February 18, 2009 IRS211(7,71,8)(S) SINGLE CHANNEL DRIVER Product Summary IC Features • • • • • • • • • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20V Undervoltage lockout CMOS Schmitt-triggered inputs with pull-down Output in phase with input RoHS compliant IRS2117 and IRS2118 available in PDIP8 Topology Single High Side VOFFSET 600 V VOUT 10V-20 V IO+ & IO- (typical) IN voltage threshold 290 mA & 600 mA IRS211(7,8) 9.5 V & 6 V IRS21171 2.5 V & 0.8 V Package Type SOIC8 PDIP8 IRS2117(1) IRS2118 www.irf.com © 2008 International Rectifier 1 IRS211(7,71,8)(S) Table of Contents Page Description 3 Qualification Information 4 Absolute Maximum Ratings 5 Recommended Operating Conditions 5 Static Electrical Characteristics 6 Dynamic Electrical Characteristics 6 Functional Block Diagram 7 Input/Output Pin Equivalent Circuit Diagram 8 Lead Definitions 9 Lead Assignments 9 Application Information and Additional Details 10 Parameter Temperature Trends 14 Package Details 23 Tape and Reel Details 24 Part Marking Information 25 Ordering Information 26 www.irf.com © 2008 International Rectifier 2 IRS211(7,71,8)(S) Description The IRS2117, IRS21171, and IRS2118 are high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side or low-side configuration which operates up to 600 V. www.irf.com © 2008 International Rectifier 3 IRS211(7,71,8)(S) † Qualification Information Qualification Level Moisture Sensitivity Level Machine Model ESD Human Body Model IC Latch-Up Test RoHS Compliant Industrial†† (per JEDEC JESD 47) Comments: This family of ICs has passed JEDEC’s Industrial qualification. IR’s Consumer qualification level is granted by extension of the higher Industrial level. MSL2†††260°C SOIC8 (per IPC/JEDEC J-STD-020C) Not applicable PDIP8 (non-surface mount package style) Class B (per JEDEC standard EIA/JESD22-A115) Class 3A (per EIA/JEDEC standard JESD22-A114) Class I, Level A (per JESD78) Yes † †† Qualification standards can be found at International Rectifier’s web site http://www.irf.com/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information. ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information. www.irf.com © 2008 International Rectifier 4 IRS211(7,71,8)(S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB Definition High-side floating supply voltage Min. Max. -0.3 625 VS High-side floating supply offset voltage VB - 25 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VB + 0.3 VCC Logic supply voltage - 0.3 25 VIN Logic input voltage - 0.3 VCC + 0.3 dVS/dt ----- TJ Allowable offset supply voltage transient (fig.2) 8 lead SOIC Package power dissipation @ TA ≤ +25˚C 8 lead PDIP 8 lead SOIC Thermal Resistance, junction to Ambient 8 lead PDIP Junction temperature --- 50 0.625 1.0 200 125 150 TS TL Storage temperature Lead Temperature (soldering, 10 seconds) -55 --- 150 300 PD RθJA --- Units V V/ns W ºC/W ºC Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15 V differential. Symbol VB Definition High-Side floating supply absolute voltage † Max. VS + 20 600 -50 (††) 600 High-side floating output voltage VS VB VCC Logic supply voltage 10 20 VIN Logic input voltage 0 VCC VS High-side floating supply offset voltage VST Transient High side floating supply offset voltage VHO Min. VS + 10 Units V TA Ambient Temperature -40 125 ºC † Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to – VBS. †† Operational