MB9A340NB Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller The MB9A340NB Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power consumption mode and competitive cost. These series are based on the ARM® Cortex®-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions such as various timers, ADCs, and Communication Interfaces (USB, UART, CSIO, I2C). The products which are described in this data sheet are placed into TYPE6 product categories in FM3 Family Peripheral Manual. Features 32-bit ARM® Cortex®-M3 Core External Bus Interface* Processor version: r2p1 Supports SRAM, NOR Flash memory device Up to 40 MHz Frequency Operation Up to 8 chip selects Integrated Nested Vectored Interrupt Controller (NVIC): 1 8-/16-bit Data width NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels 24-bit System timer (Sys Tick): System timer for OS task Up to 25-bit Address bit Maximum area size: Up to 256 Mbytes Supports Address/Data multiplex management Supports external RDY function On-chip Memories *: MB9AF341LB, F342LB and F344LB do not support External Bus Interface. [Flash memory] Dual operation Flash memory Dual Operation Flash memory has the upper bank and the lower bank. So, this series could implement erase, write and read operations for each bank simultaneously. Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank + 16 Kbytes lower bank) Work area: 32 Kbytes (lower bank) Read cycle: 0 wait-cycle USB Interface The USB interface is composed of Device and Host. PLL for USB is built-in, USB clock can be generated by multiplication of Main clock. [USB device] USB2.0 Full-Speed supported Max 6 EndPoint supported EndPoint 0 is control transfer 1, 2 can select Bulk-transfer, Interrupt-transfer or Isochronous-transfer EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer EndPoint 1 to 5 is comprised of Double Buffers. The size of each endpoint is according to the follows. - Endpoint 0, 2 to 5: 64 bytes - Endpoint 1: 256 bytes Security function for code protection EndPoint [SRAM] This Series on-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus. SRAM0: Up to 16 Kbytes [USB host] SRAM1: Up to 16 Kbytes USB2.0 Full/Low-speed supported Bulk-transfer, interrupt-transfer and Isochronous-transfer support Automatic detection of connected/disconnected USB Device Automatic processing of the IN/OUT token handshake packet Max 256-byte packet-length supported Wake-up function supported Cypress Semiconductor Corporation Document Number: 002-05635 Rev.*B • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised July 26, 2017 MB9A340NB Series Multi-function Serial Interface (Max 8 channels) 4 channels with 16steps×9-bit FIFO (ch.4 to ch.7), 4 channels without FIFO (ch.0 to ch.3) Operation mode is selectable from the followings for each channel. UART CSIO I2 C [UART] Full-duplex double buffer A/D Converter (Max 24 channels) [12-bit A/D Converter] Successive Approximation type Built-in 2 units Conversion time: 2.0 μs @ 2.7 V to 3.6 V Priority conversion available (priority at 2 levels) Scanning conversion mode Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion: 4steps) Selection with or without parity supported Built-in dedicated baud rate generator Base Timer (Max 8 channels) External clock available as a serial clock Operation mode is selectable from the followings for each channel. Hardware Flow control* : Automatically control the 16-bit PWM timer transmission by CTS/RTS (only ch.4) Various error detection functions available (parity errors, framing errors, and overrun errors) *: MB9AF341LB, F342LB and F344LB do not support Hardware Flow control. 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General-Purpose I/O Port Built-in dedicated baud rate generator This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to. Overrun error detection function available Capable of pull-up control per pin [CSIO] Full-duplex double buffer [I2C] Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported DMA Controller (8 channels) The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process simultaneously. 8 independently configured and operated channels Transfer can be started by software or request from the built-in peripherals Transfer address area: 32-bit (4 Gbytes) Transfer mode: Block transfer/Burst transfer/Demand transfer Transfer data type: byte/half-word/word Capable of reading pin level directly Built-in the port relocate function Up to 83 fast general-purpose I/O Ports@100 pin Package Some ports are 5V tolerant I/O. See Pin Description to confirm the corresponding pins. Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. Free-running Periodic (=Reload) One-shot Transfer block count: 1 to 16 Number of transfers: 1 to 65536 Document Number: 002-05635 Rev.*B Page 2 of 126 MB9A340NB Series HDMI-CEC/Remote Control Receiver (Up to 2 channels) HDMI-CEC transmitter Header block automatic transmission by judging Signal free Generating status interrupt by detecting Arbitration lost Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK) HDMI-CEC receiver Automatic ACK reply function available Line error detection function available Remote control receiver 4 bytes reception buffer Repeat code detection function available CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage. CCITT CRC16 and IEEE-802.3 CRC32 are supported. CCITT CRC16 Generator Polynomial: 0x1021 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 Clock and Reset [Clocks] Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL). Main Clock: 4 MHz to 48 MHz Sub Clock: 32.768 kHz Built-in high-speed CR Clock: 4 MHz Real-time clock (RTC) The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 00 to 99. The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute. Built-in low-speed CR Clock: 100 kHz Main PLL Clock [Resets] Reset requests from INITX pin Power-on reset Timer interrupt function after set time or each set time. Software reset Capable of rewriting the time with continuing the time count. Watchdog timers reset Leap year automatic count is available. Low-voltage detection reset Watch Counter The Watch counter is used for wake up from sleep and timer mode. Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz External Interrupt Controller Unit Up to 16 external interrupt input pins Include one non-maskable interrupt (NMI) input pin Clock Super Visor reset Clock Super Visor (CSV) Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks. External clock failure (clock stop) is detected, reset is asserted. External frequency anomaly is detected, interrupt or reset is asserted. Watchdog Timer (2 channels) Low-Voltage Detector (LVD) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This Series includes 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset. This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog. The Hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the Hardware watchdog is active in any low-power consumption modes except RTC, Stop, Deep Standby RTC, Deep Standby Stop modes. Document Number: 002-05635 Rev.*B LVD1: error reporting via interrupt LVD2: auto-reset operation Page 3 of 126 MB9A340NB Series Low-Power Consumption Mode Debug Six low-power consumption modes supported. Serial Wire JTAG Debug Port (SWJ-DP) Sleep Timer RTC Stop Deep Standby RTC (selectable between keeping the value of Embedded Trace Macrocells (ETM).* *: MB9AF341LB/MB, F342LB/MB and F344LB/MB support only SWJ-DP. Unique ID Unique value of the device (41-bit) is set. RAM and not) Deep Standby Stop (selectable between keeping the value of RAM and not) Document Number: 002-05635 Rev.*B Power Supply Wide range voltage: VCC = 1.65 V to 3.6 V VCC = 3.0 V to 3.6 V (when USB is used) Page 4 of 126 MB9A340NB Series Contents 1. Product Lineup .................................................................................................................................................................. 7 2. Packages ........................................................................................................................................................................... 8 3. Pin Assignment ................................................................................................................................................................. 9 4. List of Pin Functions....................................................................................................................................................... 16 5. I/O Circuit Type................................................................................................................................................................ 40 6. Handling Precautions ..................................................................................................................................................... 44 7. Handling Devices ............................................................................................................................................................ 47 8. Block Diagram ................................................................................................................................................................. 49 9. Memory Size .................................................................................................................................................................... 50 10. Memory Map .................................................................................................................................................................... 50 11. Pin Status in Each CPU State ........................................................................................................................................ 53 12. Electrical Characteristics ............................................................................................................................................... 61 12.1 Absolute Maximum Ratings ......................................................................................................................................... 61 12.2 Recommended Operating Conditions.......................................................................................................................... 62 12.3 DC Characteristics....................................................................................................................................................... 63 12.3.1 Current rating ............................................................................................................................................................... 63 12.3.2 Pin Characteristics ....................................................................................................................................................... 66 12.4 AC Characteristics ....................................................................................................................................................... 67 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 67 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 68 12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 68 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) ................................... 69 12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main PLL) ........................................................................................................................................................... 69 12.4.6 Reset Input Characteristics .......................................................................................................................................... 71 12.4.7 Power-on Reset Timing................................................................................................................................................ 71 12.4.8 External Bus Timing ..................................................................................................................................................... 72 12.4.9 Base Timer Input Timing .............................................................................................................................................. 