DATASHEET Dual 20A/Single 40A Step-Down Power Module ISL8240M Features The ISL8240M is a fully-encapsulated step-down switching power supply that can deliver up to 100W output power from a small 17mmx17mm PCB footprint. The two 20A outputs may be used independently or combined to deliver a single output of 40A. Designing a high-performance board-mounted power supply has never been simpler -- only a few external components are needed to create a very dense and reliable power solution. • Fully-encapsulated dual step-down switching power supply 1.5% output voltage accuracy, differential remote voltage sensing and fast transient response create a very high-performance power system. Built-in output overvoltage, overcurrent and over-temperature protection enhance system reliability. The ISL8240M is available in a thermally-enhanced QFN package. Excellent efficiency and low thermal resistance permit full power operation without heat sinks or fans. In addition, the QFN package with external leads permits easy probing and visual solder inspection. Related Literature • Up to 100W output from a 17mmx17mm PCB footprint • Dual 20A or single 40A output • Up to 94% conversion efficiency • 4.5V to 20V input voltage range • 0.6V to 2.5V output voltage range • 1.5% output voltage accuracy with differential remote sensing • Output overvoltage, overcurrent and over-temperature protection • QFN package with exposed leads permits easy probing and visual solder inspection Applications • Computing, networking and telecom infrastructure equipment • Industrial and medical equipment AN1922, “ISL8240MEVAL4Z Dual 20A/Optional 40A Cascadable Evaluation Board Setup Procedure” • General purpose point-of-load (POL) power AN1923, “ISL8240MEVAL3Z 40A, Single Output Evaluation Board Setup Procedure” m 17 VIN 4.5V TO 20V 5x22µF VIN1 VIN2 VSEN1+ OFF ON EN/FF2 VSEN2- ISL8240M PGND SGND MODE RSYNC 237kΩ mm 1kΩ RSET 1.5kΩ 7.5mm 9x100µF VMON1 VMON2 VCC SYNC 4.7µF VSEN1- 17 1.0VAT 40A VOUT VOUT1 VOUT2 EN/FF1 m COMP1 COMP2 470pF NOTE: All pins not shown are floating FIGURE 1. COMPLETE 40A STEP-DOWN POWER SUPPLY January 7, 2015 FN8450.2 1 FIGURE 2. SMALL FOOTPRINT WITH HIGH POWER DENSITY CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2014, 2015. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL8240M Table of Contents Pinout Internal Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efficiency Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start-up and Short Circuit Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 11 13 Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming the Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selection of Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selection of Output Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EN/FF Turn ON/OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 21 22 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable and Voltage Feed-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over-Temperature Protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Synchronization and Phase Lock Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tracking Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 22 23 23 23 24 24 24 24 25 25 25 26 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB Layout Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Vias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 26 26 Power Loss Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Derating Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Submit Document Feedback 2 FN8450.2 January 7, 2015 ISL8240M Pinout Internal Circuit VCC 7 FILTER 2.2µF 14 VIN1 15 EN/FF1 12 PHASE1 23 VOUT1 13 PGND 22 VSEN1+ 21 VSEN1- 18 VMON1 20 COMP1 8 VIN2 16 EN/FF2 10 PHASE2 25 VOUT2 9 PGND + 26 VSEN2+ - 1 VSEN2- 4 VMON2 2 COMP2 LDO PGOOD SOFT-START AND FAULT LOGIC UGATE1 24 GATE DRIVER CLKOUT 17 ISHARE 19 Q1 L1 LGATE1 0.32µH Q2 CURRENT SENSING/ SHARING 10k ISEN1B ISEN1A + MODE DIFF AMP1 3 - ZCOMP1 - 5 INTERNAL REFERENCE ERROR AMP1 + SYNC ZCOMP2 SOFT-START AND FAULT LOGIC UGATE2 GATE DRIVER Q3 L2 0.32µH LGATE2 Q4 CURRENT ISEN2B SENSING/ SHARING ISEN2A SGND DIFF AMP2 6 ZCOMP3 ZCOMP4 - Submit Document Feedback 3 MODE + INTERNAL REFERENCE ERROR AMP2 7.5k FN8450.2 January 7, 2015 ISL8240M Ordering Information PART NUMBER (Notes 1, 2, 3) PART MARKING ISL8240MIRZ ISL8240M ISL8240MEVAL3Z Evaluation Board ISL8240MEVAL4Z Evaluation Board TEMP. RANGE (°C) (Note 4) -40 to +125 PACKAGE (RoHS Compliant) 26 Ld QFN PKG. DWG. # L26.17x17 NOTES: 1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3) termination finish which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see product information page for ISL8240M. For more information on MSL, please see tech brief TB363 4. The ISL8240M is guaranteed over the full -40°C to +125°C internal junction temperature range. Note that the allowed ambient temperature consistent with these specifications is determined by specific operating conditions, including board layout, cooling scheme and other environmental factors. Submit Document Feedback 4 FN8450.2 January 7, 2015 ISL8240M Pin Configuration VIN2 VCC SGND SYNC VMON2 MODE COMP2 8 7 6 5 4 3 2 PIN 1 1 VSEN2- 26 VSEN2+ 25 VOUT2 24 PGOOD 23 VOUT1 22 VSEN1+ 21 VSEN1- 5 13 14 15 16 17 18 19 20 CLKOUT VMON1 ISHARE COMP1 12 EN/FF2 PHASE1 EN/FF1 11 VIN1 10 N/C Submit Document Feedback 9 PGND PHASE2 PGND ISL8240M (26 LD QFN) TOP VIEW FN8450.2 January 7, 2015 ISL8240M Pin Descriptions PIN NUMBER PIN NAME TYPE 21, 1 VSEN1-, VSEN2- I 20, 2 COMP1, COMP2 I/O Error amplifier outputs. Typically floating for dual-output use. For parallel use, a 470pF~1nF capacitor is recommended on the COMP pins of each SLAVE phase to eliminate the coupling noise. All COMP pins of SLAVE phases need to tie to MASTER phase COMP1 pin (first phase). Internal compensation networks are implemented for working in the full range of I/O conditions. 3 18, 4 MODE I PIN DESCRIPTION Output voltage negative feedback. Negative input of the differential remote sense for the regulator. Connect to the negative rail or ground of the load/processor, as shown in Figure 24. The negative feedback pins can be used to program the module operation conditions. See Tables 3 and 5 for details. Mode setting. Typically floating for dual-output use; tie to SGND for parallel use. See Tables 3 and 5 for details. When VSEN2- is pulled within 700mV of VCC, the 2nd channel’s remote sensing amplifier is disabled. The MODE pin, as well as the VSEN2+ pin, determine relative phase-shift between the two channels and the CLKOUT signal output. VMON1, VMON2 I/O Remote sensing amplifier outputs. These pins are connected internally to OV/UV/PGOOD comparators, so they can’t float when the module works in multiphase operation. When VSEN1-, VSEN2- are pulled within 700mV of VCC, the corresponding remote sensing amplifier is disabled; the output (VMON pin) is in high impedance. In this event, the VMON pins can be used as an additional monitor of the output voltage, with a resistor divider to protect the system against single point of failure. The default setting voltage is 0.6V. See Table 3 for details. 5 SYNC 6 SGND 7 VCC 14, 8 VIN1, VIN2 9, 13 PGND 12, 10 PHASE1, PHASE2 I Signal synchronization. An optional external resistor (RSYNC) connected from this pin to SGND increases oscillator switching frequency (Figure 34 and Table 1). The internal default frequency is 350kHz with this pin floating. Also, the internal oscillator can lock to an external frequency source or the CLKOUT signal from another ISL8240M. Input voltage range for external source: 3V to 5V square wave. No capacitor is recommended on this pin. PWR Control signal ground. Connect to PGND under the module in the quiet inner layer. Make sure to have the single location for the connection between SGND and PGND to avoid noise coupling. See “Layout Guide” on page 25. PWR 5V internal linear regulator output. Voltage range: 3V to 5.6V. The decoupling ceramic capacitor for the VCC pin is recommended to be 4.7µF. PWR Power inputs. Input voltage range: 4.5V to 20V. Tie directly to the input rail. VIN1 provides power to the internal linear drive circuitry. When the input is 4.5V to 5.5V, VIN should be tied directly to VCC. PWR Power ground. Power ground pins for both input and output returns. PWR Phase node. Use for monitoring switching frequency. Phase pins should be floating or used for snubber connections. To achieve better thermal performance, the phase planes can also be used for heat removal with thermal vias connected to large inner layers. See “Layout Guide” on page 25. 