for transient negative VS of COM - 50 V with a 50 ns pulse width. Guaranteed by design. Refer to the Application Information section of this datasheet for more details. www.irf.com © 2008 International Rectifier 5 IRS211(7,71,8)(S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. Symbol Definition Min. Typ. Max. Units IRS21171 --160 230 ton Turn-on propagation delay --125 200 IRS211(7,8) IRS21171 --- 160 230 IRS211(7,8) --- 105 180 Turn-on rise time --- 75 130 Turn-off fall time --- 35 65 toff Turn-off propagation delay tr tf ns Test Conditions VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL Definition Input voltage –logic “1” Input voltage – logic “0” Min Typ Max IRS21171 2.5 --- --- IRS211(7,8) 9.5 --- --- IRS21171 --- --- 0.8 IRS211(7,8) 6.0 VOH High level output voltage, VBIAS – VO --- 0.05 0.2 VOL Low level output voltage, VO --- 0.02 0.1 ILK Offset supply leakage current --- --- 50 IQBS IQCC IIN+ IIN- Quiescent VBS Supply Current IRS211(7,8) --- 50 240 IRS21171 --- 80 150 Quiescent VCC Supply Current IRS211(7,8) --- 70 340 IRS21171 --- 120 240 --- 20 40 Logic “1” input bias current Logic “0” input bias current IRS2117(1) IRS2118 IRS2117(1) Units V IO = 2mA VB = VS = 600V VIN = 0V or VCC µA VIN = VCC VIN = 0V IRS2118 --- --- 5.0 VBSUV+ VBS supply undervoltage positive going 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going 7.2 8.2 9.2 200 290 VIN = VCC V --IO+ Output high short circuit pulsed current --IO- Test Conditions Output low short circuit pulsed current 420 www.irf.com 600 mA VO = 0V VIN Logic “1” PW ≤ 10 µs VO = 15V VIN Logic “0” PW ≤ 10 µs © 2008 International Rectifier 6 IRS211(7,71,8)(S) Functional Block Diagram IRS2117(1) IRS2118 www.irf.com © 2008 International Rectifier 7 IRS211(7,71,8)(S) I/O Pin Equivalent Circuit Diagrams: IRS211(7,71,8) IRS2118 IRS2117(1) www.irf.com © 2008 International Rectifier 8 IRS211(7,71,8)(S) Lead Definitions Pin # 1 2 3 4 Symbol VCC Description Logic and gate drive supply IN IRS2117(1) Logic input for gate driver output (HO), in phase with HO IN NC IRS2118 Logic input for gate driver output (HO), out of phase with HO IRS21171 No Connect COM IRS2117 / IRS2118 Logic ground NC IRS2117 / IRS2118 No Connect COM IRS21171 Logic ground 5 NC No Connect 6 VS High-side floating supply return 7 HO High-side gate drive output 8 VB High-side floating supply Lead Assignments COM IRS21171 SOIC 8 IRS2117 PDIP 8 IRS2117 SOIC 8 IRS2118 PDIP 8 IRS2118 SOIC 8 www.irf.com © 2008 International Rectifier 9 IRS211(7,71,8)(S) Application Information and Additional Details HV = 10 to 600V VCC = 15V 10KF6 0.1 uF IRS2118 + 100 uF 200 uH 10 uF 1 8 10KF6 0.1 uF 6 7 2 HO dVS/dt < 50V/ns 10KF6 IRS2117(1) IRS21171 OUTPUT MONITOR IRF820 3 Figure 1 Input/Output Timing Diagram circuit Figure 2 Floating Supply Voltage Transient Test VCC = 15V IRS2118 0.1 uF VB 10 uF 1 8 0.1 uF 6 IN 7 2 CL 10 uF + 10 uF 15V VS HO (0 to 600V) IRS21171 IRS2117(1) 3 Figure 3 Switching Time Test Circuit Figure 4 Switching Time Waveform Definition www.irf.com © 2008 International Rectifier 10 IRS211(7,71,8)(S) Tolerant to Negative VS Transients A common problem in today’s high-power switching converters is the transient response of the switch node’s voltage as the power switches transition on and off quickly while carrying a large current. A typical half bridge circuit is shown in Figure 5; here we define