79 12.4.10 CSIO/UART Timing .................................................................................................................................................. 80 12.4.11 External Input Timing ................................................................................................................................................ 89 12.4.12 I2C Timing ................................................................................................................................................................. 90 12.4.13 ETM Timing .............................................................................................................................................................. 91 12.4.14 JTAG Timing ............................................................................................................................................................. 92 12.5 12-bit A/D Converter .................................................................................................................................................... 93 12.6 USB Characteristics .................................................................................................................................................... 96 12.7 Low-Voltage Detection Characteristics ...................................................................................................................... 100 12.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 100 12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 101 12.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 102 12.8.1 Write / Erase time....................................................................................................................................................... 102 12.8.2 Write cycles and data hold time ................................................................................................................................. 102 12.9 Return Time from Low-Power Consumption Mode .................................................................................................... 103 12.9.1 Return Factor: Interrupt/WKUP .................................................................................................................................. 103 12.9.2 Return Factor: Reset .................................................................................................................................................. 105 13. Ordering Information .................................................................................................................................................... 107 14. Package Dimensions .................................................................................................................................................... 109 15. Errata.............................................................................................................................................................................. 118 Document Number: 002-05635 Rev.*B Page 5 of 126 MB9A340NB Series 16. Major Changes .............................................................................................................................................................. 122 Document History ............................................................................................................................................................... 125 Sales, Solutions, and Legal Information ........................................................................................................................... 126 Document Number: 002-05635 Rev.*B Page 6 of 126 MB9A340NB Series 1. Product Lineup Memory size Product name On-chip Flash memory On-chip SRAM MB9AF341LB/MB/NB MB9AF342LB/MB/NB MB9AF344LB/MB/NB Main area 64 Kbytes 128 Kbytes 256 Kbytes Work area 32 Kbytes 32 Kbytes 32 Kbytes SRAM0 8 Kbytes 8 Kbytes 16 Kbytes SRAM1 Total 8 Kbytes 16 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes 32 Kbytes Function Product name Pin count MB9AF341LB MB9AF342LB MB9AF344LB 64 CPU Freq. Power supply voltage range USB2.0 (Device/Host) DMAC External Bus Interface Multi-function Serial Interface (UART/CSIO/I2C) Base Timer (PWC/Reload timer/PWM/PPG) Dual Timer HDMI-CEC/ Remote Control Receiver Real-Time Clock Watch Counter CRC Accelerator Watchdog timer External Interrupts - MB9AF341MB MB9AF341NB MB9AF342MB MB9AF342NB MB9AF344MB MB9AF344NB 80/96 100/112 Cortex-M3 40 MHz 1.65 V to 3.6 V 1 ch. 8 ch. Addr: 21-bit (Max) Addr: 25-bit (Max) R/W Data: 8-bit (Max) R/W Data: 8-/16-bit (Max) CS: 4 (Max) CS: 8 (Max) Support: SRAM, NOR Support: SRAM, Flash memory NOR Flash memory 8 ch. (Max) ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO 8 ch. (Max) 1 unit 2 ch. (Max) 1 unit 1 unit Yes 1ch. (SW) + 1ch. (HW) 8 pins (Max) + 11 pins (Max) + NMI × 1 NMI × 1 51 pins (Max) 66 pins (Max) 12 ch. (2 units) 17 ch. (2 units) Yes 2 ch. 4 MHz 100 kHz SWJ-DP Yes 16 pins (Max) + NMI × 1 83 pins (Max) 24 ch. (2 units) I/O ports 12-bit A/D converter CSV (Clock Super Visor) LVD (Low-Voltage Detector) High-speed Built-in CR Low-speed Debug Function SWJ-DP/ETM Unique ID Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See Electrical Characteristics 12.4 AC Characteristics (12.4.3)Built-in CR Oscillation Characteristics for accuracy of built-in CR. Document Number: 002-05635 Rev.*B Page 7 of 126 MB9A340NB Series 2. Packages Product name Package MB9AF341LB MB9AF342LB MB9AF344LB MB9AF341MB MB9AF342MB MB9AF344MB - MB9AF341NB MB9AF342NB MB9AF344NB - - - LQFP: LQD064 (0.5 mm pitch) LQFP: LQG064 (0.65 mm pitch) QFN: VNC064 (0.5 mm pitch) - LQFP: LQH080 (0.5 mm pitch) - - LQFP: LQJ080 (0.65 mm pitch) - - BGA: FDG096 (0.5 mm pitch) - - LQFP: LQI100 (0.5 mm pitch) - - QFP: PQH100 (0.65 mm pitch) - - BGA: LBC112 (0.8 mm pitch) - - : Supported Note: − See Package Dimensions for detailed information on each package. Document Number: 002-05635 Rev.*B Page 8 of 126 MB9A340NB Series 3. Pin Assignment LQI100 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 VCC 78 77 76 P03/TMS/SWDIO P02/TDI/MCSX6_1 80 79 P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1 P04/TDO/SWO 82 81 P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1 P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1 85 84 83 P0A/SIN4_0/INT00_2/MCSX1_1 P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1 P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1 87 86 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 89 88 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 91 90 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 93 92 P61/SOT5_0/TIOB2_2/UHCONX P62/SCK5_0/ADTG_3/MOEX_1 95 94 P80/UDM0 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 98 97 99 96 VSS P81/UDP0 100 (TOP VIEW) VCC 1 75 VSS P50/INT00_0/SIN3_1/MADATA00_1 2 74 P20/AN19/INT05_0/CROUT_0/MAD24_1 P51/INT01_0/SOT3_1/MADATA01_1 3 73 P21/AN18/SIN0_0/INT06_1/WKUP2 P52/INT02_0/SCK3_1/MADATA02_1 4 72 P22/AN17/SOT0_0/TIOB7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 5 71 P23/AN16/SCK0_0/TIOA7_1 P54/SOT6_0/TIOB1_2/MADATA04_1 6 70 P1F/AN15/ADTG_5/MAD23_1 P55/SCK6_0/ADTG_1/MADATA05_1 7 69 P1E/AN14/RTS4_1/MAD22_1 P56/INT08_2/MADATA06_1 8 68 P1D/AN13/CTS4_1/MAD21_1 P30/TIOB0_1/INT03_2/MADATA07_1 9 67 P1C/AN12/SCK4_1/MAD20_1 P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10 66 P1B/AN11/SOT4_1/MAD19_1 P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11 65 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12 64 P19/AN09/SCK2_2/MAD17_1 P34/TIOB4_1/MADATA11_1 13 63 P18/AN08/SOT2_2/MAD16_1 P35/TIOB5_1/INT08_1/MADATA12_1 14 62 AVSS P36/SIN5_2/INT09_1/MADATA13_1 15 61 AVRH P37/SOT5_2/INT10_1/MADATA14_1 16 60 AVCC P38/SCK5_2/INT11_1/MADATA15_1 17 59 P17/AN07/SIN2_2/INT04_1/MAD15_1 P39/ADTG_2 18 58 P16/AN06/SCK0_1/MAD14_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 19 57 P15/AN05/SOT0_1/MAD13_1 P3B/TIOA1_1 20 56 P14/AN04/SIN0_1/INT03_1/MAD12_1 P3C/TIOA2_1 21 55 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 P3D/TIOA3_1 22 54 P12/AN02/SOT1_1/MAD10_1 P3E/TIOA4_1 23 53 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 P3F/TIOA5_1 24 52 P10/AN00 VSS 25 51 VCC 48 49 50 PE2/X0 VSS MD0 PE3/X1 46 47 PE0/MD1 44 45 P4D/TIOB4_0/SOT7_1/MAD07_1 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 41 42 43 P4B/TIOB2_0/MAD05_1 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 39 40 P48/INT14_1/SIN3_2/MAD02_1 INITX P49/TIOB0_0/SOT3_2/MAD03_1 37 38 P47/X1A P4A/TIOB1_0/SCK3_2/MAD04_1 35 36 VCC P46/X0A 33 34 C VSS 31 32 P44/TIOA4_0/MAD00_1 P45/TIOA5_0/MAD01_1 28 29 30 P42/TIOA2_0 P41/TIOA1_0/INT13_1 P43/TIOA3_0/ADTG_7 26 27 VCC P40/TIOA0_0/INT12_1 LQFP - 100 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 9 of 126 MB9A340NB Series PQH100 P50/INT00_0/SIN3_1/MADATA00_1 VCC VSS P81/UDP0 P80/UDM0 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 P61/SOT5_0/TIOB2_2/UHCONX P62/SCK5_0/ADTG_3/MOEX_1 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 P0A/SIN4_0/INT00_2/MCSX1_1 P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1 P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1 P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1 P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1 P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MCSX6_1 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 VCC VSS P20/AN19/INT05_0/CROUT_0/MAD24_1 P21/AN18/SIN0_0/INT06_1/WKUP2 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 (TOP VIEW) P51/INT01_0/SOT3_1/MADATA01_1 81 50 P22/AN17/SOT0_0/TIOB7_1 P52/INT02_0/SCK3_1/MADATA02_1 82 49 P23/AN16/SCK0_0/TIOA7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 83 48 P1F/AN15/ADTG_5/MAD23_1 P54/SOT6_0/TIOB1_2/MADATA04_1 84 47 P1E/AN14/RTS4_1/MAD22_1 P55/SCK6_0/ADTG_1/MADATA05_1 85 46 P1D/AN13/CTS4_1/MAD21_1 P56/INT08_2/MADATA06_1 86 45 P1C/AN12/SCK4_1/MAD20_1 P30/TIOB0_1/INT03_2/MADATA07_1 87 44 P1B/AN11/SOT4_1/MAD19_1 P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 88 43 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 89 42 P19/AN09/SCK2_2/MAD17_1 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 90 41 P18/AN08/SOT2_2/MAD16_1 QFP - 100 16 17 18 19 20 21 22 23 24 25 26 27 28 INITX P48/INT14_1/SIN3_2/MAD02_1 P49/TIOB0_0/SOT3_2/MAD03_1 P4A/TIOB1_0/SCK3_2/MAD04_1 P4B/TIOB2_0/MAD05_1 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 P4D/TIOB4_0/SOT7_1/MAD07_1 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS 30 15 P47/X1A 29 14 P46/X0A VCC 13 P10/AN00 12 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 VSS 31 VCC 100 11 P12/AN02/SOT1_1/MAD10_1 P3D/TIOA3_1 C P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 32 9 33 99 10 98 P3C/TIOA2_1 P45/TIOA5_0/MAD01_1 P14/AN04/SIN0_1/INT03_1/MAD12_1 P3B/TIOA1_1 8 34 P43/TIOA3_0/ADTG_7 97 P44/TIOA4_0/MAD00_1 P15/AN05/SOT0_1/MAD13_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 7 35 P42/TIOA2_0 96 6 P16/AN06/SCK0_1/MAD14_1 P39/ADTG_2 5 P17/AN07/SIN2_2/INT04_1/MAD15_1 36 P41/TIOA1_0/INT13_1 37 95 P40/TIOA0_0/INT12_1 94 P38/SCK5_2/INT11_1/MADATA15_1 4 AVCC P37/SOT5_2/INT10_1/MADATA14_1 VCC 38 3 93 2 AVRH P36/SIN5_2/INT09_1/MADATA13_1 1 AVSS 39 VSS 40 92 P3F/TIOA5_1 91 P3E/TIOA4_1 P34/TIOB4_1/MADATA11_1 P35/TIOB5_1/INT08_1/MADATA12_1 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 10 of 126 MB9A340NB Series LQH080/ LQJ080 VSS P81/UDP0 P80/UDM0 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1 P61/SOT5_0/TIOB2_2/UHCONX P62/SCK5_0/ADTG_3/MOEX_1 P63/INT03_0/MWEX_1 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0E/CTS4_0/TIOB3_2/MDQM1_1 P0D/RTS4_0/TIOA3_2/MDQM0_1 P0C/SCK4_0/TIOA6_1/MALE_1 P0B/SOT4_0/TIOB6_1/MCSX0_1 P0A/SIN4_0/INT00_2/MCSX1_1 P07/AN22/ADTG_0/MCLKOUT_1 P04/TDO/SWO P03/TMS/SWDIO P02/TDI/MCSX6_1 P01/TCK/SWCLK P00/TRSTX/MCSX7_1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 (TOP VIEW) VCC 1 60 P20/AN19/INT05_0/CROUT_0/MAD24_1 P50/INT00_0/SIN3_1/MADATA00_1 2 59 P21/AN18/SIN0_0/INT06_1/WKUP2 P51/INT01_0/SOT3_1/MADATA01_1 3 58 P22/AN17/SOT0_0/TIOB7_1 P52/INT02_0/SCK3_1/MADATA02_1 4 57 P23/AN16/SCK0_0/TIOA7_1 P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1 5 56 P1B/AN11/SOT4_1/MAD19_1 P54/SOT6_0/TIOB1_2/MADATA04_1 6 55 P1A/AN10/SIN4_1/INT05_1/MAD18_1 P55/SCK6_0/ADTG_1/MADATA05_1 7 54 P19/AN09/SCK2_2/MAD17_1 P56/INT08_2/MADATA06_1 8 53 P18/AN08/SOT2_2/MAD16_1 