11 NC 15, 16 EN/FF1, EN/FF2 I/O Enable and feed-forward control. Tie a resistor divider to VIN or use the system enable signal for this pin. The voltage turn-on threshold is 0.8V. With a voltage lower than the threshold, the corresponding channel can be disabled independently. By connecting to VIN with a resistor divider, the input voltage can be monitored for UVLO (undervoltage lockout) function. The voltage on each EN/FF pin is also used to adjust the internal control loop gain independently to realize the feed-forward function. Please set the EN/FF between 1.25V to 5V. A 1nF capacitor is recommended on each EN/FF pin. Please see Table 1 on page 19 to select a resistor divider and application details in “EN/FF Turn ON/OFF” on page 21. 17 CLKOUT I/O Clock out. Provide the clock signal for the input synchronization signal of other ISL8240Ms. Typically tied to VCC for dual-output use with 180° phase-shift. See Tables 3 and 5 when using more than one ISL8240M. When the module is in dual-output mode, the clock-out signal is disabled. By programming the voltage level of this CLKOUT pin, the module can work for DDR/tracking or as two independent outputs with selectable phase-shift. See Table 6. 19 ISHARE O Current sharing control. Tie all ISHARE pins together when multiple modules are configured for current sharing and share a common current output. The ISHARE voltage represents the average current of all active and connected channels. A 470pF capacitor is recommended for each ISHARE pin for multiple phase applications. Typically, the ISHARE pin should be floating for dual-output or single module application. 22, 26 VSEN1+, VSEN2+ I Output voltage positive feedback. Positive inputs of differential remote sense for the regulator. A resistor divider can be connected to this pin to program the output voltage. It is recommended to put the resistor divider close to the module and connect the kelvin sensing traces of VOUT and VSEN- to the sensing points of the load/processor; see Figure 24. The VSEN2+ pin can be used to program the module operation conditions. See Tables 3 and 5 for details. 23, 25 24 - Non-connection pin. This pin is floating with no connection inside. VOUT1, VOUT2 PWR Power Output. Apply output load between these pins and PGND pins. Output voltage range: 0.6V to 2.5V. PGOOD Submit Document Feedback O Power-good. Provide open-drain power-good signal when the output is within 9% of the nominal output regulation point with 4% hysteresis (13%/9%) and soft-start complete. PGOOD monitors the outputs (VMON) of the internal differential amplifiers. 6 FN8450.2 January 7, 2015 ISL8240M Absolute Maximum Ratings Thermal Information Input Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +25V Driver Bias Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V Phase Voltage, VPHASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +30V Input, Output or I/O Control Voltage . . . . . . . . . . . . . . . -0.3V to VCC + 0.3V ESD Rating Human Body Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . 2kV Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . 200V Charge Device Model (Tested per JESD22-C101C). . . . . . . . . . . . . . 750V Latch-up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA Thermal Resistance (Typical) JA (°C/W) JC (°C/W) QFN Package (Notes 5, 6) . . . . . . . . . . . . . . 8.5 0.9 Maximum Storage Temperature Range . . . . . . . . . . . . . .-55°C to +150°C Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refer to Figure 44 Recommended Operating Conditions Input Voltage, VIN1 and VIN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 20.0V Output Voltage, VOUT1 and VOUT2 . . . . . . . . . . . . . . . . . . . . . . . 0.6V to 2.5V Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 5. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379. 6. For JC, the “case temp” location is the center of the phase exposed metal pad on the package underside. Electrical Specifications TA = +25°C, VIN = 12V, unless otherwise noted. Boldface limits apply across the internal junction temperature range, -40°C to +125°C (Note 4). PARAMETER TYP MIN (Note 7) (Note 8) MAX (Note 7) UNITS SYMBOL TEST CONDITIONS IQ_VIN VIN = 20V; No Load; EN1 = EN2 = high; VOUT1 = VOUT2 = 1.5V 140 mA VIN1 = 20V; No Load; EN1 = high, EN2 = low; VOUT1 = 1.5V 80 mA VIN2 = 20V; No Load; EN1 = low, EN2 = high; VOUT2 = 1.5V 76 mA VIN1 = 12V; No Load; EN1 = high, EN2 = high; VOUT1 = VOUT2 = 1.5V 159 mA VIN = 4.5V; No Load; EN1 = EN2 = high; VOUT1 = VOUT2 = 1.5V 188 mA VIN1 = 4.5V; No Load; EN1 = high, EN2 = low; VOUT1 = 1.5V 102 mA VIN2 = 4.5V; No Load; EN1 = low, EN2 = high; VOUT2 = 1.5V 94 mA 250 mA 1 Ω VCC SUPPLY CURRENT Nominal Supply VIN Current INTERNAL LINEAR REGULATOR (Note 9) Maximum Current IPVCC VCC = 4V to 5.6V Saturated Equivalent Impedance RLDO P-Channel MOSFET (VIN = 5V) VCC Voltage Level VCC IVCC = 0mA 5.1 5.4 5.6 V 0°C to +75°C 2.85 2.97 V -40°C to +85°C 2.85 3.05 V 2.65 2.75 V POWER-ON RESET (Note 9) Rising VCC Threshold Falling VCC Threshold System Soft-start Delay tSS_DLY After PLL and VCC PORs, and EN above their thresholds 384 Cycles ENABLE (Note 9) Turn-on Threshold Voltage 0.75 Hysteresis Sink Current IEN_HYS Undervoltage Lockout Hysteresis VEN_HYS VEN_RTH = 10.6V; VEN_FTH = 9V, RUP = 53.6kΩ, RDOWN = 5.23kΩ Sink Current IEN_SINK VENFF = 1V Sink Impedance REN_SINK IEN_SINK = 5mA, VENFF = 1V 23 0.8 0.86 V 30 35 µA 1.6 V 15.4 mA 64 Ω OSCILLATOR Oscillator Frequency fOSC Submit Document Feedback SYNC pin is open VCC = 5V; -40°C < TA < +85°C Total Variation (Note 9) 7 350 -9 kHz +9 % FN8450.2 January 7, 2015 ISL8240M Electrical Specifications TA = +25°C, VIN = 12V, unless otherwise noted. Boldface limits apply across the internal junction temperature range, -40°C to +125°C (Note 4). (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP (Note 7) (Note 8) MAX (Note 7) UNITS FREQUENCY SYNCHRONIZATION AND PHASE LOCK LOOP (Note 9) Synchronization Frequency VCC = 5V PLL Locking Time VCC = 5.4V, fSW = 500kHz Input Signal Duty Cycle Range 350 700 130 10 kHz µs 90 % 410 ns PWM (Note 9) Minimum PWM OFF Time 310 tMIN_OFF Current Sampling Blanking Time 345 175 tBLANKING ns OUTPUT CHARACTERISTICS Output Continuous Current Range IOUT(DC) VIN = 12V, VOUT1 = 1.5V 0 20 A VIN = 12V, VOUT2 = 1.5V 0 20 A VIN = 12V, VOUT = 1.5V, in Parallel mode 0 40 A VOUT/VIN VIN = 4.5V to 20V Line Regulation Accuracy VOUT1 = 1.5V, IOUT1 = 0A 0.0065 % VOUT2 = 1.5V, IOUT2 = 0A 0.0065 % VOUT1 = 1.5V, IOUT1 = 20A 0.01 % VOUT2 = 1.5V, IOUT2 = 20A 0.01 % VIN = 4.5V to 20V VOUT/VOUT VIN = 5V, 2x47µF ceramic capacitor and 1x330µF POSCAP Load Regulation Accuracy VOUT Output Ripple Voltage IOUT1 = 0A to 20A, VOUT1 = 1V 1 % IOUT2 = 0A to 20A, VOUT2 = 1V 1 % VIN = 12V, 4x100µF +2x10µF ceramic capacitor and 1x330µF POSCAP IOUT1 = 0A, VOUT1 = 1.5V 16 mVP-P IOUT2 = 0A, VOUT2 = 1.5V 16 mVP-P IOUT1 = 20A, VOUT1 = 1.5V 21 mVP-P IOUT2 = 20A, VOUT2 = 1.5V 21 mVP-P IOUT1 = 0A to 10A 100 mVP-P IOUT2 = 0A to 10A 100 mVP-P IOUT1 = 10A to 0A 80 mVP-P IOUT2 = 10A to 0A 80 mVP-P DYNAMIC CHARACTERISTICS Voltage Change for Positive Load Step Voltage Change for Negative Load Step VOUT-DP VOUT-DN Current slew rate = 2.5A/µs VIN = 12V, VOUT = 1.5V, 4x100µF + 2x10µF ceramic capacitor and 1x330µF POSCAP Current slew rate = 2.5A/µs VIN = 12V, VOUT = 1.5V, 4x100µF + 2x10µF ceramic capacitor, and 1x330µF POSCAP REFERENCE (Note 9) Reference Voltage (Include Error and Differential Amplifier Offsets) VREF1 Reference Voltage (Include Error and Differential Amplifier Offsets) VREF2 Submit Document Feedback 8 TA = -40°C to +85°C 0.5958 0.6 -0.7 TA = -40°C to +85°C 0.5955 -0.75 0.6 0.6042 V 0.7 % 0.6057 V 0.95 % FN8450.2 January 7, 2015 ISL8240M Electrical Specifications TA = +25°C, VIN = 12V, unless otherwise noted. Boldface limits apply across the internal junction temperature range, -40°C to +125°C (Note 4). (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN TYP (Note 7) (Note 8) MAX (Note 7) UNITS DIFFERENTIAL AMPLIFIER (Note 9) DC Gain UG_DA Unity Gain Bandwidth Unity gain amplifier UGBW_DA VSEN+ Pin Sourcing Current IVSEN+ Maximum Source Current for Current Sharing IVSEN1- 0.2 VSEN1- Source Current for Current Sharing when parallel multiple modules, each of which has its own voltage loop RVSEN+_to VVSEN+/IVSEN+, VVSEN+ = 0.6V _VSEN- Input Impedance Output Voltage Swing Input Common Mode Range Disable Threshold VVSEN- VMON1,2 = tri-state Ilimit1 0 dB 5 MHz 1 2.5 µA 350 µA -600 kΩ 0 VCC - 1.8 V -0.2 VCC - 1.8 V VCC - 0.4 V VIN = 12V, VOUT1 = 1.5V, RSYNC = 768k 24.5 A Ilimit2 VIN = 12V, VOUT2 = 1.5V, RSYNC = 768k 24 A VOC_SET VCC = 5V (comparator offset included) I/IOUT VIN = 12V, VOUT = 1.5V IOUT = 40A, VSEN2- = high OVERCURRENT PROTECTION (Note 9) Channel Overcurrent Limit Share Pin OC Threshold 1.16 1.20 1.22 V CURRENT SHARE Current Share Accuracy ±10 % POWER-GOOD MONITOR (Note 9) Undervoltage Falling Trip Point VUVF Undervoltage Rising Hysteresis VUVR_HYS Overvoltage Rising Trip Point VOVR Overvoltage Falling Hysteresis VOVF_HYS Percentage below reference point -15 -13 11 13 Percentage above UV trip point Percentage above reference point -11 % 15 % 4 Percentage below OV trip point % 4 % PGOOD Low Output Voltage IPGOOD = 2mA 0.35 V Sinking Impedance IPGOOD = 2mA 70 Ω Maximum Sinking Current VPGOOD < 0.8V 10 mA OVERVOLTAGE PROTECTION (Note 9) OV Latching-up Trip Point EN/FF = UGATE = LATCH Low, LGATE = High OV Non-Latching-up Trip Point EN = Low, UGATE = Low, LGATE = High LGATE Release Trip Point EN = Low/HIGH, UGATE = Low, LGATE = Low 118 120 122 % 113 % 87 % Over-Temperature Trip (Controller Junction Temperature) 150 °C Over-Temperature Release Threshold (Controller Junction Temperature) 125 °C OVER-TEMPERATURE PROTECTION (Note 9) NOTES: 7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 8. Parameters with TYP limits are not production tested, unless otherwise specified. 