the power switches and diodes of the inverter. If the high-side switch (e.g., Q1 in Figures 6 and 7) switches off, while the current is flowing to a load, a current commutation occurs from high-side switch (Q1) to the diode (D2) in parallel with the low-side switch of the inverter. At the same instance, the voltage node VS swings from the positive DC bus voltage to the negative DC bus voltage. DC+ BUS Q1 D1 Input Voltage To Load VS Q2 D2 DC- BUS Figure 5: Half Bridge Circuit DC+ BUS Q1 OFF D1 VS IL Q2 OFF D2 DC- BUS Figure 6: Q1 conducting Figure 7: D2 conducting Also when the current flows from the load back to the inverter (see Figures 8 and 9), and Q2 switches on, the current commutation occurs from D1 to Q2. At the same instance, the voltage node VS swings from the positive DC bus voltage to the negative DC bus voltage. www.irf.com © 2008 International Rectifier 11 IRS211(7,71,8)(S) DC+ BUS Q1 OFF DC+ BUS Q1 OFF D1 D1 IL VS VS IL Q2 OFF Q2 ON D2 DC- BUS DC- BUS Figure 8: D1 conducting Figure 9: Q2 conducting However, in a real inverter circuit, the VS voltage swing does not stop at the level of the negative DC bus, rather it swings below the level of the negative DC bus. This undershoot voltage is called “negative VS transient”. The circuit shown in Figure 10 depicts a half bridge circuit with parasitic elements shown; Figures 11 and 12 show a simplified illustration of the commutation of the current between Q1 and D2. The parasitic inductances in the power circuit from the die bonding to the PCB tracks are lumped together in LD and LS for each switch. When the high-side switch is on, VS is below the DC+ voltage by the voltage drops associated with the power switch and the parasitic elements of the circuit. When the high-side power switch turns off, the load current can momentarily flow in the low-side freewheeling diode due to the inductive load connected to VS (the load is not shown in these figures). This current flows from the DC- bus (which is connected to the COM pin of the HVIC) to the load and a negative voltage between VS and the DC- Bus is induced (i.e., the COM pin of the HVIC is at a higher potential than the VS pin). DC+ BUS Q1 OFF VS D1 + _ VLD2 Q2 OFF IL D2 + _ VLS2 DC- BUS Figure 10: Parasitic Elements Figure 11: VS positive Figure 12: VS negative In a typical power circuit, dV/dt is typically designed to be in the range of 1-5 V/ns. The negative VS transient voltage can exceed this range during some events such as short circuit and over-current shutdown, when di/dt is greater than in normal operation. International Rectifier’s HVICs have been designed for the robustness required in many of today’s demanding applications. An indication of the IRS211(7,71,8)’s robustness can be seen in Figure 13, where there is represented the IRS211(7,71,8) Safe Operating Area at VBS=15V based on repetitive negative VS spikes. A negative VS transient voltage falling in the grey area (outside SOA) may lead to IC permanent damage; viceversa unwanted functional anomalies or permanent damage to the IC do not appear if negative Vs transients fall inside SOA. www.irf.com © 2008 International Rectifier 12 IRS211(7,71,8)(S) Figure 13: Negative VS transient SOA for IRS211(7,71,8) @ VBS=15V Even though the IRS211(7,71,8) has shown the ability to handle these large negative VS transient conditions, it is highly recommended that