P30/TIOB0_1/INT03_2/MADATA07_1 9 52 AVSS P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1 10 51 AVRH P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1 11 50 AVCC P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1 12 49 P17/AN07/SIN2_2/INT04_1/MAD15_1 P39/ADTG_2 13 48 P16/AN06/SCK0_1/MAD14_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 14 47 P15/AN05/SOT0_1/MAD13_1 P3B/TIOA1_1 15 46 P14/AN04/SIN0_1/INT03_1/MAD12_1 P3C/TIOA2_1 16 45 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1 P3D/TIOA3_1 17 44 P12/AN02/SOT1_1/MAD10_1 P3E/TIOA4_1 18 43 P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1 P3F/TIOA5_1 19 42 P10/AN00 VSS 20 41 VCC 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P44/TIOA4_0/MAD00_1 P45/TIOA5_0/MAD01_1 C VSS VCC P46/X0A P47/X1A INITX P48/INT14_1/SIN3_2/MAD02_1 P49/TIOB0_0/SOT3_2/MAD03_1 P4A/TIOB1_0/SCK3_2/MAD04_1 P4B/TIOB2_0/MAD05_1 P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1 P4D/TIOB4_0/SOT7_1/MAD07_1 P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS LQFP - 80 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 11 of 126 MB9A340NB Series LQD064/ LQG064 VSS P81/UDP0 P80/UDM0 VCC P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1 P61/SOT5_0/TIOB2_2/UHCONX P62/SCK5_0/ADTG_3 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 P0C/SCK4_0/TIOA6_1 P0B/SOT4_0/TIOB6_1 P0A/SIN4_0/INT00_2 P04/TDO/SWO P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 (TOP VIEW) VCC 1 48 P21/AN18/SIN0_0/INT06_1/WKUP2 P50/INT00_0/SIN3_1 2 47 P22/AN17/SOT0_0/TIOB7_1 P51/INT01_0/SOT3_1 3 46 P23/AN16/SCK0_0/TIOA7_1 P52/INT02_0/SCK3_1 4 45 P19/AN09/SCK2_2 P30/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/TIOB1_1/SCK6_1/INT04_2 6 43 AVSS P32/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10 39 P15/AN05 P3B/TIOA1_1 11 38 P14/AN04/INT03_1 P3C/TIOA2_1 12 37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1 P3D/TIOA3_1 13 36 P12/AN02/SOT1_1 P3E/TIOA4_1 14 35 P11/AN01/SIN1_1/INT02_1/WKUP1 P3F/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 C VCC P46/X0A P47/X1A INITX P49/TIOB0_0 P4A/TIOB1_0 P4B/TIOB2_0 P4C/TIOB3_0/SCK7_1/CEC0 P4D/TIOB4_0/SOT7_1 P4E/TIOB5_0/INT06_2/SIN7_1 PE0/MD1 MD0 PE2/X0 PE3/X1 VSS LQFP - 64 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 12 of 126 MB9A340NB Series VNC064 P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX 52 51 50 49 P0A/SIN4_0/INT00_2 P04/TDO/SWO 54 53 P0C/SCK4_0/TIOA6_1 P0B/SOT4_0/TIOB6_1 56 55 P62/SCK5_0/ADTG_3 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0 58 57 P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1 P61/SOT5_0/TIOB2_2/UHCONX 60 59 P80/UDM0 VCC 62 61 VSS P81/UDP0 64 63 (TOP VIEW) VCC 1 48 P21/AN18/SIN0_0/INT06_1/WKUP2 P50/INT00_0/SIN3_1 2 47 P22/AN17/SOT0_0/TIOB7_1 P51/INT01_0/SOT3_1 3 46 P23/AN16/SCK0_0/TIOA7_1 P52/INT02_0/SCK3_1 4 45 P19/AN09/SCK2_2 P30/TIOB0_1/INT03_2 5 44 P18/AN08/SOT2_2 P31/TIOB1_1/SCK6_1/INT04_2 6 43 AVSS P32/TIOB2_1/SOT6_1/INT05_2 7 42 AVRH P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6 8 41 AVCC P39/ADTG_2 9 40 P17/AN07/SIN2_2/INT04_1 P3A/TIOA0_1/RTCCO_2/SUBOUT_2 10 39 P15/AN05 P3B/TIOA1_1 11 38 P14/AN04/INT03_1 P3C/TIOA2_1 12 37 P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1 P3D/TIOA3_1 13 36 P12/AN02/SOT1_1 P3E/TIOA4_1 14 35 P11/AN01/SIN1_1/INT02_1/WKUP1 P3F/TIOA5_1 15 34 P10/AN00 VSS 16 33 VCC 29 31 32 PE3/X1 VSS PE0/MD1 30 P4E/TIOB5_0/INT06_2/SIN7_1 MD0 27 28 P4D/TIOB4_0/SOT7_1 PE2/X0 25 26 P4C/TIOB3_0/SCK7_1/CEC0 23 24 P4A/TIOB1_0 P4B/TIOB2_0 21 22 INITX 19 20 P46/X0A P47/X1A P49/TIOB0_0 17 18 C VCC QFN - 64 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 13 of 126 MB9A340NB Series LBC112 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A VSS UDP0 UDM0 VCC P0E P0B AN22 TMS/ SWDIO TRSTX VCC VSS B VCC VSS P52 P61 P0F P0C AN23 TDO/ SWO TCK/ SWCLK VSS TDI C P50 P51 VSS P60 P62 P0D P09 AN20 VSS AN19 AN18 D P53 P54 P55 VSS P56 P63 P0A VSS AN21 AN16 AN15 E P30 P31 P32 P33 Index AN17 AN14 AN12 AN11 F P34 P35 P36 P39 AN13 AN10 AN09 AVRH G P37 P38 P3A P3D AN08 AN07 AN06 AVSS H P3B P3C P3E VSS P44 P4C AN05 VSS AN04 AN03 AVCC J VCC P3F VSS P40 P43 P49 P4D AN02 VSS AN01 AN00 K VCC VSS X1A INITX P42 P48 P4B P4E MD1 VSS VCC L VSS C X0A VSS P41 P45 P4A MD0 X0 X1 VSS PFBGA - 112 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 14 of 126 MB9A340NB Series FDG096 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A VSS UDP0 UDM0 VCC VSS P0F VSS AN22 TMS/ SWDIO TRSTX VSS B VCC VSS P52 P61 P63 P0D P0C TDO/ SWO TCK/ SWCLK VSS TDI C P50 P51 VSS P60 P62 P0E P0B P0A VSS AN19 AN18 D P53 P54 P55 Index AN17 AN16 VSS E P56 P30 P31 AN11 AN10 AN09 F VSS VSS VSS AN08 AN07 AVRH G P32 P33 P39 AN06 AN05 AVSS H P3A P3B P3C AN04 AN03 AVCC J P3D P3E VSS P3F P48 P4A P4D AN02 VSS AN01 AN00 K VCC VSS X1A INITX P45 P49 P4C P4E MD1 VSS VCC L VSS C X0A VSS P44 VSS P4B MD0 X0 X1 VSS PFBGA - 96 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05635 Rev.*B Page 15 of 126 MB9A340NB Series 4. List of Pin Functions List of Pin Numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 1 79 B1 1 B1 LQFP-64 QFN-64 1 I/O Circuit Type Pin Name VCC Pin State Type - P50 2 80 C1 2 C1 2 INT00_0 SIN3_1 - E L E L E L E L E K MADATA00_1 P51 3 81 C2 3 C2 3 INT01_0 SOT3_1 (SDA3_1) - MADATA01_1 P52 4 82 B3 4 B3 4 INT02_0 SCK3_1 (SCL3_1) - MADATA02_1 P53 SIN6_0 5 83 D1 5 D1 - TIOA1_2 INT07_2 MADATA03_1 P54 6 84 D2 6 D2 - SOT6_0 (SDA6_0) TIOB1_2 MADATA04_1 Document Number: 002-05635 Rev.*B Page 16 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 LQFP-64 QFN-64 BGA-96 Pin Name I/O Circuit Type Pin State Type P55 7 85 D3 7 D3 - SCK6_0 (SCL6_0) E K E L E L E L E L E L E K E L ADTG_1 MADATA05_1 P56 8 86 D5 8 E1 - INT08_2 MADATA06_1 P30 9 87 E1 9 E2 5 TIOB0_1 INT03_2 - MADATA07_1 P31 TIOB1_1 10 88 E2 10 E3 6 SCK6_1 (SCL6_1) INT04_2 - MADATA08_1 P32 TIOB2_1 11 89 E3 11 G1 7 SOT6_1 (SDA6_1) INT05_2 - MADATA09_1 P33 INT04_0 12 90 E4 12 G2 8 TIOB3_1 SIN6_1 ADTG_6 - MADATA10_1 P34 13 91 F1 - - - TIOB4_1 MADATA11_1 P35 14 92 F2 - - - TIOB5_1 INT08_1 MADATA12_1 Document Number: 002-05635 Rev.*B Page 17 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 I/O Circuit Type Pin Name Pin State Type P36 SIN5_2 15 93 F3 - - - - - - - F1 - VSS - - - - - F2 - VSS - - - - - F3 - VSS - INT09_1 E L MADATA13_1 P37 16 94 G1 - - - SOT5_2 (SDA5_2) E L E L E K E K E K E K E K INT10_1 MADATA14_1 P38 17 95 G2 - - - SCK5_2 (SCL5_2) INT11_1 MADATA15_1 18 96 F4 13 G3 9 P39 ADTG_2 P3A 19 97 G3 14 H1 10 TIOA0_1 RTCCO_2 SUBOUT_2 20 98 H1 15 H2 11 21 99 H2 16 H3 12 22 100 G4 17 J1 13 - - B2 - B2 - P3B TIOA1_1 P3C TIOA2_1 P3D TIOA3_1 VSS P3E - 23 1 H3 18 J2 14 24 2 J2 19 J4 15 25 3 L1 20 L1 16 VSS - 26 4 J1 - - - VCC - Document Number: 002-05635 Rev.*B TIOA4_1 P3F TIOA5_1 E K E K Page 18 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 27 5 J4 - BGA-96 LQFP-64 QFN-64 I/O Circuit Type Pin Name Pin State Type P40 - - TIOA0_0 E L E L E K E K E K E K INT12_1 P41 28 6 L5 - - - TIOA1_0 INT13_1 29 7 K5 - - - P42 TIOA2_0 P43 30 8 J5 - - - TIOA3_0 ADTG_7 P44 TIOA4_0 MAD00_1 P45 TIOA5_0 MAD01_1 31 9 H5 21 L5 - 32 10 L6 22 K5 - - - K2 - K2 - VSS - - - J3 - J3 - VSS - - - H4 - - - VSS - - - - - L6 - VSS - 33 11 L2 23 L2 17 C - 34 12 L4 24 L4 - VSS - 35 13 K1 25 K1 18 VCC - 36 14 L3 26 L3 19 37 15 K3 27 K3 20 38 16 K4 28 K4 21 P46 X0A P47 X1A INITX D F D G B C E L E K P48 39 17 K6 29 J5 - INT14_1 SIN3_2 MAD02_1 22 40 18 J6 30 K6 - P49 TIOB0_0 SOT3_2 (SDA3_2) MAD03_1 Document Number: 002-05635 Rev.*B Page 19 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 23 41 19 L7 31 J6 - I/O Circuit Type Pin Name Pin State Type P4A TIOB1_0 SCK3_2 (SCL3_2) E K E K I S I K I L C E G D A A A B MAD04_1 42 20 K7 32 L7 24 - P4B TIOB2_0 MAD05_1 P4C TIOB3_0 43 21 H6 33 K7 25 SCK7_1 (SCL7_1) CEC0 - MAD06_1 P4D 44 22 J7 34 J7 26 TIOB4_0 SOT7_1 (SDA7_1) - MAD07_1 P4E 45 23 K8 35 K8 27 TIOB5_0 INT06_2 SIN7_1 - MAD08_1 MD1 46 24 K9 36 K9 28 47 25 L8 37 L8 29 48 26 L9 38 L9 30 49 27 L10 39 L10 31 50 28 L11 40 L11 32 VSS - 51 29 K11 41 K11 33 VCC - 52 30 J11 42 J11 34 PE0 MD0 X0 PE2 X1 PE3 P10 AN00 F M F R P11 AN01 53 31 J10 43 J10 35 SIN1_1 INT02_1 WKUP1 - Document Number: 002-05635 Rev.*B MAD09_1 Page 20 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 I/O Circuit Type Pin Name Pin State Type P12 36 AN02 54 32 J8 44 J8 - MAD10_1 - - K10 - K10 - VSS - - - J9 - J9 - VSS - SOT1_1 (SDA1_1) F M P13 AN03 55 33 H10 45 H10 37 SCK1_1 (SCL1_1) F M F N F M F M F N RTCCO_1 SUBOUT_1 - MAD11_1 P14 38 56 34 H9 46 H9 INT03_1 39 57 35 H7 47 AN04 G10 - SIN0_1 MAD12_1 P15 AN05 SOT0_1 (SDA0_1) MAD13_1 P16 AN06 58 36 G10 48 G9 - SCK0_1 (SCL0_1) MAD14_1 P17 59 37 G9 49 F10 40 AN07 SIN2_2 INT04_1 - MAD15_1 60 38 H11 50 H11 41 AVCC - 61 39 F11 51 F11 42 AVRH - 62 40 G11 52 G11 43 AVSS - Document Number: 002-05635 Rev.*B Page 21 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 I/O Circuit Type Pin Name Pin State Type P18 63 41 G8 53 F9 44 AN08 SOT2_2 (SDA2_2) - F M F M MAD16_1 P19 64 - 42 - F10 H8 54 - E11 - 45 AN09 SCK2_2 (SCL2_2) - MAD17_1 - VSS - P1A AN10 65 43 F9 55 E10 - SIN4_1 F N F M F M F M F M F M INT05_1 MAD18_1 P1B AN11 66 44 E11 56 E9 - SOT4_1 (SDA4_1) MAD19_1 P1C AN12 67 45 E10 - - - SCK4_1 (SCL4_1) MAD20_1 P1D 68 46 F8 - - - AN13 CTS4_1 MAD21_1 P1E 69 47 E9 - - - AN14 RTS4_1 MAD22_1 P1F 70 48 D11 - - - AN15 ADTG_5 MAD23_1 Document Number: 002-05635 Rev.*B Page 22 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 - - B10 - - - C9 - - - - - I/O Circuit Type Pin Name B10 LQFP-64 QFN-64 - VSS - C9 - VSS - D11 - VSS - BGA-96 Pin State Type P23 AN16 71 49 D10 57 D10 46 SCK0_0 (SCL0_0) F M F M F R F N TIOA7_1 P22 AN17 72 50 E8 58 D9 47 SOT0_0 (SDA0_0) TIOB7_1 P21 AN18 73 51 C11 59 C11 48 SIN0_0 INT06_1 WKUP2 P20 AN19 74 52 C10 60 C10 - INT05_0 CROUT_0 MAD24_1 75 53 A11 - A11 - VSS - 76 54 A10 - - - VCC - 77 55 A9 61 A10 49 - P00 TRSTX E J E J E J E J E J MCSX7_1 P01 78 56 B9 62 B9 50 TCK SWCLK 79 57 B11 63 B11 51 - P02 TDI MCSX6_1 P03 80 58 A8 64 A9 52 TMS SWDIO P04 81 59 B8 65 B8 53 TDO SWO Document Number: 002-05635 Rev.*B Page 23 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 I/O Circuit Type Pin Name Pin State Type P05 AN20 TRACED0 82 60 C8 - - - TIOA5_2 F Q SIN4_2 INT00_1 MCSX5_1 - - D8 - - - VSS - P06 AN21 TRACED1 83 61 D9 - - - TIOB5_2 F Q F P SOT4_2 (SDA4_2) INT01_1 MCSX4_1 P07 AN22 66 84 62 A8 A7 ADTG_0 - MCLKOUT_ 1 TRACED2 - - - - - - A7 SCK4_2 (SCL4_2) - VSS - P08 AN23 85 63 B7 - - - TRACED3 TIOA0_2 F P E O I L CTS4_2 MCSX3_1 P09 TRACECLK 86 64 C7 - - - TIOB0_2 RTS4_2 MCSX2_1 P0A 87 65 D7 67 C8 54 INT00_2 - Document Number: 002-05635 Rev.*B SIN4_0 MCSX1_1 Page 24 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 Pin Name I/O Circuit Type Pin State Type I K I K P0B 88 66 A6 68 C7 55 SOT4_0 (SDA4_0) TIOB6_1 - MCSX0_1 P0C 89 67 B6 69 B7 56 SCK4_0 (SCL4_0) TIOA6_1 - MALE_1 - - D4 - - - VSS - - - C3 - C3 - VSS - P0D 90 68 C6 70 B6 - RTS4_0 TIOA3_2 E K E K MDQM0_1 P0E 91 69 A5 71 C6 - CTS4_0 TIOB3_2 MDQM1_1 - - - - A5 - VSS - P0F NMIX 92 70 B5 72 A6 57 CROUT_1 RTCCO_0 E I E L E K E K SUBOUT_0 WKUP0 P63 93 71 D6 73 B5 - INT03_0 MWEX_1 P62 94 72 C5 74 C5 58 SCK5_0 (SCL5_0) ADTG_3 - MOEX_1 P61 95 73 B4 75 B4 59 SOT5_0 (SDA5_0) TIOB2_2 UHCONX Document Number: 002-05635 Rev.*B Page 25 of 126 MB9A340NB Series Pin No LQFP-100 QFP-100 BGA-112 LQFP-80 BGA-96 LQFP-64 QFN-64 Pin Name I/O Circuit Type Pin State Type P60 SIN5_0 96 74 C4 76 C4 60 TIOA2_2 INT15_1 I T WKUP3 CEC1 - MRDY_1 97 75 A4 77 A4 61 VCC 98 76 A3 78 A3 62 99 77 A2 79 A2 63 100 78 A1 80 A1 64 Document Number: 002-05635 Rev.*B P80 UDM0 P81 UDP0 VSS H H H H - Page 26 of 126 MB9A340NB Series List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin No Pin Function ADC Pin Name Function Description LQFP100 QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 ADTG_0 84 62 A7 66 A8 - ADTG_1 7 85 D3 7 D3 - ADTG_2 18 96 F4 13 G3 9 94 72 C5 74 C5 58 - - - - - - ADTG_5 70 48 D11 - - - ADTG_6 12 90 E4 12 G2 8 ADTG_7 30 8 J5 - - - ADTG_8 - - - - - - AN00 52 30 J11 42 J11 34 AN01 53 31 J10 43 J10 35 AN02 54 32 J8 44 J8 36 AN03 55 33 H10 45 H10 37 AN04 56 34 H9 46 H9 38 AN05 57 35 H7 47 G10 39 AN06 58 36 G10 48 G9 - AN07 59 37 G9 49 F10 40 AN08 63 41 G8 53 F9 44 AN09 64 42 F10 54 E11 45 AN10 65 43 F9 55 E10 - 66 44 E11 56 E9 - 67 45 E10 - - - AN13 68 46 F8 - - - AN14 69 47 E9 - - - AN15 70 48 D11 - - - AN16 71 49 D10 57 D10 46 AN17 72 50 E8 58 D9 47 AN18 73 51 C11 59 C11 48 AN19 74 52 C10 60 C10 - AN20 82 60 C8 - - - AN21 83 61 D9 - - - AN22 84 62 A7 66 A8 - AN23 85 63 B7 - - - ADTG_3 ADTG_4 AN11 AN12 A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Document Number: 002-05635 Rev.