9. Parameters are 100% tested for internal IC prior to module assembly. Submit Document Feedback 9 FN8450.2 January 7, 2015 ISL8240M Typical Performance Characteristics Efficiency Performance TA = +25°C, if not specified, as shown in Figure 23 with 2nd phase disabled. The efficiency equation is as follows: V OUT xI OUT P OUT Output Power Efficiency = ----------------------------------------- = ---------------- = -------------------------------------P IN V IN xI IN Input Power 100 92 2.5VOUT 700kHz 95 91 1.8VOUT 650kHz 90 1VOUT 500kHz 85 1.2VOUT 550kHz 80 1.5VOUT 700kHz 75 EFFICIENCY (%) EFFICIENCY (%) 90 70 88 1.8VOUT 87 1.5VOUT 86 85 65 60 2.5VOUT 89 1.2VOUT 84 0 2 4 6 8 10 12 14 16 18 83 350 20 1VOUT 400 LOAD CURRENT (A) FIGURE 3. EFFICIENCY vs LOAD CURRENT (5VIN) 95 90 1.5VOUT 600kHz 90 EFFICIENCY (%) EFFICIENCY (%) 2.5VOUT 89 1VOUT 500kHz 1.2VOUT 550kHz 75 70 65 88 1.8VOUT 87 86 1.5VOUT 85 84 60 83 55 82 350 0 2 4 6 8 10 12 14 16 18 20 1.2VOUT 1VOUT 400 FIGURE 5. EFFICIENCY vs LOAD CURRENT (12VIN) 2.5VOUT 700kHz 95 1.8VOUT 650kHz 1.5VOUT 700kHz 75 70 88 5 10 15 20 25 LOAD CURRENT (A) 30 35 FIGURE 7. EFFICIENCY vs LOAD CURRENT (PARALLEL SINGLE OUTPUT, AS SHOWN IN Figure 24 AT 5VIN) Submit Document Feedback 10 650 700 1.8VOUT 87 1.5VOUT 86 85 1.2VOUT 84 65 0 600 89 1.2VOUT 550kHz 80 60 550 90 EFFICIENCY (%) EFFICIENCY (%) 1VOUT 500kHz 500 FIGURE 6. EFFICIENCY vs SWITCHING FREQUENCY AT VIN = 12V AND IOUT = 18A FOR VARIOUS OUTPUT VOLTAGES 90 85 450 SWITCHING FREQUENCY (kHz) LOAD CURRENT (A) 100 700 FIGURE 4. EFFICIENCY vs SWITCHING FREQUENCY AT VIN = 5V AND IOUT = 18A FOR VARIOUS OUTPUT VOLTAGES 85 80 650 91 1.8VOUT 650kHz 2.5VOUT 700kHz 450 500 550 600 SWITCHING FREQUENCY (kHz) 40 83 350 1VOUT 400 450 500 550 600 650 700 SWITCHING FREQUENCY (kHz) FIGURE 8. EFFICIENCY vs SWITCHING FREQUENCY AT VIN = 5V (PARALLEL SINGLE OUTPUT, AS SHOWN IN Figure 24) AND IOUT = 36A FOR VARIOUS OUTPUT VOLTAGES FN8450.2 January 7, 2015 ISL8240M Typical Performance Characteristics (Continued) 92 100 95 91 1.8VOUT 650kHz 2.5VOUT 700kHz 90 EFFICIENCY (%) EFFICIENCY (%) 90 85 1VOUT 500kHz 80 1.2VOUT 550kHz 1.5VOUT 700kHz 75 70 88 1.8VOUT 87 1.5VOUT 86 85 65 60 2.5VOUT 89 1.2VOUT 84 0 5 10 15 20 25 30 35 40 83 350 LOAD CURRENT (A) 2nd phase disabled. 500 550 600 650 700 FIGURE 10. EFFICIENCY vs SWITCHING FREQUENCY AT VIN = 12V (PARALLEL SINGLE OUTPUT, AS SHOWN IN Figure 24 AT 12VIN) AND IOUT = 18A FOR VARIOUS OUTPUT VOLTAGES VIN = 12V current slew rate = 10A/µs. TA = +25°C, if not specified, as shown in Figure 23 with 100mV/DIV 100mV/DIV 100µs/DIV FIGURE 11. 1VOUT TRANSIENT RESPONSE, IOUT = 0A TO 10A, fSW = 350kHz, COUT = 2x10µF+7x100µF CERAMIC CAPACITOR, CFF = 6.8nF 100µs/DIV FIGURE 12. 1.5VOUT TRANSIENT RESPONSE, IOUT = 0A TO 10A, fSW = 400kHz, COUT = 2x10µF+7x100µF CERAMIC CAPACITOR, CFF = 6.8nF 100mV/DIV 100mV/DIV 100µs/DIV FIGURE 13. 1.8VOUT TRANSIENT RESPONSE, IOUT = 0A TO 10A, fSW = 450kHz, COUT = 2x10µF+7x100µF CERAMIC CAPACITOR, CFF = 6.8nF Submit Document Feedback 450 SWITCHING FREQUENCY (kHz) FIGURE 9. EFFICIENCY vs LOAD CURRENT (PARALLEL SINGLE OUTPUT, AS SHOWN IN Figure 24 AT 12VIN) Transient Response Performance 1VOUT 400 11 100µs/DIV FIGURE 14. 2.5VOUT TRANSIENT RESPONSE, IOUT = 0A TO 10A, fSW = 500kHz, COUT = 2x10µF+7x100µF CERAMIC CAPACITOR, CFF = 6.8nF FN8450.2 January 7, 2015 ISL8240M Typical Performance Characteristics (Continued) Transient Response Performance VIN = 12V current slew rate = 10A/µs. TA = +25°C, if not specified, as shown in Figure 23 with 2nd phase disabled. (Continued) 100mV/DIV 100mV/DIV 100µs/DIV 100µs/DIV FIGURE 15. 1VOUT DUAL PHASE SINGLE OUTPUT TRANSIENT RESPONSE, IOUT = 0A TO 20A, fSW = 350kHz, COUT = 330µF POSCAP+10µF+5x100µF CERAMIC CAPACITOR FIGURE 16. 1.5VOUT DUAL PHASE SINGLE OUTPUT TRANSIENT RESPONSE, IOUT = 0A TO 20A, fSW = 400kHz, COUT = 330µF POSCAP+10µF+5x100µF CERAMIC CAPACITOR 100mV/DIV 100mV/DIV 50µs/DIV FIGURE 17. 0.9VOUT FOUR PHASE SINGLE OUTPUT TRANSIENT RESPONSE, IOUT = 0A TO 40A, fSW = 350kHz, COUT = 6x330µF POSCAP+7x47µF+4x100µF CERAMIC CAPACITOR Submit Document Feedback 12 100µs/DIV FIGURE 18. 1VOUT SIX PHASE SINGLE OUTPUT TRANSIENT RESPONSE, IOUT = 0A TO 60A, fSW = 350kHz, COUT = 6x330µF POSCAP+7x47µF+6x100µF CERAMIC CAPACITOR FN8450.2 January 7, 2015 ISL8240M Typical Performance Characteristics (Continued) Start-up and Short Circuit Performance VIN = 12V, VOUT = 1.5V, CIN = 1x330µF, 3x22µF/Ceramic, COUT = 330µF POSCAP+1x10µF+4x100µF Ceramic. TA = +25°C, if not specified, as shown in Figure 23 with 2nd phase disabled. VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 0.1A/DIV IIN 1A/DIV 1ms/DIV 1ms/DIV FIGURE 19. START-UP AT 0A FIGURE 20. START-UP AT 20A VOUT 0.5V/DIV VOUT 0.5V/DIV IIN 1A/DIV IIN 1A/DIV 100µs/DIV 50µs/DIV FIGURE 21. SHORT CIRCUIT AT 0A FIGURE 22. SHORT CIRCUIT AT 20A Submit Document Feedback 13 FN8450.2 January 7, 2015 ISL8240M Typical Application Circuits CIN1 330µF + CIN2 6x22µF 8 15 R5* 16 7 R6* 17 C1 4.7µF 3 19 *SEE TABLE 1 ON PAGE 19 FOR R5/R6 VALUES. 5 RSYNC 140kΩ 20 2 VIN1 VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VCC VSEN2+ CLKOUT ISL8240M VSEN2- MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 6 PGND 14 SGND 4.5V TO 20V VIN PGOOD 23 22 CFF (OPTIONAL) R2* 21 1.5kΩ R1* 1kΩ COUT1 4x100µF R3* 1kΩ 1.5V AT 20A VOUT2 + COUT4 330µF COUT3 4x100µF 25 26 1 CFF (OPTIONAL) R4* 665Ω 1.0V AT 20A VOUT1 + COUT2 330µF 18 *SEE TABLE 4 ON PAGE 21, RESISTORS SET ON VSEN+ AND VSEN- PINS. 4 12 10 24 9 SEE “LAYOUT GUIDE” ON PAGE 25 FOR SHORTING SGND TO PGND FIGURE 23. DUAL OUTPUTS FOR 1.0V/20A AND 1.5V/20A CIN1 330µF + CIN2 5x22µF 8 15 R3* 16 7 17 R4* C1 4.7µF 3 19 *SEE TABLE 1 ON PAGE 19 FOR R3/R4 VALUES. RSYNC 174kΩ 5 20 2 C2 470pF VIN1 VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VSEN2+ VCC CLKOUT ISL8240M VSEN2- MODE VMON1 ISHARE VMON2 22 21 1 9 R1 1kΩ LOAD *COUT 9x100µF KELVIN REMOTE SENSING LINES VCC *THE ISL8240M IS INTERNALLY COMPENSATED FOR STABILITY FOR ALL CERAMIC CAPACITOR APPLICATIONS. 18 4 12 COMP1 6 R2 1kΩ 26 PHASE2 10 PGOOD VOUT CFF (OPTIONAL) 25 PHASE1 COMP2 1.2V AT 40A 23 SYNC PGND 14 SGND 4.5V TO 20V VIN 24 2200pF 2Ω SIZE:1210 2Ω SIZE:1210 2200pF OPTIONAL SNUBBER FOR NOISE ATTENUATION. SEE FIGURE 35, “RECOMMENDED LAYOUT,” ON PAGE 26. SEE “LAYOUT GUIDE” ON PAGE 25 FOR SHORTING SGND TO PGND FIGURE 24. PARALLEL USE FOR SINGLE 1.2V/40A OUTPUT Submit Document Feedback 14 FN8450.2 January 7, 2015 ISL8240M Typical Application Circuits (Continued) CIN1 330µF + 14 8 CIN2 5x22µF R5* 15 16 *SEE TABLE 1 ON PAGE 19 FOR R5/R6 VALUES. 7 R6* C1 4.7µF 17 3 VDDQ 19 R7 1kΩ 5 20 R8 324Ω C2 1nF 2 VIN1 VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VCC VSEN2+ CLKOUT VSEN2- ISL8240M MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 RSYNC 100kΩ 6 PGND 4.5V TO 20V SGND VIN PGOOD 2.5V 23 22 21 VDDQ R1 R2 1kΩ 316Ω 1.25V VDDQ/2 VTT 25 26 1 COUT1 7x100µF R3 R4 1kΩ 931Ω COUT2 7x100µF 18 4 12 10 24 9 *SET THE CLKOUT VOLTAGE CLOSE TO 0.61V. SEE DETAILS IN “FUNCTIONAL DESCRIPTION” ON PAGE 22 FIGURE 25. DDR/TRACKING USE Submit Document Feedback 15 FN8450.2 January 7, 2015 ISL8240M Typical Application Circuits (Continued) + VIN1 CIN2 5x22µF VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 R4* VCC1 *SEE TABLE 1 ON PAGE 19 FOR R3/R4 VALUES. R3* VSEN2+ VCC C1 4.7µF CLKOUT RSYNC 237kΩ ISL8240M 1.0V/80A MASTER PHASE VOUT1 + R1 R2 1.5kΩ 1kΩ COUT1 4x100µF COUT2 2x330µF SLAVE VCC1 VSEN2- MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 PGOOD PGND CIN1 2x470µF 4.5V TO 20V SGND VIN VCC C6 22nF R8 953Ω R5 3.3kΩ PGOOD C3 470pF VIN1 VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 SLAVE + CIN2 5x22µF VCC2 CLKOUT ISL8240M COUT4 2x330µF SLAVE VSEN2- MODE VMON1 ISHARE VMON2 PHASE1 COMP1 PHASE2 COMP2 PGOOD PGND SYNC SGND C4 470pF VCC2 VSEN2+ VCC C2 4.7µF COUT3 4x100µF R6 1kΩ R7 1.5kΩ C7 22nF R9 953Ω C5 470pF FIGURE 26. 