the circuit designer always limit the negative VS transients as much as possible by careful PCB layout and component use. www.irf.com © 2008 International Rectifier 13 IRS211(7,71,8)(S) Parameter Temperature Trends - 211(7,71,8) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 Max. 100 0 -50 Typ. 400 300 200 Max. 100 Typ. 0 -25 0 25 50 75 100 125 10 12 Temperature ( C) o Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 20 250 200 150 100 Max. 50 0 -50 Typ. -25 0 25 50 75 100 200 150 100 Max. 50 Typ. 0 125 10 12 Figure 15A. Turn-Off Fall Tim e vs. Tem perature High Level Output Voltage (V) 0.4 0.3 Max. Typ -25 0 25 50 75 16 18 20 Figure 15B. Turn-Off Fall Tim e vs. Supply Voltage 0.5 0.0 -50 14 V BIAS Supply Voltage (V) Temperature ( C) o High Level Output Voltage (V) 18 Figure 14B. Turn-On Rise Tim e vs. Supply Voltage 250 0.1 16 V BIAS Supply Voltage (V) Figure 14A. Turn-On Rise Tim e vs.Tem perature 0.2 14 100 125 0.5 0.4 0.3 Max. 0.2 0.1 Typ 0 10 Temperature ( oC) 12 14 16 18 20 V cc Supply Voltage (V) Figure 16A. High Level Output vs. Tem perature (Io = 2m A) Figure 16B. High Level Output vs. Supply Voltage (Io = 2m A) www.irf.com © 2008 International Rectifier 14 0.5 0.4 0.3 0.2 Max. 0.1 0 -50 0.5 Low Level Output Voltage (V) Low Level Output Voltage (V) IRS211(7,71,8)(S) -25 0 25 50 75 100 0.4 0.3 0.2 Max. 0.1 0 125 10 12 Temperature ( oC) Offset Supply Leakage Current (μA) Offset Supply Leakage Current (μA) 400 300 200 100 Max. 0 25 50 75 100 125 Temperature ( oC) 400 300 200 100 Logic "1" Input Current (μΑ) Logic "1" Input Current (μΑ) 100 80 60 40 Max. 20 Typ. 0 0 25 50 75 100 Max. 0 0 100 200 300 400 500 600 V B Boost Voltage (V) Figure 18B.Offset Supply Leakage Current vs. VB Boost Voltage 120 -25 20 500 Figure 18A. Offset Supply Leakage Current vs. Tem perature - 50 18 Figure 17B. Low Level Output vs. Supply Voltage 500 -25 16 V cc Supply Voltage (V) Figure 17A. Low Level Output vs.Tem perature 0 -50 14 120 100 80 60 40 Max. Typ. 20 0 10 125 12 14 16 18 20 V cc Supply Voltage (V) Temperature ( oC) Figure 19B. Logic "1" (2118 "0") Input Current vs. Supply Voltage Figure 19A. Logic "1" (2118 "0") Inp Current vs. Tem perature www.irf.com © 2008 International Rectifier 15 IRS211(7,71,8)(S) Logic "0" Input Current (μΑ) Logic "0" Input Current (μΑ) 6 Max. 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 6 Max. 5 4 3 2 1 0 10 12 Temperature ( C) o V cc Supply Current (μΑ) V cc Supply Current (μΑ) 12 Max. 10 Typ. Mi n. 6 -50 -25 0 25 50 75 100 14 12 10 8 Max. Typ. Mi n. 6 -50 125 -25 0 Temperature ( C) o V Supply Current (μΑ) 14 12 Max. Typ. 8 Mi n. 6 0 25 50 50 75 100 125 Figure 22. V cc Undervoltage Threshold (-) vs. Tem perature 16 -25 25 Temperature ( oC) Figure 21. V cc Undervoltage Threshold (+) vs. Tem perature V BS Supply Current (μΑ) 20 16 14 -50 18 Figure 20B. Logic "0" (2118"1") Input Current vs. Supply Voltage 16 10 16 V cc Supply Voltage (V) Figure 20A. Logic "0" (2118 "1") Input Current vs. Tem perature 8 14 75 100 125 16 14 12 10 8 Max. Ty 6 Mi -50 -25 0 25 50 75 100 125 Temperature ( C) o Temperature ( C) o Figure 23. V BS Undervoltage Threshold (+) vs. Tem perature Figure 24. VBS Undervoltage Threshold (-) vs. Tem perature www.irf.com © 2008 International Rectifier 16 500 400 Output Source Current (mA) Output Source Current (mA) IRS211(7,71,8)(S) Typ. 300 200 Min. 100 0 -50 -25 0 25 50 