*B Page 27 of 126 MB9A340NB Series Pin No Pin Function Base Timer 0 Pin Name Function Description TIOA0_0 J4 - - - G3 14 H1 10 TIOA0_2 85 63 B7 - - - TIOB0_0 40 18 J6 30 K6 22 9 87 E1 9 E2 5 86 64 C7 - - - 28 6 L5 - - - 20 98 H1 15 H2 11 TIOA1_2 5 83 D1 5 D1 - TIOB1_0 41 19 L7 31 J6 23 10 88 E2 10 E3 6 6 84 D2 6 D2 - 29 7 K5 - - - 21 99 H2 16 H3 12 TIOA2_2 96 74 C4 76 C4 60 TIOB2_0 42 20 K7 32 L7 24 11 89 E3 11 G1 7 95 73 B4 75 B4 59 30 8 J5 - - - 22 100 G4 17 J1 13 TIOA3_2 90 68 C6 70 B6 - TIOB3_0 43 21 H6 33 K7 25 12 90 E4 12 G2 8 91 69 A5 71 C6 - 31 9 H5 21 L5 - 23 1 H3 18 J2 14 TIOA4_2 - - - - - - TIOB4_0 44 22 J7 34 J7 26 13 91 F1 - - - TIOB4_2 - - - - - - TIOA5_0 32 10 L6 22 K5 - 24 2 J2 19 J4 15 82 60 C8 - - - Base timer ch.0 TIOB pin TIOA1_0 TIOA1_1 Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin TIOA2_0 TIOA2_1 TIOB2_1 Base timer ch.2 TIOA pin Base timer ch.2 TIOB pin TIOB2_2 TIOA3_0 TIOA3_1 TIOB3_1 Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin TIOB3_2 TIOA4_0 TIOA4_1 TIOB4_1 Base Timer 5 TIOA5_1 Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin TIOA5_2 TIOB5_0 Base Timer 6 Base Timer 7 LQFP/ QFN64 BGA96 97 TIOB1_2 Base Timer 4 LQFP80 5 TIOB1_1 Base Timer 3 BGA112 19 Base timer ch.0 TIOA pin TIOB0_2 Base Timer 2 QFP100 27 TIOA0_1 TIOB0_1 Base Timer 1 LQFP100 45 23 K8 35 K8 27 TIOB5_1 Base timer ch.5 TIOB pin 14 92 F2 - - - TIOB5_2 TIOA6_1 Base timer ch.6 TIOA pin 83 89 61 67 D9 B6 69 B7 56 TIOB6_1 Base timer ch.6 TIOB pin 88 66 A6 68 C7 55 71 72 - 49 50 - D10 E8 - 57 58 - D10 D9 - 46 47 - TIOA7_0 TIOA7_1 TIOA7_2 TIOB7_0 TIOB7_1 TIOB7_2 Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin Document Number: 002-05635 Rev.*B Page 28 of 126 MB9A340NB Series Pin No Pin Function Debugger Pin Name Function Description QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 SWCLK Serial wire debug interface clock input pin 78 56 B9 62 B9 50 SWDIO Serial wire debug interface data input / output pin 80 58 A8 64 A9 52 SWO Serial wire viewer output pin 81 59 B8 65 B8 53 TCK JTAG test clock input pin 78 56 B9 62 B9 50 TDI JTAG test data input pin 79 57 B11 63 B11 51 TDO JTAG debug data output pin 81 59 B8 65 B8 53 TMS JTAG test mode state input/output pin 80 58 A8 64 A9 52 TRACECLK Trace CLK output pin of ETM 86 64 C7 - - - TRACED0 82 60 C8 - - - TRACED1 83 61 D9 - - - 84 62 A7 - - - 85 63 B7 - - - TRACED2 Trace data output pins of ETM TRACED3 TRSTX External Bus LQFP100 77 55 A9 61 A10 49 MAD00_1 JTAG test reset input pin 31 9 H5 21 L5 - MAD01_1 32 10 L6 22 K5 - MAD02_1 39 17 K6 29 J5 - MAD03_1 40 18 J6 30 K6 - MAD04_1 41 19 L7 31 J6 - MAD05_1 42 20 K7 32 L7 - MAD06_1 43 21 H6 33 K7 - MAD07_1 44 22 J7 34 J7 - MAD08_1 45 23 K8 35 K8 - MAD09_1 53 31 J10 43 J10 - MAD10_1 54 32 J8 44 J8 - 55 33 H10 45 H10 - 56 34 H9 46 H9 - MAD13_1 57 35 H7 47 G10 - MAD14_1 58 36 G10 48 G9 - MAD15_1 59 37 G9 49 F10 - MAD16_1 63 41 G8 53 F9 - MAD17_1 64 42 F10 54 E11 - MAD18_1 65 43 F9 55 E10 - MAD19_1 66 44 E11 56 E9 - MAD20_1 67 45 E10 - - - MAD21_1 68 46 F8 - - - MAD22_1 69 47 E9 - - - MAD23_1 70 48 D11 - - - MAD24_1 74 52 C10 60 C10 - MAD11_1 MAD12_1 External bus interface address bus Document Number: 002-05635 Rev.*B Page 29 of 126 MB9A340NB Series Pin No Pin Function External Bus Pin Name Function Description LQFP100 QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 MCSX0_1 88 66 A6 68 C7 - MCSX1_1 87 65 D7 67 C8 - MCSX2_1 86 64 C7 - - - MCSX3_1 85 63 B7 - - - MCSX4_1 External bus interface chip select output pin 83 61 D9 - - - MCSX5_1 82 60 C8 - - - MCSX6_1 79 57 B11 63 B11 - MCSX7_1 77 55 A9 61 A10 - 90 68 C6 70 B6 - 91 69 A5 71 C6 - MDQM0_1 MDQM1_1 External bus interface byte mask signal output pin MOEX_1 External bus interface read enable signal for SRAM 94 72 C5 74 C5 - MWEX_1 External bus interface write enable signal for SRAM 93 71 D6 73 B5 - MADATA00_1 2 80 C1 2 C1 - MADATA01_1 3 81 C2 3 C2 - MADATA02_1 4 82 B3 4 B3 - MADATA03_1 5 83 D1 5 D1 - MADATA04_1 6 84 D2 6 D2 - MADATA05_1 7 85 D3 7 D3 - MADATA06_1 8 86 D5 8 E1 - 9 87 E1 9 E2 - 10 88 E2 10 E3 - MADATA09_1 11 89 E3 11 G1 - MADATA10_1 12 90 E4 12 G2 - MADATA11_1 13 91 F1 - - - MADATA12_1 14 92 F2 - - - MADATA13_1 15 93 F3 - - - MADATA14_1 16 94 G1 - - - MADATA07_1 MADATA08_1 External bus interface data bus MADATA15_1 17 95 G2 - - - MALE_1 Address Latch enable signal for multiplex 89 67 B6 69 B7 - MRDY_1 External RDY input signal 96 74 C4 76 C4 - MCLKOUT_1 External bus clock output pin 84 62 A7 66 A8 - Document Number: 002-05635 Rev.*B Page 30 of 126 MB9A340NB Series Pin No Pin Function External Interrupt Pin Name Function Description INT00_0 LQFP100 QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 2 80 C1 2 C1 2 82 60 C8 - - - INT00_2 87 65 D7 67 C8 54 INT01_0 External interrupt request 01 input pin 3 81 C2 3 C2 3 83 61 D9 - - - External interrupt request 02 input pin 4 82 B3 4 B3 4 53 31 J10 43 J10 35 93 71 D6 73 B5 - 56 34 H9 46 H9 38 9 87 E1 9 E2 5 12 90 E4 12 G2 8 59 37 G9 49 F10 40 INT04_2 10 88 E2 10 E3 6 INT05_0 74 52 C10 60 C10 - 65 43 F9 55 E10 - 11 89 E3 11 G1 7 73 51 C11 59 C11 48 45 23 K8 35 K8 27 5 83 D1 5 D1 - 14 92 F2 - - - 8 86 D5 8 E1 - INT00_1 INT01_1 INT02_0 INT02_1 External interrupt request 00 input pin INT03_0 INT03_1 External interrupt request 03 input pin INT03_2 INT04_0 INT04_1 INT05_1 External interrupt request 04 input pin External interrupt request 05 input pin INT05_2 INT06_1 INT06_2 INT07_2 INT08_1 INT08_2 External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin INT09_1 External interrupt request 09 input pin 15 93 F3 - - - INT10_1 External interrupt request 10 input pin 16 94 G1 - - - INT11_1 External interrupt request 11 input pin 17 95 G2 - - - INT12_1 External interrupt request 12 input pin 27 5 J4 - - - INT13_1 External interrupt request 13 input pin 28 6 L5 - - - INT14_1 External interrupt request 14 input pin 39 17 K6 29 J5 - INT15_1 External interrupt request 15 input pin 96 74 C4 76 C4 60 NMIX Non-Maskable Interrupt input pin 92 70 B5 72 A6 57 Document Number: 002-05635 Rev.*B Page 31 of 126 MB9A340NB Series Pin No Pin Function GPIO Pin Name P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P0F P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P1F P20 P21 P22 P23 Function Description General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 Document Number: 002-05635 Rev.*B LQFP100 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 52 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 74 73 72 71 QFP100 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 30 31 32 33 34 35 36 37 41 42 43 44 45 46 47 48 52 51 50 49 BGA112 A9 B9 B11 A8 B8 C8 D9 A7 B7 C7 D7 A6 B6 C6 A5 B5 J11 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 C10 C11 E8 D10 LQFP80 61 62 63 64 65 66 67 68 69 70 71 72 42 43 44 45 46 47 48 49 53 54 55 56 60 59 58 57 BGA96 A10 B9 B11 A9 B8 A8 C8 C7 B7 B6 C6 A6 J11 J10 J8 H10 H9 G10 G9 F10 F9 E11 E10 E9 C10 C11 D9 D10 LQFP/ QFN64 49 50 51 52 53 54 55 56 57 34 35 36 37 38 39 40 44 45 48 47 46 Page 32 of 126 MB9A340NB Series Pin No Pin Function GPIO Pin Name P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P60 P61 P62 P63 P80 P81 PE0 PE2 PE3 Function Description General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 General-purpose I/O port 6 General-purpose I/O port 8 General-purpose I/O port E Document Number: 002-05635 Rev.*B LQFP100 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31 32 36 37 39 40 41 42 43 44 45 2 3 4 5 6 7 8 96 95 94 93 98 99 46 48 49 QFP100 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 5 6 7 8 9 10 14 15 17 18 19 20 21 22 23 80 81 82 83 84 85 86 74 73 72 71 76 77 24 26 27 BGA112 E1 E2 E3 E4 F1 F2 F3 G1 G2 F4 G3 H1 H2 G4 H3 J2 J4 L5 K5 J5 H5 L6 L3 K3 K6 J6 L7 K7 H6 J7 K8 C1 C2 B3 D1 D2 D3 D5 C4 B4 C5 D6 A3 A2 K9 L9 L10 LQFP80 9 10 11 12 13 14 15 16 17 18 19 21 22 26 27 29 30 31 32 33 34 35 2 3 4 5 6 7 8 76 75 74 73 78 79 36 38 39 BGA96 E2 E3 G1 G2 G3 H1 H2 H3 J1 J2 J4 L5 K5 L3 K3 J5 K6 J6 L7 K7 J7 K8 C1 C2 B3 D1 D2 D3 E1 C4 B4 C5 B5 A3 A2 K9 L9 L10 LQFP/ QFN64 5 6 7 8 9 10 11 12 13 14 15 19 20 22 23 24 25 26 27 2 3 4 60 59 58 62 63 28 30 31 Page 33 of 126 MB9A340NB Series Pin No Pin Function Multifunction Serial 0 Pin Name SIN0_0 SIN0_1 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Multifunction Serial 1 Function Description Multi-function serial interface ch.0 input pin Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA0 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I2C (operation mode 4). 73 51 C11 59 C11 LQFP/ QFN64 48 56 34 H9 46 H9 - 72 50 E8 58 D9 47 57 35 H7 47 G10 - 71 49 D10 57 D10 46 58 36 G10 48 G9 - LQFP100 QFP100 BGA112 LQFP80 BGA96 SIN1_1 Multi-function serial interface ch.1 input pin 53 31 J10 43 J10 35 SOT1_1 (SDA1_1) Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA1 when it is used in an I2C (operation mode 4). 54 32 J8 44 J8 36 SCK1_1 (SCL1_1) Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I2C (operation mode 4). 55 33 H10 45 H10 37 Document Number: 002-05635 Rev.*B Page 34 of 126 MB9A340NB Series Pin No Pin Function Multifunction Serial 2 Pin Name SIN2_2 SOT2_2 (SDA2_2) SCK2_2 (SCL2_2) Multifunction Serial 3 SIN3_1 SIN3_2 SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) Function Description Multi-function serial interface ch.2 input pin Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.3 input pin Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I2C (operation mode 4). Document Number: 002-05635 Rev.*B LQFP100 QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 59 37 G9 49 F10 40 63 41 G8 53 F9 44 64 42 F10 54 E11 45 2 80 C1 2 C1 2 39 17 K6 29 J5 - 3 81 C2 3 C2 3 40 18 J6 30 K6 - 4 82 B3 4 B3 4 41 19 L7 31 J6 - Page 35 of 126 MB9A340NB Series Pin No Pin Function Multifunction Serial 4 87 65 D7 67 C8 LQFP/ QFN64 54 65 43 F9 55 E10 - 82 60 C8 - - - Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA4 when it is used in an I2C (operation mode 4). 88 66 A6 68 C7 55 66 44 E11 56 E9 - 83 61 D9 - - - Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I2C (operation mode 4). 89 67 B6 69 B7 56 67 45 E10 - - - 84 62 A7 - - - 90 68 C6 70 B6 - 69 47 E9 - - - 86 64 C7 - - - 91 69 A5 71 C6 - 68 46 F8 - - - CTS4_2 85 63 B7 - - - SIN5_0 96 74 C4 76 C4 60 15 93 F3 - - - 95 73 B4 75 B4 59 16 94 G1 - - - 94 72 C5 74 C5 58 17 95 G2 - - - Pin Name Function Description SIN4_0 SIN4_1 Multi-function serial interface ch.4 input pin SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) RTS4_0 RTS4_1 Multi-function serial interface ch.4 RTS output pin RTS4_2 CTS4_0 CTS4_1 Multifunction Serial 5 SIN5_2 SOT5_0 (SDA5_0) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_2 (SCL5_2) Multi-function serial interface ch.4 CTS input pin Multi-function serial interface ch.5 input pin Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I2C (operation mode 4). Document Number: 002-05635 Rev.*B LQFP100 QFP100 BGA112 LQFP80 BGA96 Page 36 of 126 MB9A340NB Series Pin No Pin Function Multifunction Serial 6 Pin Name SIN6_0 SIN6_1 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) Multifunction Serial 7 SIN7_1 SOT7_1 (SDA7_1) SCK7_1 (SCL7_1) Function Description Multi-function serial interface ch.6 input pin Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL6 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I2C (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/ CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I2C (operation mode 4). Document Number: 002-05635 Rev.