4-PHASE PARALLELED AT 1.0V/80A WITH 90° INTERLEAVING Submit Document Feedback 16 FN8450.2 January 7, 2015 ISL8240M Typical Application Circuits (Continued) 8 CIN1 5x22µF R4* *SEE TABLE 1 ON PAGE 19 FOR R3/R4 VALUES. 15 16 VCC1 R3* C1 4.7µF 7 17 VCC 3 19 5 20 R7 100kΩ 2 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VCC 8 15 CIN2 5x22µF 16 VCC2 7 17 C3 4.7µF 3 19 5 20 C4 470pF 2 VSEN2+ CLKOUT ISL8240M VSEN2- MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 PGOOD C2 470pF 14 VOUT1 6 PGND + VIN1 VIN1 VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VCC VSEN2+ CLKOUT VSEN2- ISL8240M MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 PGOOD 6 23 + R1 22 21 1.0V/50A MASTER PHASE R2 1kΩ 1.5kΩ 25 SLAVE 26 VCC1 COUT1 4x100µF VOUT1 COUT2 2x330µF 1 18 VCC1 4 12 C5 22nF R6 953Ω 10 24 R5 3.3kΩ PGOOD 9 PGND 2x470µF 14 SGND 4.5V TO 20V SGND VIN 23 SLAVE COUT3 2x100µF 22 21 VCC2 + COUT4 330µF 2.5V/10A VOUT2 25 26 1 18 4 12 R8 R9 1kΩ 316Ω COUT5 7x100µF R10 1kΩ R11 1.5kΩ 10 24 9 FIGURE 27. 3-PHASE PARALLELED AT 1.0V/50A AND 1-PHASE AT 2.5V/10A OUTPUT WITH 90° INTERLEAVING Submit Document Feedback 17 FN8450.2 January 7, 2015 ISL8240M Typical Application Circuits (Continued) 8 15 16 C1 4.7µF 7 EN/FF2 VOUT2 VCC 17 19 5 VMON1 ISHARE VMON2 C8 470pF 8 15 16 7 17 C2 4.7µF 3 19 5 20 2 C3 470pF 14 8 15 16 7 VCC3 17 C5 4.7µF 3 19 5 20 2 C6 470pF C7 470pF PHASE2 6 PGOOD VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VSEN2+ VCC CLKOUT ISL8240M VSEN2- MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 6 PGOOD VOUT1 VIN2 VSEN1+ EN/FF1 VSEN1- EN/FF2 VOUT2 VCC VSEN2+ ISL8240M VSEN2- MODE VMON1 ISHARE VMON2 SYNC PHASE1 COMP1 PHASE2 COMP2 6 + R2 1kΩ 1.5kΩ COUT1 3x100µF COUT4 4x330µF SLAVE VCC1 1 18 4 VCC1 12 R5 3.3kΩ 10 24 23 22 PGOOD PGOOD SLAVE VCC2 COUT2 3x100µF 21 25 SLAVE 26 1 R6* 18 4 R7* 750Ω 12 10 24 9 VIN1 CLKOUT 26 VOUT R1 22 25 1.0V/120A MASTER PHASE 9 VIN1 C4 470pF CIN3 4x22µF PHASE1 COMP2 14 VSEN2- MODE COMP1 2 VCC2 ISL8240M SYNC 20 CIN2 4x22µF VSEN2+ CLKOUT 3 RSYNC 237k VSEN1- 21 PGND R3* EN/FF1 PGND VCC1 VIN2 VSEN1+ PGND R4* *SEE TABLE 1 ON PAGE 19 FOR R3/R4 VALUES. VOUT1 SGND CIN1 4x22µF 23 VIN1 SGND 2x470µF 14 + SGND 4.5V TO 20V VIN 23 22 *KEEP R6/R7 THE SAME RATIO AS R1/R2. EACH VMON PIN CAN HAVE SEPERATE RESISTOR DIVIDER TO MONITOR THE OUTPUT VOLTAGE. SLAVE VCC3 21 25 500Ω COUT3 3x100µF SLAVE 26 1 18 4 12 10 24 9 FIGURE 28. SIX-PHASE 120A 1.0V OUTPUT CIRCUIT Submit Document Feedback 18 FN8450.2 January 7, 2015 ISL8240M TABLE 1. ISL8240M DESIGN GUIDE MATRIX (REFER TO Figure 23) VIN VOUT R2 or R4 (Ω) CASE (V) (V) CIN1 (BULK) (µF) (Note 10) CIN2 (CERAMIC) (µF) COUT1 (CERAMIC) (µF) COUT2 (BULK) CFF (nF) EN/FF (kΩ) R5/R6 (Note 11) FREQ. (kHz) RSYNC (kΩ) LOAD (A) (Note 12) 1 5 1 1.5k 1x330 1x100 4x100 1x330µF None 6.04/3.01 500 237 20 2 5 1 1.5k 1x330 1x100 7x100 None 6.8 6.04/3.01 500 237 20 3 12 1 1.5k 1x330 3x22 4x100 1x330µF None 6.04/1.50 500 237 20 4 12 1 1.5k 1x330 3x22 7x100 None 6.8 6.04/1.50 500 237 20 5 5 1.2 1.0k 1x330 1x100 4x100 1x330µF None 6.04/3.01 550 174 20 6 5 1.2 1.0k 1x330 1x100 7x100 None 6.8 6.04/3.01 550 174 20 7 12 1.2 1.0k 1x330 3x22 4x100 1x330µF None 6.04/1.50 550 174 20 8 12 1.2 1.0k 1x330 3x22 7x100 None 6.8 6.04/1.50 550 174 20 9 20 1.2 1.0k 1x330 3x22 4x100 1x330µF None 6.04/1.50 550 174 19 10 20 1.2 1.0k 1x330 3x22 7x100 None 6.8 6.04/1.50 550 174 19 11 5 1.5 665 1x330 1x100 4x100 1x330µF None 6.04/3.01 700 100 18 12 5 1.5 665 1x330 1x100 7x100 None 6.8 6.04/3.01 700 100 18 13 12 1.5 665 1x330 3x22 4x100 1x330µF None 6.04/1.50 600 140 19 14 12 1.5 665 1x330 3x22 7x100 None 6.8 6.04/1.50 600 140 19 15 20 1.5 665 1x330 3x22 4x100 1x330µF None 6.04/1.50 600 140 18 16 20 1.5 665 1x330 3x22 7x100 None 6.8 6.04/1.50 600 140 18 17 5 2.5 316 1x330 1x100 4x100 1x330µF None 6.04/3.01 700 100 18 18 5 2.5 316 1x330 1x100 7x100 None 6.8 6.04/3.01 700 100 18 19 12 2.5 316 1x330 3x22 4x100 1x330µF None 6.04/1.50 700 100 18 20 12 2.5 316 1x330 3x22 7x100 None 6.8 6.04/1.50 700 100 18 21 20 2.5 316 1x330 3x22 4x100 1x330µF None 6.04/1.50 700 100 16 22 20 2.5 316 1x330 3x22 7x100 None 6.8 6.04/1.50 700 100 16 NOTES: 10. CIN bulk capacitor is optional only for decoupling noise due to the long input cable. CIN2 and COUT1 ceramic capacitors are listed for one phase only. Please increase the capacitor quantity for dual-phase operations. 11. EN/FF resistor divider is tied directly to VIN. The resistors listed here are for two channels' EN/FF pins tied together. If the separate resistor divider is used for each channel, the resistor value needs to be doubled. 12. MAX load current listed in the table is for conditions at +25°C and no air flow on a typical Intersil 4-layer evaluation board. TABLE 2. RECOMMENDED I/O CAPACITOR IN TABLE 1 VENDOR VALUE PART NUMBER TDK, Input and Output Ceramic 100µF, 6.3V, 1210 C3225X5R0J107M Murata, Input and Output Ceramic 100µF, 6.3V, 1210 GRM32ER60J107M AVX, Input and Output Ceramic 100µF, 6.3V, 1210 12106D107MAT2A Murata, Input Ceramic 22µF, 25V, 1210 GRM32ER61E226KE15L Taiyo Yuden, Input Ceramic 22µF, 25V, 1210 TMK325BJ226MM-T AVX, Input Ceramic 22µF, 25V, 1210 12103D226KAT2A Panasonic POSCAP, Output Bulk 330µF, 6.3V 6TPF330M9L Panasonic SMT, Input Bulk 330µF, 25V EEVHA1E331UP Submit Document Feedback 19 FN8450.2 January 7, 2015 ISL8240M TABLE 3. ISL8240M OPERATION MODES 1ST MODULE (I = INPUT; O = OUTPUT; I/O = INPUT AND OUTPUT, BIDIRECTION) MODE EN1/FF1 EN2/FF2 (I) (I) VSEN2(I) 1 0 0 - 2A 0 1 Active 2B 1 0 - 3A 1 1 3B 1 3C MODES OF OPERATION OPERATION OPERATION OUTPUT VMON1 MODE CLKOUT/REFIN MODE (see OF 2ND 2ND CHANNEL OF 2ND WRT 1ST OF 3RD Description for MODE VSEN2+ VMON2 MODULE WRT 1ST (O) details) (I) (I) (I OR O) (Note 14) (Note 14) (Note 13) MODULE MODULE - - - - - - - Disabled - Active - VMON1 = VMON2 to Keep PGOOD Valid - - Single Phase - - - VMON1 = VMON2 to Keep PGOOD Valid - - Single Phase <VCC -0.7V Active Active 29% to 45% of VCC (I) Active - 0° - - Dual Regulator 1 <VCC -0.7V Active Active 45% to 62% of VCC (I) Active - 90° - - Dual Regulator 1 1 <VCC -0.7V Active Active >62% of VCC (I) Active - 180° - - Dual Regulator 4 1 1 <VCC -0.7V Active Active <29% of VCC (I) Active - -60° - - DDR Mode 5A 1 1 VCC GND - 60° VMON1 or Divider - 180° - - 2-Phase 5B 1 1 VCC GND - 60° Divider Divider 180° 5B 5B 6-Phase 5C 1 1 VCC GND - 60° VMON1 or Divider Active 180° 5C 5C 3 Outputs 6 1 1 VCC VCC GND 120° 953Ω// 22nF Active 240° 2B - 3-Phase 7A 1 1 VCC VCC VCC 90° 953Ω// 22nF Divider 180° 7A - 4-Phase 7B 1 1 VCC VCC VCC 90° 953Ω// 22nF Active 180° 7B - 2 Outputs (1st module in Mode 7A) 7C 1 1 VCC VCC VCC 90° 953Ω// 22nF Active 180° 3, 4 - 3 Outputs (1st module in Mode 7A) - Active Active - - 8 Cascaded Module Operation MODEs 5B+5B+7A+5B+5B+5B/7A, No External Clock Required 12-Phase 9 External Clock or External Logic Circuits Required for Equal Phase Interval 5, 7, 8, 9, 10, 11, or (PHASE >12) NOTES: 13. “2ND CHANNEL WRT 1ST” means “second channel with respect to first;” in other words, Channel 2 lags Channel 1 by the degrees specified in this column. For example, 90° means Channel 2 lags Channel 1 by 90°; -60° means Channel 2 leads Channel 1 by 60°. 14. “VMON1” means that the pin is tied to the VMON1 pin of the same module. “Divider” means that there is a resistor divider from VOUT to SGND; refer to Figure 28. “953Ω//22nF” means that there is a 953Ω resistor in parallel with a 22nF capacitor connecting the pin to SGND; refer to Figure 26. Submit Document Feedback 20 FN8450.2 January 7, 2015 ISL8240M Application Information where: • CIN(CER, MIN) is the minimum required input ceramic capacitance (µF) Programming the Output Voltage The ISL8240M has an internal 0.6V ±0.7% reference voltage. Programming the output voltage requires a resistor divider (R1 and R2) between the VOUT, VSEN+, and VSEN- pins, as shown in Figure 23 on page 14. Please note that the output voltage accuracy is also dependent on the resistor accuracy of R1 and R2. The user needs to select a high accuracy resistor (i.e., 0.5%) in order to achieve the overall output accuracy. The output voltage can be calculated as shown in Equation 1: R1 V OUT = 0.6 1 + -------- R2 (EQ. 1) Note: It is recommended to use a 1kΩ value for the top resistor, R1. The value of the bottom resistor for different output voltages is shown in Table 4. TABLE 4. VALUE OF BOTTOM RESISTOR FOR DIFFERENT OUTPUT VOLTAGES (VOUT vs R2) R1 (Ω) VOUT (V) R2 (Ω) 1k 0.6 Open 1k 0.8 3.01k 1k 1.0 1.50k 1k 1.2 1.00k 1k 1.5 665 1k 1.8 499 1k 2.0 422 1k 2.5 316 • D is the duty cycle • VP-P is the allowable peak-to-peak voltage (V) • fSW is the switching frequency (Hz) The low Equivalent Series Resistance (ESR) ceramic capacitance is recommended to decouple between the VIN and PGND of each channel. See Table 2 for some recommended capacitors. This capacitance reduces voltage