75 100 500 400 300 200 Typ. 100 Min. 0 10 125 12 Figure 25A. Output Source Current vs. Tem perature Output Sink Current (mA) Output Sink Current (mA) 800 Typ. Min. 400 200 -25 0 25 50 75 20 1000 800 600 Typ. 400 200 Min. 0 10 100 125 12 14 16 18 20 V BIAS Supply Voltage (V) Temperature ( oC) Figure 26B. Output Sink Current vs. Supply Voltage Figure 26A. Output Sink Current vs.Tem perature vs Offset Supply Voltage (V) 18 Figure 25B. Output Source Current vs. Supply Voltage 1000 0 -50 16 V BIAS Supply Voltage (V) Temperature ( oC) 600 14 0 -2 -4 Typ. -6 -8 -10 -12 10 12 14 16 18 20 V bs Floating Supply Voltage (V) Figure 27. Maximum VS Negative Offset vs. Supply Voltage www.irf.com © 2008 International Rectifier 17 IRS211(7,71,8)(S) 500 Turn-on Delay Time (ns) Turn-on Delay Time (ns) Parameter Temperature Trends - 211(7,8) 400 300 200 Max. 100 Typ. 0 -50 -25 0 25 50 75 100 400 300 Max. 200 Typ. 100 0 10 125 12 14 16 18 20 Temperature ( oC) V BIAS Supply Voltage (V) Figure 28A. IRS211(7,8) Turn-On Tim e vs. Tem perature Figure 28B. IRS211(7,8) Turn-On Tim e vs. Supply Voltage 500 500 Turn-Off Time (ns) Turn-Off Time (ns) 500 400 300 200 Max. 100 400 300 Ma 200 Typ. 100 Typ. 0 -50 0 -25 0 25 50 75 100 10 125 12 13 15 12 13 11 10 Mi n. 8 -50 16 18 20 Figure 29B. IRS211(7,8) Turn-Off Tim e vs. Supply Voltage Input Voltage (V) Input Voltage (V) Figure 29A. IRS211(7,8) Turn-Off Tim e vs. Tem perature 9 14 V BIAS Supply Voltage (V) Temperature ( C) o 11 9 Mi n. 7 5 -25 0 25 50 75 100 125 10 Temperature ( oC) 12 14 16 18 20 Vcc Supply Voltage (V) Figure 30A. IRS2117 Logic "1" (2118 "0") Input Voltage vs. Tem perature Figure 30B. IRS2117 Logic "1" (2118 "0") Input Voltage vs. Supply Voltage www.irf.com © 2008 International Rectifier 18 9 15 8 12 Input Voltage (V) Input Voltage (V) IRS211(7,71,8)(S) 7 6 Max. 5 4 -50 9 6 Max. 3 0 -25 0 25 50 75 100 125 10 12 Temperatre ( oC) V Supply Current (μΑ) V Supply Current (μΑ) 800 600 400 Max. 200 Typ. 25 800 600 400 50 75 100 Max. 200 Typ. 0 10 125 12 1000 18 20 1000 V cc Supply Current (μΑ) V cc Supply Current (μA) 16 Figure 32B. 211(7,8) V BS Supply Current Figure 32A. 211(7,8) V BS Supply Current vs. Tem perature 800 600 Max. 200 Typ. 0 -50 14 V BS Supply Voltage (V) Temperature ( C) o 400 20 1000 0 0 18 V cc Supply Voltage (V) 1000 -25 16 Figure 31B. IRS2117 Logic "0" (2118 "1") Input Voltage vs. Supply Voltage Figure 31A. IRS2117 Logic "0" (2118 "1") Input Voltage vs. Tem perature -50 14 -25 0 25 50 75 100 125 800 600 400 Max. 200 Typ. 0 10 Temperature ( oC) 12 14 16 18 20 V cc Supply Voltage (V) Figure 33A. 211(7,8) V cc Supply Current vs. Tem perature Figure 33B. 211(7,8) V cc Supply Current vs. Supply Voltage www.irf.com © 2008 International Rectifier 19 IRS211(7,71,8)(S) Parameter Temperature Trends - 21171 500 Turn-on Delay Time (ns) Turn-on Delay Time (ns) 500 400 300 200 Max. 100 Typ. 0 -50 400 300 Max. 200 Typ. 100 0 -25 0 25 50 75 100 125 10 12 14 Temperature ( C) 500 500 400 400 300 200 Max. 100 Max. 200 Typ. 100 0 -25 0 25 50 75 100 10 125 12 Figure 35A. IRS21171 Turn-Off Tim e vs. Tem perature 16 18 20 Figure 35B. IRS21171 Turn-Off Tim e vs. Supply Voltage 5 5 4 4 Input Voltage (V) Input Voltage (V) 14 V BIAS Supply Voltage (V) Temperature ( oC) 3 1 -50 20 300 Typ. 2 18 Figure 34B. IRS21171 Turn-On Tim e vs. Supply Voltage Turn-Off Time (ns) Turn-Off Time (ns) Figure 34A. IRS21171 