*B LQFP100 QFP100 BGA112 LQFP80 LQFP/ QFN64 BGA96 5 83 D1 5 D1 - 12 90 E4 12 G2 8 6 84 D2 6 D2 - 11 89 E3 11 G1 7 7 85 D3 7 D3 - 10 88 E2 10 E3 6 45 23 K8 35 K8 27 44 22 J7 34 J7 26 43 21 H6 33 K7 25 Page 37 of 126 MB9A340NB Series Pin No Pin Function USB Pin Name UDM0 UDP0 UHCONX Real-time clock Function Description USB device/host D – pin USB device/host D + pin USB external pull-up control pin RTCCO_0 RTCCO_1 0.5 seconds pulse output pin of Real-time clock RTCCO_2 SUBOUT_0 SUBOUT_1 Sub clock output pin SUBOUT_2 Low-Power WKUP0 Consumption Mode WKUP1 WKUP2 WKUP3 HDMICEC/ Remote Control Reception Reset CEC0 CEC1 INITX Mode MD0 MD1 Deep standby mode return signal input pin 0 Deep standby mode return signal input pin 1 Deep standby mode return signal input pin 2 Deep standby mode return signal input pin 3 HDMI-CEC/Remote Control Reception ch.0 input/output pin HDMI-CEC/Remote Control Reception ch.1 input/output pin External Reset Input pin. A reset is valid when INITX=L. Mode 0 pin. During normal operation, MD0=L must be input. During serial programming to Flash memory, MD0=H must be input. Mode 1 pin. During serial programming to Flash memory, MD1=L must be input. Power VCC Power supply Pin Document Number: 002-05635 Rev.*B 98 99 76 77 A3 A2 78 79 A3 A2 LQFP/ QFN64 62 63 95 73 B4 75 B4 59 92 70 B5 72 A6 57 55 33 H10 45 H10 37 19 97 G3 14 H1 10 92 70 B5 72 A6 57 55 33 H10 45 H10 37 19 97 G3 14 H1 10 92 70 B5 72 A6 57 53 31 J10 43 J10 35 73 51 C11 59 C11 48 96 74 C4 76 C4 60 43 21 H6 33 K7 25 96 74 C4 76 C4 60 38 16 K4 28 K4 21 47 25 L8 37 L8 29 46 24 K9 36 K9 28 1 26 35 51 76 97 79 4 13 29 54 75 B1 J1 K1 K11 A10 A4 1 25 41 77 B1 K1 K11 A4 1 18 33 61 LQFP100 QFP100 BGA112 LQFP80 BGA96 Page 38 of 126 MB9A340NB Series Pin No Pin Function Pin Name Function Description GND VSS Clock X0 X0A X1 X1A CROUT_0 CROUT_1 ADC power AVCC AVRH ADC GND C pin GND Pin Main clock (oscillation) input pin Sub clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) I/O pin Built-in high-speed CR-osc clock output port A/D converter analog power supply pin A/D converter analog reference voltage input pin LQFP100 QFP100 BGA112 LQFP80 BGA96 LQFP/ QFN64 25 34 50 75 100 3 12 28 53 78 B2 L1 K2 J3 H4 L4 L11 K10 J9 H8 B10 C9 A11 D8 D4 C3 A1 20 24 40 80 F1 F2 F3 B2 L1 K2 J3 L6 L4 L11 K10 J9 B10 C9 D11 A11 A7 C3 A5 A1 16 32 64 48 26 L9 38 L9 30 36 49 37 74 14 27 15 52 L3 L10 K3 C10 26 39 27 60 L3 L10 K3 C10 19 31 20 - 92 70 B5 72 A6 57 60 38 H11 50 H11 41 61 39 F11 51 F11 42 AVSS A/D converter GND pin 62 40 G11 52 G11 43 C Power supply stabilization capacity pin 33 11 L2 23 L2 17 Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 002-05635 Rev.*B Page 39 of 126 MB9A340NB Series 5. I/O Circuit Type Type Circuit Remarks It is possible to select the main oscillation / GPIO function A Pull-up resistor When the main oscillation is selected. P-ch P-ch Digital output − X1 Oscillation feedback resistor : Approximately 1MΩ N-ch Digital output R Pull-up resistor control − With Standby mode control − When the GPIO is selected. − CMOS level output. − CMOS level hysteresis input − With pull-up resistor control − With standby mode control − Pull-up resistor Digital input Standby mode control : Approximately 33 kΩ − IOH= -4 mA, IOL= 4 mA − CMOS level hysteresis input − Pull-up resistor Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control B : Approximately 33 kΩ Pull-up resistor Digital input Document Number: 002-05635 Rev.*B Page 40 of 126 MB9A340NB Series Type Circuit Remarks C Digital input − Open drain output − CMOS level hysteresis input Digital output N-ch It is possible to select the sub oscillation / GPIO function D Pull-up When the sub oscillation is selected. resistor − P-ch P-ch Digital output X1A N-ch Digital output R Pull-up resistor control Oscillation feedback resistor : Approximately 5 MΩ − With Standby mode control − When the GPIO is selected. − CMOS level output. − CMOS level hysteresis input − With pull-up resistor control − With Standby mode control − Pull-up resistor : Approximately 33 kΩ Digital input − IOH= -4 mA, IOL= 4 mA Standby mode control Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control Document Number: 002-05635 Rev.*B Page 41 of 126 MB9A340NB Series Type Circuit Remarks E P-ch P-ch − CMOS level output − CMOS level hysteresis input − With pull-up resistor control − With Standby mode control − Pull-up resistor Digital output : Approximately 33 kΩ − IOH= -4 mA, IOL= 4 mA − When this pin is used as an I2C pin, the digital output P-ch transistor is always off N-ch Digital output R Pull-up resistor control Digital input Standby mode control F P-ch P-ch Digital output − CMOS level output − CMOS level hysteresis input − With input control − Analog input − With pull-up resistor control − With Standby mode control − Pull-up resistor : Approximately 33 kΩ N-ch Digital output − IOH= -4 mA, IOL= 4 mA − When this pin is used as an I2C pin, the digital output P-ch transistor is always off R Pull-up resistor control Digital input Standby mode control Analog input Input control Document Number: 002-05635 Rev.*B Page 42 of 126 MB9A340NB Series Type Circuit Remarks CMOS level hysteresis input G Mode input It is possible to select the USB I/O / GPIO function. H GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output UDP0/P81 USB Full-speed/Low-speed control UDP input Differential When the USB I/O is selected. − Full-speed, Low-speed control When the GPIO is selected. − CMOS level output − CMOS level hysteresis input − With Standby mode control − CMOS level output − CMOS level hysteresis input − 5 V tolerant − With pull-up resistor control − With Standby mode control − Pull-up resistor Differential input USB/GPIO select UDM0/P80 UDM input UDM output USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control I P-ch P-ch Digital output : Approximately 33 kΩ N-ch Digital output − IOH= -4 mA, IOL= 4 mA − Available to control PZR registers. − When this pin is used as an I2C pin, the digital output P-ch transistor is always off R Pull-up resistor control Digital input Standby mode control Document Number: 002-05635 Rev.*B Page 43 of 126 MB9A340NB Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Document Number: 002-05635 Rev.*B Page 44 of 126 MB9A340NB Series Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress Inc. recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Document Number: 002-05635 Rev.*B Page 45 of 126 MB9A340NB Series Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-05635 Rev.*B Page 46 of 126 MB9A340NB Series 7. Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device. Stabilizing supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub crystal oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. Surface mount type Size: Load capacitance: More than 3.2 mm × 1.5 mm Approximately 6 pF to 7 pF Lead type Load capacitance: Approximately 6 pF to 7 pF Using an external clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Can be used as general-purpose I/O ports. Document Number: 002-05635 Rev.*B X1(PE3), X1A (P47) Set as External clock input Page 47 of 126 MB9A340NB Series Handling when using Multi-function serial pin as I2C pin If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7μF would be recommended for this series. C Device CS VSS GND Mode pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC = VCC and AVSS = VSS. Turning on : VCC →AVCC → AVRH Turning off : AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in features among the products with different memory sizes and between Flash memory products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up function of 5 V tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Document Number: 002-05635 Rev.*B Page 48 of 126 MB9A340NB Series 8. Block Diagram TRSTX,TCK, TDI,TMS TDO SWJ-DP ETM*1 TRACEDx, TRACECLK TPIU*1 ROM Table SRAM0 8/16 Kbyte Multi-layer AHB (Max 40 MHz) Cortex-M3 Core I @40 MHz(Max) D NVIC Sys AHB-APB Bridge: APB0(Max 40 MHz) Dual-Timer WatchDog Timer (Software) Clock Reset Generator INITX WatchDog Timer (Hardware) SRAM1 8/16 Kbyte On-Chip Flash 64+32 Kbyte/ 128+32 Kbyte/ 256+32 Kbyte Flash I/F Security USB2.0 PHY (Host/ Device) UDP0/UDM0 UHCONX DMAC 8ch. CSV X0 X1 X0A X1A CROUT Main Osc Sub Osc PLL CR 4 MHz AHB-AHB Bridge CLK Source Clock CR 100 kHz MADx External Bus I/F*2 ADTGx TIOAx TIOBx Unit 0 Unit 1 Base Timer 16-bit 8ch./ 32-bit 4ch. USB Clock Ctrl LVD Ctrl RTCCO, SUBOUT WKUPx C IRQ-Monitor CRC Accelerator Watch Counter External Interrupt Controller 16-pin + NMI INTx NMIX MODE-Ctrl MD0, MD1 P0x, P1x, PIN-Function-Ctrl HDMI-CEC/ Remote Reciver Control Real-Time Clock MCSXx, MOEX, MWEX, MALE, MRDY, MCLKOUT, MDQMx LVD Regulator GPIO CEC0,CEC1 PLL Power-On Reset AHB-APB Bridge : APB2 (Max 40 MHz) ANxx MADATAx 12-bit A/D Converter AHB-APB Bridge : APB1 (Max 40 MHz) AVCC, AVSS, AVRH . . . PEx Multi-Function Serial I/F 8ch. (with FIFO ch.4 to ch.7) HW flow control(ch.4)*2 Deep Standby Ctrl SCKx SINx SOTx CTS4 RTS4 *1: For the MB9AF341LB/MB, MB9AF342LB/MB, and MB9AF344LB/MB, ETM is not available. *2: For the MB9AF341LB, MB9AF342LB and MB9AF344LB, the External Bus Interface is not available. And the Multi-function Serial Interface does not support hardware flow control in these products. Document Number: 002-05635 Rev.*B Page 49 of 126 MB9A340NB Series 9. Memory Size See Memory size in Product Lineup to confirm the memory size. 10. Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xE010_0000 0xE000_0000 Cortex-M3 Private Peripherals 0x4006_1000 0x4006_0000 0x4005_0000 0x4004_0000 0x4003_F000 Reserved 0x4003_C000 0x4003_B000 0x4003_A000 0x7000_0000 0x6000_0000 External Device Area 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 Reserved 0x4003_5000 32Mbytes Bit band alias 0x4003_4000 0x4400_0000 0x4200_0000 0x4000_0000 Peripherals Reserved 0x2400_0000 0x2200_0000 0x1FFF_0000 0x0020_8000 0x0020_0000 See the next page "lMemory Map (2)" for the memory size details. 0x0010_4000 0x0010_0000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 32Mbytes Bit band alias Reserved 0x2008_0000 0x2000_0000 0x4003_3000 0x4002_8000 Reserved 0x4002_7000 A/DC 0x4002_6000 Reserved 0x4002_5000 Base Timer SRAM1 SRAM0 Reserved Flash(Work area) Reserved Security/CR Trim Reserved 0x4001_6000 0x4001_5000 Flash(Main area) 0x0000_0000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 0x4000_1000 0x4000_0000 Document Number: 002-05635 Rev.*B DMAC Reserved USB ch.0 EXT-bus I/F Reserved RTC Watch Counter CRC MFS Reserved USB Clock Ctrl LVD/DS mode HDMI-CEC/ Remote Control Receiver GPIO Reserved Int-Req.Read EXTI Reserved CR Trim Dual Timer Reserved SW WDT HW WDT Clock/Reset Reserved Flash I/F Page 50 of 126 MB9A340NB Series Memory Map (2) MB9AF344LB/MB/NB MB9AF342LB/MB/NB 0x2008_0000 MB9AF341LB/MB/NB 0x2008_0000 Reserved 0x2008_0000 Reserved Reserved 0x2000_4000 0x2000_2000 SRAM1 16Kbytes 0x2000_0000 0x2000_0000 SRAM0 16Kbytes 0x1FFF_E000 0x2000_2000 SRAM1 8Kbytes SRAM0 8Kbytes 0x2000_0000 0x1FFF_E000 SRAM1 8Kbytes SRAM0 8Kbytes 0x1FFF_C000 Reserved 0x0010_4000 0x0010_2000 0x0010_0000 0x0020_8000 0x0020_0000 SA4-7 (8 KBx4) Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 0x0020_8000 0x0020_0000 SA4-7 (8 KBx4) Reserved Flash(Work area) 32 Kbytes 0x0020_0000 SA4-7 (8 KBx4) Reserved Flash(Work area) 32 Kbytes 0x0020_8000 Reserved Flash(Work area) 32 Kbytes Reserved 0x0010_4000 CR trimming Security 0x0010_2000 0x0010_0000 CR trimming Security Reserved Reserved Reserved 0x0000_0000 SA2-3 (8 KBx2) SA9 (64 KB) SA8 (48 KB) 0x0000_0000 SA2-3 (8 KBx2) 0x0001_0000 SA8 (48 KB) 0x0000_0000 Flash(Main area) 64 Kbytes SA8 (48 KB) 0x0002_0000 Flash(Main area) 128 Kbytes SA9-11 (64 KBx3) Flash(Main area) 256 Kbytes 0x0004_0000 SA2-3 (8 KBx2) Refer to the programming manual for the detail of Flash main area. MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual Document Number: 002-05635 Rev.*B Page 51 of 126 MB9A340NB Series Peripheral Address Map Start address End address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_4FFF Reserved 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF Reserved 0x4002_7000 0x4002_7FFF 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt 0x4003_1000 0x4003_1FFF Interrupt Source Check Register 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF HDMI-CEC/Remote control Receiver 0x4003_5000 0x4003_57FF Low-Voltage Detector 0x4003_5800 0x4003_5FFF Deep standby mode Controller 0x4003_6000 0x4003_6FFF 0x4003_7000 0x4003_7FFF Reserved 0x4003_8000 0x4003_8FFF Multi-function serial 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External Bus interface 0x4004_0000 0x4004_FFFF USB ch.0 0x4005_0000 0x4005_FFFF 0x4006_0000 0x4006_0FFF 0x4006_1000 0x41FF_FFFF Document Number: 002-05635 Rev.