ringing created by the switching current across parasitic circuit elements. All these ceramic capacitors should be placed as closely as possible to the module pins. The estimated RMS current should be considered in choosing ceramic capacitors. Io D 1 – D I IN RMS = -------------------------------- (EQ. 3) Each 10µF X5R or X7R ceramic capacitor is typically good for 2A to 3A of RMS ripple current. Refer to the capacitor vendor to check the RMS current ratings. In a typical 15A output application for one channel, if the duty cycle is 0.5, it needs at least three 10µF X5R or X7R ceramic input capacitors. Selection of Output Capacitors At higher output voltage, the inductor ripple increases, which makes both output ripple and inductor power loss higher. Refer to Figure 34 on page 24 to choose RSYNC which adjusts the switching frequency. Selection of Input Capacitor Selection of the input filter capacitor is based on how much ripple the supply can tolerate on the DC input line. The larger the capacitor, the less ripple expected, however, consideration should be given to the higher surge current during power-up. The ISL8240M provides a soft-start function that controls and limits the current surge. A combination of bulk capacitors and low Equivalent Series Resistance (ESR) ceramic capacitors are recommended as input capacitors. The minimum value of the input ceramic capacitors can be calculated as shown in Equation 2: IO D 1 – D C IN CER MIN = ----------------------------------V P-P f SW • IO is the output current (A) (EQ. 2) The ISL8240M is designed for low-output voltage ripple. The output voltage ripple and transient requirements can be met with bulk output capacitors (COUT) that have adequately low ESR. COUT can be a low ESR tantalum capacitor, a low ESR polymer capacitor or a ceramic capacitor. The typical capacitance is 330µF, and decoupling ceramic output capacitors are used for each phase. See Tables 1 and 2 for more capacitor information. Internally optimized loop compensation provides sufficient stability margins for all ceramic capacitor applications, with a recommended total value of 700µF per phase. Additional output filtering may be needed if further reduction of output ripple or dynamic transient spike is required. EN/FF Turn ON/OFF Each output of the ISL8240M can be turned on/off independently through the EN/FF pins. For parallel use, tie all EN/FF pins together. Since this pin has the feed-forward function, the voltage on this pin can actively adjust the loop gain to be constant for variable input voltage. Please refer to Table 1 on page 19 to select the resistor divider for commonly used conditions. Otherwise, use the following procedures to finish the EN/FF design: 1. A resistor divider from VIN to GND is recommended to set the EN/FF voltage between 1.25V to 5.0V. The resistor divider ratio is recommended to be between 3/1 to 4/1 with a resistor divider at 7.15kΩ/2.05kΩ. 2. Check EN turn-on hysteresis (recommend VEN_HYS > 0.3V) : V EN – HYS = N R UP 3x10 – 5 (EQ. 4) where: • RUP is the top resistor of the resistor divider • N is the total number of the EN/FF pins tied to the resistor divider Submit Document Feedback 21 FN8450.2 January 7, 2015 ISL8240M 3. Set the maximum current flowing through the top pull-up resistor RUP to below 7mA (considering EN/FF is pulled to ground (VEN/FF = 0)). Refer to Figure 27 on page 17; a 3.01kΩ/1kΩ resistor is used to allow for the input voltage from 5V to 20V operation. In addition, the maximum current flowing through R5 is 6.6mA (<7mA). 4. If the EN/FF is controlled by system EN signal instead of the input voltage, we recommend setting the fixed EN/FF voltage to about 1/3.5 of the input voltage. If the input voltage is 12V, a 3.3V system EN signal can be tied to EN/FF pin directly. 5. If the input voltage is below 5.5V, it is recommended to have EN/FF voltage >1.5V to have better stability. The input voltage can be directly tied to the VCC pin to disable the internal LDO. 6. A 1nF capacitor is recommended on the EN/FF pin to avoid the noise injecting into the feed-forward loop. Thermal Considerations The ISL8240M QFN package offers typical junction to ambient thermal resistance JA of approximately 8.5°C/W at natural convection (~5.0°C/W at 400LFM) with a typical 4-layer PCB. Therefore, use Equation 5 to estimate the module junction temperature: (EQ. 5) T junction = P jA + T ambient where: • Tjunction is the module internal maximum temperature (°C) • Tambient is the system ambient temperature (°C) • P is the total power loss of the module package (W) • JA is the thermal resistance of module junction to ambient If the calculated temperature, Tjunction, is over the required design target, the extra cooling scheme is required. Please refer to “Current Derating” on page 26 for adding air flow. Functional Description Initialization Initially, the Power-On Reset (POR) circuits continuously monitor bias voltages (VCC) and voltage at the EN/FF pin. The POR function initiates soft-start operation 384 clock cycles R UP ² V EN_REF = --------------------------------------------------------------DOWN V EN_FTH – V EN_REF V EN_HYS R UP = ----------------------------I EN_HYS R V –V EN_FTH = V EN_RTH after: (1) the EN pin voltage is pulled above 0.8V, (2) all input supplies exceed their POR thresholds, and (3) the PLL locking time expires. The Enable pin can be used as a voltage monitor and to set the desired hysteresis, with an internal 30µA sinking current going through an external resistor divider. The sinking current is disengaged after the system is enabled. This feature is specially designed for applications that require higher input rail POR for better undervoltage protection. For example, in 12V applications, RUP = 53.6kΩ and RDOWN = 5.23kΩ sets the turn-on threshold (VEN_RTH) to 10.6V and the turn-off threshold (VEN_FTH) to 9V, with 1.6V hysteresis (VEN_HYS). During shutdown or fault conditions, soft-start is quickly reset, and the gate driver immediately changes state (<100ns) when input drops below POR. Enable and Voltage Feed-forward Voltage applied to the EN/FF pin is fed to adjust the sawtooth amplitude of the channel. Sawtooth amplitude is set to 1.25 times the corresponding FF voltage when the module is enabled. This configuration helps maintain a constant gain. This configuration also helps maintain input voltage to achieve optimum loop response over a wide input voltage range. A 384-cycle delay is added after the system reaches its rising POR and prior to soft-start. The RC timing at the FF pin should be small enough to ensure that the input bus reaches its static state and that the internal ramp circuitry stabilizes before soft-start. A large RC could cause the internal ramp amplitude not to synchronize with the input bus voltage during output start-up or when recovering from faults. A 1nF capacitor is recommended as a starting value for typical applications. In a multi-module system, with the EN pins wired together, all modules can immediately turn off, at one time, when a fault condition occurs in one or more modules. A fault pulls the EN pin low, disabling all modules, and does not create current bounce; thus, no single channel is overstressed when a fault occurs. Because the EN pins are pulled down under fault conditions, the pull-up resistor (RUP) should be scaled to sink no more than 7mA current from the EN pin. Essentially, the EN pins cannot be directly connected to VCC. VIN RUP EN EN_HYS ON/OFF RDOWN 384 CLOCK CYCLES 0.8V SOFT-START IEN_HYS = 30µA OV, OT, OC, AND PLL LOCKING FAULTS FIGURE 29. SIMPLIFIED ENABLE AND VOLTAGE FEED-FORWARD CIRCUIT Submit Document Feedback 22 FN8450.2 January 7, 2015 ISL8240M Soft-Start Power-Good The ISL8240M has an internal, digital, precharged soft-start circuitry (Figures 30 through 32). The circuitry has a rise time inversely proportional to the switching frequency. Rise time is determined by a digital counter that increments with every pulse of the phase clock. The full soft-start time from 0V to 0.6V can be estimated as shown in Equation 6. The typical soft-start time is ~2.5ms. Power-good comparators monitor voltage on the VMON pin. Trip points are shown in Figure 33. PGOOD is not asserted until the soft-start cycle is complete. PGOOD pulls low upon both ENs disabling it or when the VMON voltage is out of the threshold window. PGOOD does not pull low until the fault presents for three consecutive clock cycles. 