, and HDMI_REF.
—Due to a typographical error in revision 2.0, the ball names for rows EIM_DA2 through EIM_DA15
were ordered incorrectly. This has been corrected in revision 2.1. The ball map is correct in both revision
2.0 and 2.1.
Rev. 2
04/2013 Substantive changes throughout this document are as follows:
• Incorporated standardized signal names. This change is extensive throughout.
Added reference to EB792, i.MX Signal Name Mapping.
• Figures updated to align to standardized signal names.
• Aligned references to FCBGA to read FCPBGA throughout document.
• Updated references to eMMC standard to include 4.41.
• Table 2, "i.MX 6Dual/6Quad Modules List,” Changed reference to Global Power Controller to read
General Power Controller.
• Table 4, "Absolute Maximum Ratings,” Added VDD_ARM23_IN to Core supply voltages.
• Table 6 “Operating Ranges ": Run Mode - LDO Enabled, VDD_ARM_IN/VDD_ARM23_IN, 792 MHz,
input voltage minimum changed to 1.275V and VDD_ARM CAP minimum changed to 1.150V.
NVCC_NAND, changed to NVCC_NANDF.
• Table 6 “Operating Ranges ": Added reference for information on product lifetime : i.MX 6Dual/6Quad
Product Usage Lifetime Estimates Application Note, AN4724.
• Table 9. “Maximum Supply Currents”: Added current for i.MX6Dual
• Table 10 “Stop Mode Current and Power Consumption”: Added SNVS Only mode.
• Table 22 “GPIO I/O DC Parameters”: Removed parameters Iskod and Isspp.
• Table 48, "ECSPI Master Mode Timing Parameters," Updated parameter CS6 ECSPIx_SSx Lag Time
(CS hold time) Min from Half SCLK period to Half SCLK period-2.
• Table 77 "SD/eMMC4.3 Interface Timing Specification," eMMC parameter SD8 value Min updated from
5.6 ns to 1.5 ns.
• Table 89 RGMII Signal Switching Specifications RGMII parameter TskewR units corrected.
• Table 134 "21 x 21 mm Functional Contact Assignments," Updated GPIO_1 Ball Name value to PU
(100K).
• Table 134 "21 x 21 mm Functional Contact Assignments," Clarification of ENET_REF_CLK naming.
• Removed section, EIM Signal Cross Reference. Signal names are now aligned with reference manual.
• Section 1.2, “Features added bulleted item regarding the SOC-level memory system.
• Section 4.2.1, “Power-Up Sequence” updated wording.
• Section 4.3.2, “Regulators for Analog Modules” section updates.
• Added Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters”.
• Section 4.10, “General-Purpose Media Interface (GPMI) Timing” figures replaced, tables revised.
i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors, Rev. 2.3
164
Freescale Semiconductor
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM and Cortex are registered trademarks of ARM Limited.
© 2012-2013 Freescale Semiconductor, Inc. All rights reserved.
Document Number: IMX6DQAEC
Rev. 2.3
07/2013
Similar pages