*B AHB APB0 APB1 APB2 AHB Flash memory I/F register Reserved Software Watchdog timer Reserved A/D Converter USB clock generator Reserved DMAC register Reserved Page 52 of 126 MB9A340NB Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the L level. INITX=1 This is the period when the INITX pin is the H level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0. SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1. Input enabled Indicates that the input function can be used. Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L. Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Document Number: 002-05635 Rev.*B Page 53 of 126 MB9A340NB Series Pin status type List of Pin Status A Function group Power-on reset or low-volta ge detection state Power supply unstable - INITX input state Device internal reset state Power supply stable INITX = 0 - INITX = 1 - Run mode or Sleep mode state Power supply stable INITX = 1 - Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 GPIO Hi-Z / selected Internal Internal input input fixed at 0 fixed at 0 Return from Deep standby mode state Power supply stable INITX = 1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state/Whe n oscillation stops*1, Hi-Z / Internal input fixed at 0 Maintain previous state/When oscillation stops*1, Hi-Z / Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*1, Hi-Z / Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*1, Hi-Z / Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*1, Hi-Z / Internal input fixed at 0 B GPIO selected Main crystal oscillator output pin Hi-Z / Internal input fixed at 0/ or Input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*1, Hi-Z / Internal input fixed at 0 C INITX input pin Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Input enabled GPIO selected Hi-Z / Input enabled GPIO selected E Document Number: 002-05635 Rev.*B Page 54 of 126 Pin status type MB9A340NB Series Function group Power-on reset or low-volta ge detection state Power supply unstable - INITX input state Device internal reset state Power supply stable INITX = 0 - INITX = 1 - Run mode or Sleep mode state Power supply stable INITX = 1 - Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 GPIO Hi-Z / selected Internal Internal input input fixed at 0 fixed at 0 Return from Deep standby mode state Power supply stable INITX = 1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Sub crystal oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected GPIO selected F GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External sub clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z/ Internal input fixed at 0 Maintain previous state Maintain previous state Maintain previous state/Whe n oscillation stops*2, Hi-Z / Internal input fixed at 0 Maintain previous state/When oscillation stops*2, Hi-Z / Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*2, Hi-Z/ Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*2, Hi-Z/ Internal input fixed at 0 Maintain previous state/Wh en oscillatio n stops*2, Hi-Z/ Internal input fixed at 0 G Sub crystal oscillator output pin Hi-Z / Internal input fixed at 0/ or Input enable Document Number: 002-05635 Rev.*B Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Page 55 of 126 Pin status type MB9A340NB Series Function group Power-on reset or low-volta ge detection state Power supply unstable - GPIO selected Hi-Z INITX input state Device internal reset state Run mode or Sleep mode state I INITX = 1 SPL = 0 SPL = 1 Hi-Z / Input enabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Hi-Z at transmission/ Input enabled/ Internal input fixed at 0 at reception Hi-Z at transmission/ Input enabled/ Internal input fixed at 0 at reception Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z / Input enabled WKUP input enabled Hi-Z / WKUP input enabled GPIO selected Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Setting disabled NMIX selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Pull-up / Input enabled Pull-up / Input enabled J Setting disabled INITX = 1 SPL = 0 SPL = 1 Hi-Z / Input enabled Setting disabled GPIO selected Power supply stable INITX = 1 - Setting disabled JTAG selected Power supply stable Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Power supply stable INITX = 1 - GPIO selected Resource selected K Return from Deep standby mode state INITX = 0 - USB I/O pin GPIO selected Deep standby RTC mode or Deep standby Stop mode state Power supply stable INITX = 1 - Power supply stable H Resource other than above selected Timer mode, RTC mode, or Stop mode state Hi-Z GPIO selected Document Number: 002-05635 Rev.*B Hi-Z / Input enabled Hi-Z / Input enabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Page 56 of 126 Pin status type MB9A340NB Series Function group Power supply unstable External interrupt enabled selected L Power-on reset or low-volta ge detection state Resource other than above selected Setting disabled GPIO selected Analog input selected N Power supply stable INITX = 0 - INITX = 1 - Setting disabled Setting disabled Power supply stable INITX = 1 - Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Maintain previous state Maintain previous state Maintain previous state Power supply stable INITX = 1 - GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Maintain previous state External interrupt enabled selected Resource other than above selected Hi-Z / Internal input fixed at 0 Return from Deep standby mode state Hi-Z / Input enabled M Resource other than above selected Device internal reset state Run mode or Sleep mode state Hi-Z GPIO selected Analog input selected INITX input state Setting disabled GPIO selected Document Number: 002-05635 Rev.*B Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Page 57 of 126 Pin status type MB9A340NB Series Function group Power supply unstable Trace selected O Power-on reset or low-volta ge detection state Resource other than above selected Setting disabled Device internal reset state Power supply stable INITX = 0 - INITX = 1 - Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Analog input selected INITX input state Run mode or Sleep mode state Power supply stable INITX = 1 - Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Trace output Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled Return from Deep standby mode state Power supply stable INITX = 1 - GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected P Trace output Trace selected Resource other than above selected Setting disabled Setting disabled Setting disabled Maintain previous state Hi-Z Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Maintain previous state Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Analog input selected Q Resource other than above selected Hi-Z / Internal input fixed at 0 / Analog input enabled Trace output Trace selected External interrupt enabled selected Hi-Z / Internal input fixed at 0 Setting disabled GPIO selected Document Number: 002-05635 Rev.*B Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Page 58 of 126 Pin status type MB9A340NB Series Function group Power supply unstable - Analog input selected R Power-on reset or low-volta ge detection state Hi-Z INITX input state Device internal reset state Power supply stable INITX = 0 - INITX = 1 - Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Run mode or Sleep mode state Power supply stable INITX = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled Timer mode, RTC mode, or Stop mode state Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 INITX = 1 SPL = 0 SPL = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled WKUP enabled External interrupt enabled selected Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Resource other than above selected GPIO selected CEC enabled S Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / WKUP input enabled Internal input fixed at 0 Maintain previous state Setting disabled Maintain previous state Maintain previous state Maintain previous state Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Document Number: 002-05635 Rev.*B WKUP input enabled Hi-Z / Internal input fixed at 0 Setting disabled GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Setting disabled Resource other than above selected Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Return from Deep standby mode state Power supply stable INITX = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Page 59 of 126 Pin status type MB9A340NB Series Function group Power supply unstable CEC enabled WKUP enabled T Power-on reset or low-volta ge detection state Setting disabled Setting disabled INITX input state Device internal reset state Power supply stable INITX = 0 - INITX = 1 - Setting disabled Setting disabled Setting disabled Power supply stable INITX = 1 Maintain previous state Hi-Z GPIO selected Deep standby RTC mode or Deep standby Stop mode state Power supply stable Power supply stable INITX = 1 SPL = 0 SPL = 1 Maintain Maintain previous previous state state INITX = 1 SPL = 0 SPL = 1 Maintain Maintain previous previous state state Maintain previous state Maintain previous state Hi-Z / Input enabled Timer mode, RTC mode, or Stop mode state Setting disabled External interrupt enabled selected Resource other than above selected Run mode or Sleep mode state Hi-Z / Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 WKUP input enabled Hi-Z / WKUP input enabled GPIO selected Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Return from Deep standby mode state Power supply stable INITX = 1 Maintain previous state GPIO selected *1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode. *2: Oscillation is stopped at Stop mode and Deep Standby Stop mode. Document Number: 002-05635 Rev.*B Page 60 of 126 MB9A340NB Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Symbol Power supply voltage*1, *2 Analog power supply voltage*1, *3 Analog reference voltage*1, *3 VCC AVCC AVRH Input voltage*1 VI Rating Min VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 Analog pin input voltage*1 VIA VSS - 0.5 Output voltage*1 VO VSS - 0.5 L level maximum output current*4 IOL - L level average output current*5 IOLAV - L level total maximum output current L level total average output current*6 ∑IOL ∑IOLAV - H level maximum output current*4 IOH - H level average output current*5 IOHAV - H level total maximum output current H level total average output current*6 Power consumption Storage temperature ∑IOH ∑IOHAV PD TSTG - 55 Max VSS + 4.6 VSS + 4.6 VSS + 4.6 VCC + 0.5 (≤ 4.6 V) VSS + 6.5 AVCC + 0.5 (≤ 4.6 V) VCC + 0.5 (≤ 4.6 V) 10 Unit Remarks V V V V V 5 V tolerant V V mA 39 mA 4 10.5 27 100 50 - 10 mA mA mA mA mA mA 39 mA -4 12 27 - 100 - 50 300 + 150 mA mA mA mA mA mW °C P81/UDP0 , P80/UDM0 pins *7 *8 P81/UDP0 , P80/UDM0 pins *7 *8 *1: These parameters are based on the condition that VSS = AVSS = 0 V. *2: VCC must not drop below VSS - 0.5 V. *3: Ensure that the voltage does not to exceed VCC + 0.5 V, for example, when the power is turned on. *4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins. *5: The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period. *6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms. *7: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80). *8: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0). WARNING: − Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. Document Number: 002-05635 Rev.*B Page 61 of 126 MB9A340NB Series 12.2 Recommended Operating Conditions (VSS = AVSS = 0.0V) Parameter Symbol Conditions Power supply voltage VCC - Analog power supply voltage AVCC - AVRH - AVRL CS TA -- Analog reference voltage Smoothing capacitor Operating temperature Value Min 1.65*4 3.0*4 1.65 2.7 AVCC AVSS 1 - 40 Unit Max 3.6 3.6 3.6 AVCC AVCC AVSS 10 + 85 V V V V V µF °C Remarks *1 *2 AVCC = VCC AVCC ≥ 2.7 V AVCC< 2.7 V For Regulator*3 *1: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80). *2: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0). *3: See C Pin in Handling Devices for the connection of the smoothing capacitor. *4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. WARNING: − The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions. Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand. Document Number: 002-05635 Rev.*B Page 62 of 126 MB9A340NB Series 12.3 DC Characteristics 12.3.1 Current rating (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name ICC Power supply current VCC ICCS Conditions PLL Run mode CPU: 40 MHz, Peripheral: 40 MHz CPU: 40 MHz, Peripheral: the clock stops NOP operation High-speed CR Run mode Sub Run mode Low-speed CR Run mode PLL Sleep mode High-speed CR Sleep mode Sub Sleep mode Low-speed CR Sleep mode Value Typ*3 Unit Max*4 Remarks 15.5 21 mA *1, *5 8.7 12 mA *1, *5 CPU/ Peripheral: 4 MHz*2 1.8 2.9 mA *1 CPU/ Peripheral: 32 kHz 110 680 μA *1, *6 CPU/ Peripheral: 100 kHz 125 700 μA *1 Peripheral: 40 MHz 9 12.5 mA *1, *5 Peripheral: 4 MHz*2 0.8 1.6 mA *1 Peripheral: 32 kHz 96 670 μA *1, *6 Peripheral: 100 kHz 110 680 μA *1 *1: When all ports are fixed. *2: When setting it to 4 MHz by trimming. *3: TA=+25°C, VCC=3.6 V *4: TA=+85°C, VCC=3.6 V *5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) Document Number: 002-05635 Rev.*B Page 63 of 126 MB9A340NB Series Parameter Symbol Value Pin name Conditions Main Timer mode ICCT Sub Timer mode ICCR RTC mode ICCH Power supply current Stop mode VCC ICCHD ICCRD Deep Standby Stop mode Deep Standby RTC mode TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off TA = + 85°C, When LVD is off TA = + 25°C, When LVD is off Typ*2 Max*2 - Unit Remarks mA *1, *3 mA *1, *3 12 35 μA *1, *4 - 330 μA *1, *4 9.8 29 μA *1, *4 - 280 μA *1, *4 9 28 μA *1 TA = + 85°C, When LVD is off - 270 μA *1 TA = + 25°C, When LVD is off, When RAM is off 1.25 7 μA *1, *4, *5 TA = + 25°C, When LVD is off, When RAM is on 5.3 18 μA *1, *4, *5 70 μA *1, *4, *5 100 μA *1, *4, *5 1.9 9 μA *1, *5 5.9 20 μA *1, *5 75 μA *1, *5 105 μA *1, *5 TA = + 85°C, When LVD is off, When RAM is off TA = + 85°C, When LVD is off, When RAM is on TA = + 25°C, When LVD is off, When RAM is off TA = + 25°C, When LVD is off, When RAM is on TA = + 85°C, When LVD is off, When RAM is off TA = + 85°C, When LVD is off, When RAM is on - - *1: When all ports are fixed. *2: VCC=3.6 V *3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) *5: RAM on/off setting is on-chip SRAM only. Document Number: 002-05635 Rev.*B Page 64 of 126 MB9A340NB Series Low-Voltage Detection Current (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Low-voltage detection circuit (LVD) power supply current Pin name Symbol ICCLVD Conditions Value Typ Max Unit Remarks At operation for reset VCC = 3.6 V 0.13 0.3 μA At not detect At operation for interrupt VCC = 3.6 V 0.13 0.3 μA At not detect VCC Flash Memory Current (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Flash memory write/erase current Pin name Symbol ICCFLASH VCC Conditions At Write/Erase Value Typ 9.5 Max 11.2 Unit mA Remarks * *: The current at which to write or erase Flash memory, ICCFLASH is added to ICC. A/D Converter Current (VCC = VCC28 = AVCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = AVSS = 0V, TA = - 40°C to +85°C) Parameter Power supply current Reference power supply current Pin name Symbol ICCAD ICCAVRH AVCC AVRH Document Number: 002-05635 Rev.*B Conditions Value Typ Max Unit At 1unit operation 0.27 0.42 mA At stop 0.03 10 μA At 1unit operation AVRH=3.6 V 0.72 1.29 mA At stop 0.02 2.6 μA Remarks Page 65 of 126 MB9A340NB Series 12.3.2 Pin Characteristics (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Value Parameter H level input voltage (hysteresis input) L level input voltage (hysteresis input) Symbol Pin name CMOS hysteresis input pin, MD0, MD1 VIHS 5V tolerant input pin CMOS hysteresis input pin, MD0, MD1 Min VCC ≥ 2.7 V VCC × 0.8 VCC < 2.7 V VCC × 0.7 VCC ≥ 2.7 V VCC × 0.8 VCC < 2.7 V Typ Max Unit - VCC + 0.3 V - VSS + 5.5 V Remarks VCC × 0.7 VCC ≥ 2.7 V VCC × 0.2 VSS - 0.3 - V VCC < 2.7 V VCC × 0.3 VCC ≥ 2.7 V VCC × 0.2 VILS 5V tolerant input pin 4 mA type H level output voltage Conditions VOH The pin doubled as USB I/O VSS - 0.3 - VCC < 2.7 V V VCC × 0.3 VCC ≥ 2.7 V, IOH = - 4 mA VCC - 0.5 VCC < 2.7 V, IOH = - 2 mA VCC - 0.45 - VCC V VCC - 0.4 - VCC V VSS - 0.4 V VSS - 0.4 V VCC = AVCC = AVRH = VSS = AVSS = 0.0 V -5 - +5 μA - - +1.8 μA VCC ≥ 2.7 V 21 33 66 VCC < 2.7 V - - 134 - - 5 15 VCC ≥ 2.7 V, IOH = - 12 mA VCC < 2.7 V, IOH = - 6.5 mA VCC ≥ 2.7 V, IOL = 4 mA 4 mA type L level output voltage VCC < 2.7 V, IOL = 2 mA VOL The pin doubled as USB I/O - Input leak current Pull-up resistor value Input capacitance IIL RPU CIN CEC0, CEC1 VCC ≥ 2.7 V, IOL = 10.5 mA VCC < 2.7 V, IOL = 5 mA Pull-up pin Other than VCC, VSS, AVCC, AVSS, AVRH Document Number: 002-05635 Rev.*B kΩ pF Page 66 of 126 MB9A340NB Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Pin name Symbol Input frequency Internal operating clock*1 frequency Internal operating clock*1 cycle time Unit Max Remarks 4 4 48 20 MHz - 4 48 MHz - 20.83 250 ns - PWH/tCYLH, PWL/tCYLH 45 55 % tCF, tCR - - 5 ns When using external clock tCYLH Input clock pulse width Input clock rising time and falling time Min VCC ≥ 2.7 V VCC < 2.7 V fCH Input clock cycle Value Conditions X0, X1 When crystal oscillator is connected When using external clock When using external clock When using external clock fCM - - - 40 MHz Master clock fCC fCP0 fCP1 fCP2 - - - 40 40 40 40 MHz MHz MHz MHz Base clock (HCLK/FCLK) APB0 bus clock*2 APB1 bus clock*2 APB2 bus clock*2 tCYCC tCYCP0 tCYCP1 tCYCP2 - - 25 - ns Base clock (HCLK/FCLK) - - 25 - ns APB0 bus clock*2 - - 25 - ns APB1 bus clock*2 - - 25 - ns APB2 bus clock*2 *1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual. *2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet. X0 Document Number: 002-05635 Rev.*B Page 67 of 126 MB9A340NB Series 12.4.2 Sub Clock Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Input frequency fCL Input clock cycle tCYLL Input clock pulse width - Pin name X0A, X1A Value Conditions Min Typ Max Unit Remarks - - 32.768 - kHz - 32 - 100 kHz When crystal oscillator is connected When using external clock - 10 - 31.25 μs When using external clock PWH/tCYLL, PWL/tCYLL 45 - 55 % When using external clock X0A 12.4.3 Built-in CR Oscillation Characteristics Built-in High-speed CR (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Frequency stabilization time Symbol fCRH tCRWT Value Conditions Min Typ Max TA = + 25°C VCC ≥ 2.7 V 3.96 4 4.04 TA = + 25°C VCC < 2.7 V 3.9 4 4.1 TA = - 40°C to + 85°C 3.84 4 4.16 TA = - 40°C to + 85°C 2.8 - 5.2 - - - 30 Unit MHz Remarks When trimming*1 When not trimming μs *2 *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming. *2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock. Built-in Low-speed CR (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Clock frequency Symbol fCRL Document Number: 002-05635 Rev.*B Conditions - Value Min 50 Typ 100 Max 150 Unit Remarks kHz Page 68 of 126 MB9A340NB Series 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Value Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency Symbol Min Typ Max Unit tLOCK 100 - - μs fPLLI 4 5 - 16 37 75 - - MHz multip le MHz MHz MHz PLL multiple rate - PLL macro oscillation clock frequency Main PLL clock frequency*2 USB clock frequency*3 fPLLO fCLKPLL fCLKSPLL - 150 40 48 Remarks After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual. *3: For more information about USB clock, see Chapter 2-2: USB Clock Generation in FM3 Family Peripheral Manual Communication Macro Part. 12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main PLL) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiple rate PLL macro oscillation clock frequency Main PLL clock frequency*2 Symbol Value Min Typ Unit Max tLOCK 100 - - μs fPLLI fPLLO fCLKPLL 3.8 19 72 - 4 - 4.2 35 150 40 MHz multiple MHz MHz Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual. Note: − Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency/temperature has been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency. Document Number: 002-05635 Rev.*B Page 69 of 126 MB9A340NB Series Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) PLL input clock K divider PLL macro oscillation clock Main PLL M divider Main PLL clock (CLKPLL) N divider USB PLL connection Main clock (CLKMO) K divider PLL input clock PLL macro oscillation clock USB PLL M divider USB clock N divider Document Number: 002-05635 Rev.*B Page 70 of 126 MB9A340NB Series 12.4.6 Reset Input Characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Pin name Symbol Reset input time tINITX INITX Value Conditions Min - Unit Max 500 - Remarks ns 12.4.7 Power-on Reset Timing (VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Power supply shut down time tOFF Power ramp rate dV/dt Time until releasing Power-on reset Pin name VCC Value Conditions Unit Remarks Min Typ Max - 1 - - ms *1 Vcc:0.2 V to 1.65 V 0.2 - 1000 mV/μs *2 - 1.34 - 16.09 ms tPRT *1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met. *2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1 ms). Note: − If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per “12. 4. 6.Reset Input Characteristics”. 1.65V VCC VDH 0.2V dV/dt 0.2V tPRT Internal RST CPU Operation RST Active 0.2V tOFF release start Glossary: VDH: detection voltage of Low Voltage detection reset. See “12.7 Low-Voltage Detection Characteristics” Document Number: 002-05635 Rev.*B Page 71 of 126 MB9A340NB Series 12.4.8 External Bus Timing External bus clock output characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Output frequency Symbol tCYCLE Pin name MCLKOUT* Value Conditions VCC ≥ 2.7 V VCC < 2.7 V Min - Unit Max 40 20 MHz MHz *: The external bus clock output (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider, see Chapter 12: External Bus Interface in FM3 Family Peripheral Manual. When external bus clock is not output, this characteristic does not give any effect on external bus operation. MCLKOUT External bus signal input/output characteristics (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Conditions VIH Value Unit 0.8 × VCC V 0.2 × VCC V VOH 0.8 × VCC V VOL 0.2 × VCC V Remarks Signal input characteristics VIL Signal output characteristics Input signal VIH VIL VIH VIL Output signal VOH VOL VOH VOL Document Number: 002-05635 Rev.*B Page 72 of 126 MB9A340NB Series Separate Bus Access Asynchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name MOEX Min pulse width tOEW MOEX MCSX ↓ → Address output delay time tCSL – AV MCSX[7:0], MAD[24:0] MOEX ↑ → Address hold time tOEH - AX MOEX, MAD[24:0] MCSX ↓ → MOEX ↓ delay time tCSL - OEL MOEX ↑ → MCSX ↑ time tOEH - CSH MCSX ↓ → MDQM ↓ delay time tCSL - RDQML MCSX, MDQM[1:0] Data set up → MOEX ↑ time tDS - OE MOEX, MADATA[15:0] MOEX ↑ → Data hold time tDH - OE MOEX, MADATA[15:0] MWEX Min pulse width tWEW MWEX MWEX ↑ → Address output delay time tWEH - AX MWEX, MAD[24:0] MCSX ↓ → MWEX ↓ delay time tCSL - WEL MWEX ↑ → MCSX ↑ delay time tWEH - CSH MCSX ↓→ MDQM ↓ delay time tCSL-WDQML MCSX, MDQM[1:0] MWEX ↓→ Data output time tCSL - DV MCSX, MADATA[15:0] MWEX ↑ → Data hold time tWEH - DX MWEX, MADATA[15:0] MOEX, MCSX[7:0] MWEX, MCSX[7:0] Value Conditions VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V Min Unit Max MCLK×n-3 - -9 -12 MCLK×m-9 MCLK×m-12 30 38 +9 +12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 - 0 - ns MCLK×n-3 - ns 0 MCLK×m-9 MCLK×m-12 0 0 MCLK×n-9 MCLK×n-12 0 MCLK×n-9 MCLK×n-12 MCLK-9 MCLK-12 0 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK+9 MCLK+12 MCLK×m+9 MCLK×m+12 ns ns ns ns ns ns ns ns ns ns ns ns ns Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16). Document Number: 002-05635 Rev.*B Page 73 of 126 MB9A340NB Series MCLK MCSX[7:0] MAD[24:0] MOEX MDQM[1:0] MWEX MADATA[15:0] Document Number: 002-05635 Rev.*B Page 74 of 126 MB9A340NB Series Separate Bus Access Synchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Address delay time tAV tCSL MCSX delay time tCSH tREL MOEX delay time tREH Data set up → MCLK ↑ time MCLK ↑ → Data hold time tDS tDH tWEL MWEX delay time tWEH tDQML MDQM[1:0] delay time tDQMH MCLK ↑ → Data output time MCLK ↑ → Data hold time tODS tOD Pin name MCLK, MAD[24:0] MCLK, MCSX[7:0] MCLK, MOEX MCLK, MADATA[15:0] MCLK, MADATA[15:0] MCLK, MWEX MCLK, MDQM[1:0] MCLK, MADATA[15:0] MCLK, MADATA[15:0] Value Conditions VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC <2.7 V VCC ≥ 2.7 V VCC <2.7 V Min Unit Max 1 12 13 ns 1 12 ns 1 12 ns 1 1 9 12 9 12 ns ns 24 37 - ns 0 - ns 1 1 1 1 MCLK + 1 1 9 12 9 12 9 12 9 12 MCLK + 18 MCLK + 24 18 24 ns ns ns ns ns ns Note: − When the external load capacitance CL = 30 pF. MCLK MCSX[7:0] MAD[24:0] MOEX MDQM[1:0] MWEX MADATA[15:0] Document Number: 002-05635 Rev.