1280 t SS = ------------f SW (EQ. 6) The ISL8240M is able to work under a precharged output. The PWM outputs do not feed to the drivers until the first PWM pulse is seen. The low-side MOSFET is on for the first clock cycle, to provide charge for the bootstrap capacitor. If the precharged output voltage is greater than the final target level but less than the 113% set point, switching does not start until the output voltage is reduced to the target voltage and the first PWM pulse is generated. The maximum allowable precharged level is 113%. If the precharged level is above 113% but below 120%, the output hiccups between 113% (LGATE turns on) and 87% (LGATE turns off), while EN is pulled low. If the precharged load voltage is above 120% of the targeted output voltage, then the controller is latched off and cannot power up. SS SETTLING AT VREF + 100mV FIRST PWM PULSE UV indication is not enabled until the end of soft-start. In a UV event, if the output drops below -13% of the target level due to a reason other than OV, OC, OT, or PLL faults (cases when EN is not pulled low), PGOOD is pulled low. CHANNEL 1 UV/OV CHANNEL 2 UV/OV END OF SS1 END OF SS2 SS1_PERIOD SS2_PERIOD PGOOD AND OR AND +20% VMON1, 2 +13% +9% VOUT TARGET VOLTAGE VREF 0.0V -9% 1280 t SS = ------------f SW -100mV 384 t SS_DLY = -----------f SW -13% PGOOD LATCH OFF AFTER 120% OV PGOOD FIGURE 30. SOFT-START WITH VOUT = 0V FIGURE 33. POWER-GOOD THRESHOLD WINDOW Current Share FIRST PWM PULSE SS SETTLING AT VREF + 100mV VOUT TARGET VOLTAGE INIT. VOUT -100mV FIGURE 31. SOFT-START WITH VOUT < TARGET VOLTAGE OV = 113% FIRST PWM PULSE VOUT TARGET VOLTAGE FIGURE 32. SOFT-START WITH VOUT BELOW 113% BUT ABOVE FINAL TARGET VOLTAGE Submit Document Feedback 23 In parallel operations, the share bus voltages (ISHARE) of different modules must tie together. The ISHARE pin voltage is set by an internal resistor and represents the average current of all active modules. The average current signal is compared with the local module current, and the current share error signal is fed into the current correction block to adjust each module’s PWM pulse accordingly. The current share function provides at least 10% overall accuracy between modules. The current share bus works for up to 12 phases without requiring an external clock. A 470pF ~1nF capacitor is recommended for each ISHARE pin. In current sharing scheme, all slave channels have the feedback loops disabled with the VSEN- pin tied to VCC. The master channel can control all modules with COMP and ISHARE pins tied together. For phase-shift setting, all VMON pins of slave channels are needed to set 0.6V for monitoring use only. Typically, the slaved VMON pins can be tied together with a resistor divider to VOUT. However, if the MODE pin is tied to VCC for mode setting, the related VMON2 pin is needed to tie to SGND with a 953Ω resistor and a 22nF capacitor, as shown in Figure 27 on page 17. FN8450.2 January 7, 2015 ISL8240M Because of the typical 5.4V VCC and the internal 7.5kΩ resistor between MODE pin and VMON2 pin, the 953Ω resistor maintains VMON2 pin voltage close to 0.6V, thus output OVP/UVP (caused by VMON2 voltage too high or too low) will not be falsely triggered due to part to part variation at mass production. The 22nF capacitor is used to avoid output UVP/OVP triggered during input start-up. Overvoltage Protection (OVP) The overvoltage (OV) protection indication circuitry monitors voltage on the VMON pin. OV protection is active from the beginning of soft-start. An OV condition (>120%) would latch the IC off. In this condition, the high-side MOSFET (Q1 or Q3) latches off permanently. The low-side MOSFET (Q2 or Q4) turns on immediately at the time of OV trip and then turns off permanently after the output voltage drops below 87%. EN and PGOOD are also latched low in an OV event. The latch condition can be reset only by recycling VCC. There is another non-latch OV protection (113% of target level). When EN is low and output is over 113% OV, the low-side MOSFET turns on until output drops below 87%. This action protects the power trains when even a single channel of a multi-module system detects OV. The low-side MOSFET always turns on when EN = LOW and the output voltage rises above 113% (all EN pins are tied together) and turns off after the output drops below 87%. Thus, in a high phase count application (multi-module mode), all cascaded modules can latch off simultaneously via the EN pins (EN pins are tied together in multi-phase mode). Each channel shares the same sink current to reduce stress and eliminate bouncing among phases. Over-Temperature Protection (OTP) When the junction temperature of the internal controller is greater than +150°C (typically), the EN pin is pulled low to inform other cascaded channels via their EN pins. All connected ENs stay low and then release after the module’s junction temperature drops below +125°C (typically), a +25°C hysteresis (typically). Overcurrent Protection (OCP) The OCP maximum load current level is set to about 24A for each channel, but the OC trip point can vary, due mainly to MOSFET rDS(ON) variations (over process, current, and temperature). The OCP can be increased by increasing the switching frequency since the inductor ripple is reduced. However, the module efficiency drops accordingly with more switching loss. When OCP is triggered, the controller pulls EN low immediately to turn off all switches. The OCP function is enabled at start-up and has a 7-cycle delay before it triggers. In multi-module operation, ISHARE pins can be connected to create VISHARE, which represents the average current of all active channels. Total system currents are compared with a Submit Document Feedback 24 precision threshold to determine the overcurrent condition. Each channel also has an additional overcurrent set point with a 7-cycle delay. This scheme helps protect modules from damage in multi-module mode by having each module carry less current than the set point. For overload and hard short conditions, overcurrent protection reduces the regulator RMS output current to much less than full load by putting the controller into hiccup mode. A delay equal to three soft-start intervals is entered to allow time to clear the disturbance. After the delay time, the controller initiates a soft-start interval. If the output voltage comes up and returns to regulation, PGOOD transitions high. If the OC trip is exceeded during the soft-start interval, the controller pulls EN low again. The PGOOD signal remains low, and the soft-start interval is allowed to expire. Another soft-start interval is initiated after the delay interval. If an overcurrent trip occurs again, this same cycle repeats until the fault is removed. Since the output voltage may trigger the OVP if the output current changes too fast, the module can go into latch-off mode. In this case, the module needs to be restarted. Frequency Synchronization and Phase Lock Loop The SYNC pin has two primary capabilities: fixed frequency operation and synchronized frequency operation. The ISL8240M has an internally set fixed frequency of 350kHz. By tying a resistor (RSYNC) to SGND from the SYNC pin, the switching frequency can be set to higher than 350kHz. To increase the switching frequency, select an externally connected resistor, RSYNC, from SYNC to SGND according to the frequency setting curve shown in Figure 34. See Table 1 on page 19 for RSYNC at commonly used frequency. 800 700 600 RSYNC (kΩ) If there are multiple modules paralleled with the MODE pins tied to VCC, each VMON2 pin of the slave modules needs to have a 953Ω resistor to GND while all VMON1 pins of the slave modules can be tied together with a resistor divider from VOUT to GND, as shown in Figure 28 on page 18. Also see Table 3 on page 20 for VMON settings. 