Turn-On Tim e vs. Tem perature 0 -50 16 V BIAS Supply Voltage (V) o Mi n. 3 2 Min. 1 -25 0 25 50 75 100 10 125 12 14 16 18 20 Vcc Supply Voltage (V) Temperature ( C) o Figure 36B. IRS21171 Logic "1" Input Voltage vs. Supply Voltage Figure 36A. IRS21171 Logic "1" Input Voltage vs. Tem perature www.irf.com © 2008 International Rectifier 20 IRS211(7,71,8)(S) 5 5 Input Voltage (V) Input Voltage (V) 4 3 2 Max. 1 4 3 2 Max. 1 0 0 -50 -25 0 25 50 75 100 10 125 12 14 Temperature ( C) o 20 Figure 37B. IRS21171 Logic "0" Input Voltage vs. Supply Voltage 400 400 V Supply Current (μΑ) V Supply Current (μΑ) 18 V cc Supply Voltage (V) Figure 37A. IRS21171 Logic "0" Input Voltage vs. Tem perature 300 200 Max. 100 Typ. -50 300 200 Max. 100 Typ. 0 0 -25 0 25 50 75 100 10 125 12 Temperature ( C) 14 16 18 20 V BS Supply Voltage (V) o Figure 38B. IRS21171 V BS Supply Current vs. Supply Voltage Figure 38A. IRS21171 V BS Supply Current vs. Tem perature 500 500 400 V cc Supply Current (μΑ) V cc Supply Current (μA) 16 300 Max. 200 100 Typ. 0 -50 -25 0 25 50 75 100 400 300 200 Max. 100 Typ. 125 0 10 Temperature ( oC) 12 14 16 18 20 V cc Supply Voltage (V) Figure 39A. IRS21171 V cc Supply Current vs. Tem perature Figure 39B. IRS21171 V cc Supply Current vs. Supply Voltage www.irf.com © 2008 International Rectifier 21 IRS211(7,71,8)(S) Figure 40. IRS2117/IRS2118 TJ vs. Frequency (IRFBC20) RGATE=33Ω, VCC=15V Figure 41. IRS2117/IRS2118 TJ vs. Frequency (IRFBC30) RGATE=22Ω, VCC=15V Figure 42. IRS2117/IRS2118 TJ vs. Frequency (IRFBC40) RGATE=15Ω, VCC=15V Figure 43. IRS2117/IRS2118 TJ vs. Frequency (IRFPE50) RGATE=10Ω, VCC=15V www.irf.com © 2008 International Rectifier 22 IRS211(7,71,8)(S) Package Details www.irf.com © 2008 International Rectifier 23 IRS211(7,71,8)(S) Package Details: SOIC8N, Tape and Reel LOADED TAPE FEED DIRECTION A B H D F C NOTE : CONTROLLING DIM ENSION IN M M E G CARRIER TAPE DIMENSION FOR Metric Code Min Max A 7.90 8.10 B 3.90 4.10 C 11.70 12.30 D 5.45 5.55 E 6.30 6.50 F 5.10 5.30 G 1.50 n/a H 1.50 1.60 8SOICN Imperial Min Max 0.311 0.318 0.153 0.161 0.46 0.484 0.214 0.218 0.248 0.255 0.200 0.208 0.059 n/a 0.059 0.062 F D C B A E G H REEL DIMENSIONS FOR 8SOICN Metric Code Min Max A 329.60 330.25 B 20.95 21.45 C 12.80 13.20 D 1.95 2.45 E 98.00 102.00 F n/a 18.40 G 14.50 17.10 H 12.40 14.40 www.irf.com Imperial Min Max 12.976 13.001 0.824 0.844 0.503 0.519 0.767 0.096 3.858 4.015 n/a 0.724 0.570 0.673 0.488 0.566 © 2008 International Rectifier 24 IRS211(7,71,8)(S) Part Marking Information Part number IRSxxxxx Date code YWW ? Pin 1 Identifier ? MARKING CODE P Lead Free Released IR logo ? XXXX Lot Code (Prod mode – 4 digit SPN code) Assembly site code Per SCOP 200-002 Non-Lead Free Released www.irf.com © 2008 International Rectifier 25 IRS211(7,71,8)(S) Ordering Information Base Part Number IRS2117 Package Type SOIC8N PDIP8 IRS21171 SOIC8N SOIC8N IRS2118 PDIP8 Standard Pack Complete Part Number Form Quantity Tube/Bulk 95 IRS2117SPBF Tape and Reel 2500 IRS2117STRPBF Tube/Bulk 50 IRS2117PBF Tube/Bulk 95 IRS21171SPBF Tape and Reel 2500 IRS21171STRPBF Tube/Bulk 95 IRS2118SPBF Tape and Reel 2500 IRS2118STRPBF Tube/Bulk 50 IRS2118PBF The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied. For technical support, please contact IR’s Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 www.irf.com © 2008 International Rectifier 26