500 400 300 200 100 0 400 450 500 550 600 650 700 SWITCHING FREQUENCY (kHz) FIGURE 34. RSYNC vs SWITCHING FREQUENCY Connecting the SYNC pin to an external square-pulse waveform (such as the CLKOUT signal, typically 50% duty cycle from another ISL8240M) synchronizes the ISL8240M switching frequency to the fundamental frequency of the input waveform. The synchronized frequency can be from 350kHz to 700kHz. The applied square-pulse recommended high level voltage range is 3V to VCC+0.3V. The frequency synchronization feature synchronizes the leading edge of the CLKOUT signal with the falling edge of Channel 1’s PWM signal. CLKOUT is not available until PLL locks. No capacitor is recommended on the SYNC pin. FN8450.2 January 7, 2015 ISL8240M For 18A or less load current (or 36A for parallel single output configuration), the ISL8240M's efficiency can be improved by adjusting the switching frequency. Please refer to Figures 4, 6, 8 and 10 for the efficiency at different switching frequencies at various output voltages. For higher than 18A load current (or 36A for parallel single output configuration), please refer to Table 1 on page 19 for the recommended switching frequencies for various conditions Locking time is typically 130µs for fSW = 500kHz. EN is not released for a soft-start cycle until SYNC is stabilized and PLL is locking. Connecting all EN pins together in a multiphase configuration is recommended. Loss of a synchronization signal for 13 clock cycles causes the module to be disabled until PLL returns locking, at which point a soft-start cycle is initiated and normal operation resumes. Holding SYNC low disables the module. Please note that the quick change of the synchronization signal can cause module shutdown. OPERATION PHASE-SHIFT BETWEEN PHASES VSEN2- VSEN2+ CLKOUT MODE Dual Output (Figure 23) 180° N/C N/C VCC N/C 40A (Figure 24) 180° VCC N/C N/C SGND 80A (Figure 26) 90° VCC VCC N/C VCC 120A (Figure 28) 60° VCC N/C N/C SGND When the module is in the dual-output condition, depending upon the voltage level at CLKOUT (which is set by the VCC resistor divider output), ISL8240M operates with phase shifted as the CLKOUT voltage shown in Table 6. The phase shift is latched as VCC rises above POR; it cannot be changed on the fly. TABLE 6. CLKOUT TO PROGRAM PHASE SHIFT AT DUAL-OUTPUT Tracking Function If CLKOUT is less than 800mV, an external soft-start ramp (0.6V) can be in parallel with the Channel 2 internal soft-start ramp for tracking applications. Therefore, the output voltage of Channel 2 can track the output voltage of Channel 1. The tracking function can be applied to a typical Double Data Rate (DDR) memory application, as shown in Figure 25 on page 15. The output voltage (typical VTT output) of Channel 2 tracks with the input voltage [typical VDDQ/(1+k) from Channel 1] at the CLKOUT pin. As for the external input signal and the internal reference signal (ramp and 0.6V), the one with the lowest voltage is used as the reference for comparing with the FB signal. In DDR configuration, VTT channel should start up later, after its internal soft-start ramp, such that VTT tracks the voltage on the CLKOUT pin derived from VDDQ. This configuration can be achieved by adding more filtering at EN/FF1 than at EN/FF2. It is recommended to scale the target CLKOUT voltage to 0.612V (2% above 0.6V reference) with an external resistor divider from VDDQ. After start-up, the internal reference takes over to maintain the good regulation of VTT. The resistor divider ratio k of R7/R8 in Figure 20 is based on the feedback divider of VDDQ (R1 and R2 values) and the 0.612V target CLKOUT voltage as shown in Equation 7: R7 1 + R1 R2 k = -------- = ---------------------------------- – 1 R8 1.02 (EQ. 7) Mode Programming ISL8240M can be programmed for dual-output, paralleled single-output or mixed outputs (Channel 1 in parallel and Channel 2 in dual-output). With multiple ISL8240Ms, up to 6 modules using its internal cascaded clock signal control, the modules can supply large current up to 240A. For complete operation, please refer to Table 3 on page 20. Commonly used settings are listed in Table 5. Submit Document Feedback TABLE 5. PHASE-SHIFT SETTING 25 CLKOUT VOLTAGE SETTING PHASE FOR CLKOUT WRT CHANNEL 1 RECOMMENDED CLKOUT VOLTAGE 15% VCC <29% of VCC -60° 29% to 45% of VCC 0° 37% VCC 45% to 62% of VCC 90° 53% VCC 62% of VCC 180° VCC Layout Guide To achieve stable operation, low losses, and good thermal performance, some layout considerations are necessary (Figure 35). • VOUT1, VOUT2, PHASE1, PHASE2, PGND, VIN1 and VIN2 should have large, solid planes. Place enough thermal vias to connect the power planes in different layers under or around the module. • Place high-frequency ceramic capacitors between VIN, VOUT, and PGND, as closely to the module as possible in order to minimize high-frequency noise. • Use remote sensed traces to the regulation point to achieve tight output voltage regulation, and keep the sensing traces close to each other in parallel. • PHASE1 and PHASE2 pads are switching nodes that generate switching noise. Keep these pads under the module. For noise-sensitive applications, it is recommended to keep phase pads only on the top and inner layers of the PCB. Also, do not place phase pads exposed to the outside on the bottom layer of the PCB. • Avoid routing any noise-sensitive signal traces, such as the VSEN+, VSEN-, ISHARE, COMP and VMON sensing points, near the PHASE pins. • Use a separated SGND ground copper area for components connected to signal ground pins. Connect SGND to PGND with multiple vias underneath the unit in one location to avoid the noise coupling, as shown in Figure 35. Don't ground vias surrounded by the noisy planes of VIN, PHASE and VOUT. For dual output applications, the SGND to PGND vias are preferred to be as close as possible to SGND pin. FN8450.2 January 7, 2015 ISL8240M • Optional snubbers can be put on the bottom side of the board layout, connecting the PHASE to PGND planes, as shown in Figure 35. COUT2 COUT1 PGND PGND VOUT2 VOUT1 R3 + R4 KELVIN CONNECTIONS FOR THE VSENS LINES R1 + TO LOAD KELVIN CONNECTIONS FOR THE VSENS LINES TO LOAD R2 PIN 1 The bottom of ISL8240M is a lead-frame footprint, which is attached to the PCB by surface mounting. The PCB layout pattern is shown in the L26.17x17 package outline drawing on page 31. The PCB layout pattern is essentially 1:1 with the QFN exposed pad and the I/O termination dimensions, except that the PCB lands are slightly longer than the QFN terminations by about 0.2mm (0.4mm max). This extension allows for solder filleting around the package periphery and ensures a more complete and inspectable solder joint. The thermal lands on the PCB layout should match 1:1 with the package exposed die pads. Thermal Vias SGND VIN2 CIN2 PCB Layout Pattern Design VIN1 PHASE2 PHASE1 OPTIONAL SNUBBER CIN1 OPTIONAL SNUBBER PGND FIGURE 35. RECOMMENDED LAYOUT Current Derating Experimental power loss curves (Figures 36 and 37), along with JA from thermal modeling analysis, can be used to evaluate the thermal consideration for the module. Derating curves are derived from the maximum power allowed while maintaining temperature below the maximum junction temperature of +120°C (Figures 38 through 43). The maximum +120°C junction temperature is considered for the module to load the current consistently and it provides the 5°C margin of safety from the rated junction temperature of +125°C. If necessary, customers can adjust the margin of safety according to the real applications. All derating curves are obtained from the tests on the ISL8240MEVAL4Z evaluation board. In the actual application, other heat sources and design margins should be considered. Package Description The ISL8240M is integrated into a quad flat no-lead package (QFN). This package has such advantages as good thermal and electrical conductivity, low weight, and small size. The QFN package is applicable for surface mounting technology and is becoming more common in the industry. The ISL8240M contains several types of devices, including resistors, capacitors, inductors, and control ICs. The ISL8240M is a copper lead-frame based package with exposed copper thermal pads, which have good electrical and thermal conductivity. The copper lead frame and multi-component assembly are over-molded with polymer mold compound to protect these devices. A grid of 1.0mm to 1.2mm pitched thermal vias, which drops down and connects to buried copper planes, should be placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter, with the barrel plated to about 2.0 ounce copper. Although adding more vias (by decreasing pitch) improves thermal performance, it also diminishes results as more vias are added. Use only as many vias as are needed for the thermal land size and as your board design rules allow. Stencil Pattern Design Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2mil to 3mil) standoff height. The solder paste stencil design is the first step in developing optimized, reliable solder joins. The stencil aperture size to land size ratio should typically be 1:1. Aperture width may be reduced slightly to help prevent solder bridging between adjacent I/O lands. To reduce solder paste volume on the larger thermal lands, an array of smaller apertures instead of one large aperture is recommended. The stencil printing area should cover 50% to 80% of the PCB layout pattern. A typical solder stencil pattern is shown in the L26.17x17 package outline drawing on page 31. The gap width between pads is 0.6mm. Consider the symmetry of the whole stencil pattern when designing the pads. A laser-cut, stainless-steel stencil with electropolished trapezoidal walls is recommended. Electropolishing smooths the aperture walls, resulting in reduced surface friction and better paste release, which reduces voids. Using a trapezoidal section aperture (TSA) also promotes paste release and forms a brick-like paste deposit, which assists in firm component placement. A 0.1mm to 0.15mm stencil thickness is recommended for this large-pitch (1.0mm) QFN. The package outline, typical PCB layout pattern, and typical stencil pattern design are shown in the L26.17x17 package outline drawing on page 31. Figure 44 shows typical reflow profile parameters. These guidelines are general design rules. Users can modify parameters according to specific applications. Submit Document Feedback 26 FN8450.2 January 7, 2015 ISL8240M 12 12 10 10 POWER LOSS (W) POWER LOSS (W) Power Loss Curves 8 5VIN to 2.5VOUT 500kHz 6 5VIN to 1.5VOUT 400kHz 4 8 12VIN to 2.5VOUT 500kHz 6 12VIN to 1.5VOUT 450kHz 4 2 2 12VIN TO 1VOUT 350kHz 5VIN TO 1VOUT 350kHz 0 0 5 10 15 20 25 30 35 0 40 0 5 10 15 LOAD CURRENT (A) FIGURE 36. POWER LOSS CURVES OF 5VIN Derating Curves 25 30 35 40 FIGURE 37. POWER LOSS CURVES OF 12VIN All of the following curves were plotted at TJ = +120°C. 40 40 35 35 400LFM 30 LOAD CURRENT (A) LOAD CURRENT (A) 20 LOAD CURRENT (A) 25 20 200LFM 15 10 0LFM 400LFM 30 25 20 200LFM 15 10 0LFM 5 0 25 5 5VIN 1VOUT 350kHz 35 45 55 65 75 85 95 105 115 0 125 12VIN 1VOUT 350kHz 25 35 45 55 TEMPERATURE (°C) FIGURE 38. DERATING CURVE 5VIN TO 1VOUT 85 95 105 115 125 40 35 35 400LFM 30 LOAD CURRENT (A) LOAD CURRENT (A) 75 FIGURE 39. DERATING CURVE 12VIN TO 1VOUT 40 25 20 200LFM 15 10 0LFM 5 0 25 65 TEMPERATURE (°C) 400LFM 30 25 20 200LFM 15 10 0LFM 5 5VIN 1.5VOUT 400kHz 35 45 55 65 75 85 95 105 TEMPERATURE (°C) FIGURE 40. DERATING CURVE 5VIN TO 1.5VOUT Submit Document Feedback 27 115 125 0 12VIN 1.5VOUT 400kHz 25 35 45 55 65 75 85 95 105 115 125 TEMPERATURE (°C) FIGURE 41. DERATING CURVE 12VIN TO 1.5VOUT FN8450.2 January 7, 2015 ISL8240M All of the following curves were plotted at TJ = +120°C. (Continued) 40 40 35 35 30 400LFM LOAD CURRENT (A) LOAD CURRENT (A) Derating Curves 25 20 200LFM 15 10 25 20 200LFM 15 10 0LFM 0LFM 5 5 5VIN 2.5VOUT 500kHz 0 400LFM 30 0 20 40 60 80 100 120 12VIN 2.5VOUT 500kHz 0 25 140 35 45 65 75 85 95 105 115 125 FIGURE 43. DERATING CURVE 12VIN TO 2.5VOUT FIGURE 42. DERATING CURVE 5VIN TO 2.5VOUT Reflow Parameters 300 PEAK TEMPERATURE +230°C~+245°C; TYPICALLY 60s-70s ABOVE +220°C KEEP LESS THAN 30s WITHIN 5°C OF PEAK TEMP. 250 TEMPERATURE (°C) Due to the low mount height of the QFN, "No Clean" Type 3 solder paste, per ANSI/J-STD-005, is recommended. Nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass of the entire populated board, so it is not practical to define a specific soldering profile just for the QFN. The profile given in Figure 44 is provided as a guideline to customize for varying manufacturing practices and applications. 55 TEMPERATURE (°C) TEMPERATURE (°C) 200 SLOW RAMP (3°C/s MAX) AND SOAK FROM +100°C TO +180°C FOR 90s~120s 150 100 RAMP RATE 1.5°C FROM +70°C TO +90°C 50 0 0 100 150 200 250 300 350 DURATION (s) FIGURE 44. TYPICAL REFLOW PROFILE Submit Document Feedback 28 FN8450.2 January 7, 2015 ISL8240M Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. DATE January 7, 2015 REVISION CHANGE FN8450.2 On page 7, Electrical Specifications table, Vcc voltage level updated min from 5.15V to 5.1V and max from 5.95V to 5.6V. On page 8, Electrical Specifications table, VREF1 and VREF2, added absolute values for MIN and MAX corresponding to the percentages. On page 16, Figure 26, R8 value changed from 1kΩ to 953Ω, added a capacitor C6, value of 22nF, in parallel with R8, R9 value changed from 1kΩ to 953Ω, added a capacitor C7, value of 22nF, in parallel with R9. On page 17, Figure 27, R6 value changed from 1kΩ to 953Ω, added a capacitor C5, value of 22nF, in parallel with R6. On page 20, Table 3, updated VMON2 from 1kΩ to "953Ω//22nF" for MODE 6, MODE 7A, MODE 7B, and MODE 7C. On page 20, Note 14, changed the sentence "1kΩ means..." to "953Ω//22nF" means that there are a 953Ω resistor in parallel with a 22nF capacitor connecting the pin to SGND; refer to Figure 26. On page 23, Current Share; 2nd paragraph, changed the text "with a 1.0kΩ resistor" to "with a 953Ω resistor and a 22nF capacitor". On page 24, "Current share" 2nd paragraph, changed "1kΩ" to "953Ω"; added a new paragraph "Because of the typical 5.4V VCC and the internal 7.5kΩ resistor between MODE pin and VMON2 pin, the 953Ω resistor maintains VMON2 pin voltage close to 0.6V, thus output OVP/UVP (caused by VMON2 voltage too high or too low) will not be falsely triggered due to part to part variation at mass production. The 22nF capacitor is used to avoid output UVP/OVP triggered during input start-up." On page 25, "Tracking Function", 2nd paragraph, changed "VDDQ*(1+k)" to "VDDQ/(1+k)"; updated the 3rd paragraph "It is recommended to scale the target CLKOUT voltage to 0.612V (2% above 0.6V reference) with an external resistor divider from VDDQ. After start-up, the internal reference takes over to maintain the good regulation of VTT. The resistor divider ratio k of R7/R8 in Figure 20 is based on the feedback divider of VDDQ (R1 and R2 values) and the 0.612V target CLKOUT voltage as shown in Equation 7:"; updated Equation 7. May 23, 2014 March 12, 2014 FN8450.1 Replaced Figures 3 through 9 with figures showing efficiency up to a switching speed of 700kHz. Figure 1 on page 1: added SYNC pin and RSYNC resistor of 237k. Electrical Specifications Table, “Synchronization Frequency” on page 8, changed MAX from 500kHz to 700kHz. Figure 23 on page 14: added RSYNC resistor of 140k. Figure 24 on page 14: added RSYNC resistor of 174k. Figure 25 on page 15: added RSYNC resistor of 100k. Figure 26 on page 16: added RSYNC resistor of 237k. Figure 28 on page 18: added RSYNC resistor of 237k. Table 1 on page 19: updated the three columns of FREQ., RSYNC, LOAD, to give more accurate information about optimum settings. Figure 34 on page 24: updated the graph to include a wider switching frequency range. “Frequency Synchronization and Phase Lock Loop” on page 24: changed "The synchronized frequency can be from 350kHz to 500kHz" to "The synchronized frequency can be from 350kHz to 700kHz". FN8450.0 Initial Release About Intersil Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask. Reliability reports are also available from our website at www.intersil.com/support For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com Submit Document Feedback 29 FN8450.2 January 7, 2015 ISL8240M Package Outline Drawing L26.17x17 26 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (PUNCH QFN) Rev 4, 10/12 17.8±0.2 17.0±0.2 9 8 9 7 6 5 4 3 2 8 7 6 5 4 3 2 1 26 1 26 10 10 25 25 17.0±0.2 17.8±0.2 11 11 24 23 12 24 23 12 22 21 22 21 14 13 151617181920 0.2 S AB 3.50 0.10 0.10 3.50 0.10 0.10 0.70 B 0.38 8.95 4.93 10 4.93 8.95 0.38 0.80 AAA AAAAA AAAAA AAA AAAAA AA 2.37 0.25 12x 1.07 0.10 2.77 5.33 0.25 0.10 5.33 3.66 3.50 52x 0.50 (ALL OF LEAD TIPS) 16X 0.70 (FULL LEAD) 16x 0.55 (FULL LEAD) X4 12 15 1617 1819 20 PIN NO. DEFINITION (TOP VIEW) TOP VIEW 4.00 3.50 14 AAAA AAAAA AAA 13 12 10 1 1 3.35 3.35 A:1.0±0.1 2.97 AAA AAAAA AAAAA 14x 0.75 16x 1.75±0.05 (FULL LEAD) A 0.05 S AB PIN-TO-PIN DISTANCE (BOTTOM VIEW) BOTTOM VIEW R0 All A ro .25 und of 1 0 °(MA X) 0.25 7.5±0.2 S 0.2 SIDE VIEW S S 0.03 Submit Document Feedback 30 FN8450.2 January 7, 2015 TYPICAL land Pattern and STENCIL OPENING ISL8240M 0.25 0.40 0.65 0.75 9.30 7.98 6.35 5.65 5.35 5.24 4.65 4.35 3.65 3.35 2.65 2.35 1.65 1.35 0.65 0.25 0.00 0.55 3.10 3.25 3.75 3.90 7.15 7.25 7.70 7.96 9.30 9.30 7.83 6.53 6.50 6.13 5.73 5.33 0.75 0.65 0.40 0.25 9.30 7.15 6.35 5.65 5.35 4.65 4.35 1 10 0.75 0.35 0 0.35 0.75 12 4.35 4.65 5.35 5.65 6.35 7.15 9.30 5.33 5.73 6.13 6.50 6.53 7.83 9.30 9.30 7.98 7.15 6.35 5.93 5.65 5.35 5.24 4.65 4.35 3.65 3.35 2.65 2.35 1.65 1.35 1.35 0.65 0.25 0.05 0 0.55 3.10 3.25 3.75 3.90 7.15 7.25 7.70 7.83 7.96 9.30 TYPICAL RECOMMENDED LAND PATTERN (TOP VIEW) 9.20 7.83 7.25 6.25 5.75 5.25 4.75 4.25 3.75 3.25 2.75 2.25 1.75 1.25 0.75 0.15 0 0.25 0.75 1.25 1.75 2.25 2.75 3.15 3.85 4.25 4.75 5.25 5.75 6.25 6.75 7.15 7.83 7.93 9.20 7.38 6.60 4.05 2.70 2.40 1.05 0.00 1.05 2.40 2.70 4.05 3.36 5.03 5.43 6.43 6.83 7.38 6.60 7.38 31 * 7.38 6.03 5.54 Submit Document Feedback 7.38 7.38 6.83 6.43 5.43 5.03 3.36 2.76 0.95 0.70 0 0.70 0.95 0 0.05 1.13 1.73 2.80 4.20 5.28 5.88 6.95 9.20 7.83 7.25 6.25 5.75 5.25 4.75 4.25 3.75 3.25 2.75 2.25 1.75 1.25 0.75 0.15 0 0.25 0.75 1.25 1.75 2.25 2.75 3.15 3.85 4.25 4.75 5.25 5.75 6.25 6.75 7.15 7.83 9.20 SOLDER STENCIL PATTERN WITH SQUARE PADS 1 OF 2 (TOP VIEW) 5.54 0 0.05 0.60 1.13 1.73 1.80 2.40 2.80 3.60 4.20 5.28 5.41 5.88 6.01 6.95 7.23 7.25 6.25 5.75 5.25 4.75 4.25 3.75 3.25 2.75 2.25 1.75 1.25 0.95 0.25 0 0.25 0.95 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 7.25 9.20 7.93 5.25 4.75 4.25 3.75 3.25 2.75 2.25 1.75 1.25 0.85 0.15 0 0.15 0.85 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 7.93 SOLDER STENCIL PATTERN WITH SQUARE PADS 2 OF 2 (TOP VIEW) FN8450.2 January 7, 2015