*B Page 75 of 126 MB9A340NB Series Multiplexed Bus Access Asynchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Multiplexed address delay time tALE-CHMADV Multiplexed address hold time tCHMADH Pin name MALE, MADATA[15:0] Value Conditions VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V Min -2 MCLK×n+0 MCLK×n+0 Unit Max +10 +20 MCLK×n+10 MCLK×n+20 ns ns Note: − When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16). MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-05635 Rev.*B Page 76 of 126 MB9A340NB Series Multiplexed Bus Access Synchronous SRAM Mode (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol tCHAL MALE delay time tCHAH MCLK ↑ → Multiplexed Address delay time tCHMADV MCLK ↑ → Multiplexed Data output time tCHMADX Pin name MCLK, ALE Value Conditions VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V Min Max Unit 9 12 9 12 ns ns ns ns 1 tOD ns 1 tOD ns 1 1 Remarks VCC ≥ 2.7 V MCLK, MADATA[15:0] VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V Note: − When the external load capacitance CL = 30 pF. MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] Document Number: 002-05635 Rev.*B Page 77 of 126 MB9A340NB Series External Ready Input Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter MCLK ↑ MRDY input setup time Symbol tRDYI Pin name MCLK, MRDY Value Conditions Min VCC ≥ 2.7 V 23 VCC < 2.7 V 37 Max - Unit Remarks ns When RDY is input ··· MCLK Over 2cycles Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY Document Number: 002-05635 Rev.*B Page 78 of 126 MB9A340NB Series 12.4.9 Base Timer Input Timing Timer input timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name Value Conditions Min Input pulse width TIOAn/TIOBn (when using as ECK, TIN) tTIWH, tTIWL - 2tCYCP tTIWH Unit Remarks Max - ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger input timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input pulse width Symbol tTRGH, tTRGL Pin name Conditions TIOAn/TIOBn (when using as TGIN) - VIHS Min 2tCYCP tTRGH TGIN Value Max - Unit Remarks ns tTRGL VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet. Document Number: 002-05635 Rev.*B Page 79 of 126 MB9A340NB Series 12.4.10 CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Baud rate Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Master mode Slave mode VCC ≥ 2.7 V Min Max VCC < 2.7 V Min Max Conditions Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to clock synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance CL = 30 pF. Document Number: 002-05635 Rev.*B Page 80 of 126 MB9A340NB Series tSCYC VOH SCK VOH VOL tSHOVI VOH SOT VOL tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR tF VIL VIL tSHOVE SOT VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode Document Number: 002-05635 Rev.*B Page 81 of 126 MB9A340NB Series CSIO (SPI = 0, SCINV = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Baud rate Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Master mode Slave mode VCC ≥ 2.7 V Min Max VCC < 2.7 V Min Max Conditions Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to clock synchronous mode. − − − tCYCP indicates the APB bus clock cycle time. − When the external load capacitance CL = 30 pF. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. Document Number: 002-05635 Rev.*B Page 82 of 126 MB9A340NB Series tSCYC VOH SCK VOH VOL tSHOVI VOH SOT VOL tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR tF VIL VIL tSHOVE SOT VOH VOL tIVSLE SIN VIH VIL tSLIXE VIH VIL Slave mode Document Number: 002-05635 Rev.*B Page 83 of 126 MB9A340NB Series CSIO (SPI = 1, SCINV = 0) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Baud rate Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - Master mode Slave mode VCC ≥ 2.7 V VCC < 2.7 V Conditions Min Max Min Max Unit - 8 - 8 4tCYCP - 4tCYCP - Mbps ns - 30 + 30 - 20 + 20 ns 50 - 36 - ns 0 - 0 - ns 2tCYCP - 34 - 2tCYCP - 34 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 33 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to clock synchronous mode. − − − tCYCP indicates the APB bus clock cycle time. − When the external load capacitance CL = 30 pF. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. Document Number: 002-05635 Rev.*B Page 84 of 126 MB9A340NB Series tSCYC VOH SCK VOL SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH VIH SCK tR VOH VOL tIVSLE SIN VIL tF * SOT VIL tSHSL VIH VIH tSHOVE VOH VOL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register Document Number: 002-05635 Rev.*B Page 85 of 126 MB9A340NB Series CSIO (SPI = 1, SCINV = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Pin name Symbol Min Max Min Max Unit Baud rate - - - 8 - 8 Mbps Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK ↓ → SOT delay time tSLOVI SCKx, SOTx - 30 + 30 - 20 + 20 ns SIN → SCK ↑ setup time tIVSHI 50 - 36 - ns SCK ↑ → SIN hold time tSHIXI 0 - 0 - ns SOT → SCK ↑ delay time tSOVHI 2tCYCP - 34 - 2tCYCP - 34 - ns Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns SCK ↓ → SOT delay time tSLOVE - 50 - 33 ns SIN → SCK ↑ setup time tIVSHE 10 - 10 - ns SCK ↑ → SIN hold time tSHIXE 20 - 20 - ns SCK falling time SCK rising time tF tR - 5 5 - 5 5 ns ns SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx - VCC ≥ 2.7 V VCC < 2.7 V Conditions Master mode Slave mode Notes: − The above characteristics apply to clock synchronous mode. − − − tCYCP indicates the APB bus clock cycle time. − When the external load capacitance CL = 30 pF. About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. Document Number: 002-05635 Rev.*B Page 86 of 126 MB9A340NB Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode tR tF tSHSL SCK VIL VIH tSLSH VIH VIL VIL tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL Slave mode Document Number: 002-05635 Rev.*B Page 87 of 126 MB9A340NB Series UART external clock input (EXT = 1) (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Serial clock L pulse width Serial clock H pulse width SCK falling time SCK rising time Symbol tSLSH tSHSL tF tR CL = 30 pF Min Unit Max tCYCP + 10 tCYCP + 10 - 5 5 Remarks ns ns ns ns tF tR tSHSL SCK V IL Document Number: 002-05635 Rev.*B Value Conditions V IH tSLSH V IH V IL V IL V IH Page 88 of 126 MB9A340NB Series 12.4.11 External Input Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Value Parameter Input pulse width Symbol tINH, tINL Pin name Conditions Min Max Unit Remarks ADTG - 2tCYCP*1 - ns A/D converter trigger input INTxx, NMIX *2 2tCYCP + 100*1 - ns *3 500 - ns External interrupt NMI WKUPx *4 600 - ns Deep standby wake up *1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Multi-function Timer is connected to, see Block Diagram in this data sheet. *2: When in Run mode, in Sleep mode. *3: When in Timer mode, in RTC mode, in Stop mode. *4: When in Deep Standby RTC mode, in Deep Standby Stop mode. Document Number: 002-05635 Rev.*B Page 89 of 126 MB9A340NB Series 12.4.12 I2C Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ SCL clock L width SCL clock H width (Repeated) START condition setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between STOP condition and START condition Noise filter Symbol Standard-mode Conditions Min Fast-mode Max Min Max Unit FSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45*2 0 0.9*3 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs 2 tCYCP*4 - 2 tCYCP*4 - ns tSUSTA tHDDAT tSP CL = 30 pF, R = (Vp/IOL)*1 - Remarks *1: R and C represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal. *3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of tSUDAT ≥ 250 ns. *4: tCYCP is the APB bus clock cycle time. About the APB bus number that I2C is connected to, see Block Diagram in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL Document Number: 002-05635 Rev.*B Page 90 of 126 MB9A340NB Series 12.4.13 ETM Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Value Parameter Symbol Data hold tETMH TRACECLK frequency 1/ tTRACE Pin name TRACECLK, TRACED[3:0] TRACECLK TRACECLK clock cycle Conditions Min Max Unit VCC ≥ 2.7 V 2 11 VCC < 2.7 V 2 15 VCC ≥ 2.7 V - 40 MHz VCC < 2.7 V - 20 MHz VCC ≥ 2.7 V 25 - ns VCC < 2.7 V 50 - ns Remarks ns tTRACE Note: − When the external load capacitance CL = 30 pF. HCLK TRACECLK TRACED[3:0] Document Number: 002-05635 Rev.*B Page 91 of 126 MB9A340NB Series 12.4.14 JTAG Timing (VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Symbol Pin name TMS, TDI setup time tJTAGS TCK, TMS, TDI TMS, TDI hold time tJTAGH TCK, TMS, TDI TDO delay time tJTAGD TCK, TDO Value Conditions VCC ≥ 2.7 V Min Max Unit 15 - ns 15 - ns VCC ≥ 2.7 V - 25 VCC < 2.7 V - 45 VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V Remarks ns Note: − When the external load capacitance CL = 30 pF. TCK TMS/TDI TDO Document Number: 002-05635 Rev.*B Page 92 of 126 MB9A340NB Series 12.5 12-bit A/D Converter Electrical Characteristics for the A/D Converter (VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C) Parameter Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage Value Typ Symbol Pin name - - - ±2 12 ± 4.5 bit LSB - - - ± 2.2 ± 2.5 LSB VZT ANxx - ±6 ± 15 mV VFST ANxx - AVRH ± 6 AVRH ± 15 mV 2.0*1 4.0*1 10*1 0.6 1.2 3.0 100 200 500 - - μs 10 us - 1000 ns Min Unit Max Conversion time - - Sampling time*2 tS - Compare clock cycle*3 tCCK - tSTT - - - 1.0 μs - AVCC - 0.27 0.03 0.42 10 mA μA - 0.72 1.29 mA - AVRH - 0.02 2.6 μA - - pF μA State transition time to operation permission Power supply current (analog + digital) Reference power supply current (between AVRH to AVSS) Analog input capacity CAIN - Analog input resistor RAIN - - - Interchannel disparity Analog port input leak current Analog input voltage - - - - 9.4 2.2 5.5 10.5 4 - ANxx - - 5 - ANxx AVSS AVRH 2.7 AVRH AVCC AVCC Reference voltage AVRL AVSS AVSS *1: The conversion time is the value of sampling time (tS) + compare time (tC). kΩ Remarks AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V A/D 1unit operation When A/D stops A/D 1unit operation AVRH=3.6 V When A/D stops AVCC ≥ 2.7 V 1.8 V< AVCC < 2.7 V 1.65 V< AVCC < 1.8 V LSB V V AVCC ≥ 2.7 V AVCC < 2.7 V V The condition of the minimum conversion time is the following. AVCC ≥ 2.7 V, HCLK=40 MHz sampling time: 0.6 μs, compare time: 1.4 μs 1.8 V < AVCC < 2.7 V, HCLK=40 MHz sampling time: 1.2 μs, compare time: 2.8 μs 1.65 V < AVCC < 1.8 V, HCLK=40 MHz sampling time: 3 μs, compare time: 7 μs Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK). For setting of the sampling time and the compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual Analog Macro Port. The register setting of the A/D Converter are reflected in the operation according to the APB bus clock timing. The sampling clock and compare clock is generated from the Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see Block Diagram in this data sheet. *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1). Document Number: 002-05635 Rev.*B Page 93 of 126 MB9A340NB Series *3: The compare time (tC) is the value of (Equation 2). REXT ANxx Analog input pin Comparator RAIN Analog signal source CAIN (Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9 tS: Sampling time[ns] RAIN: Input resistor of A/D[kΩ] = 2.2 kΩ at 2.7 V < AVCC < 3.6 V Input resistor of A/D[kΩ] = 5.5 kΩ at 1.8 V < AVCC < 2.7 V Input resistor of A/D[kΩ] = 10.5 kΩ at 1.65 V < AVCC < 1.8 V CAIN: Input capacity of A/D[pF] = 9.4 pF at 1.65 V < AVCC < 3.6 V REXT: Output impedance of external circuit[kΩ] (Equation 2) tC = tCCK × 14 tC: Compare time tCCK: Compare clock cycle Document Number: 002-05635 Rev.*B Page 94 of 126 MB9A340NB Series Definition of 12-bit A/D Converter Terms • Resolution: • Integral Nonlinearity: • Differential Nonlinearity: Analog variation that is recognized by an A/D converter. Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD 0xN Actual conversion characteristics Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVSS Actual conversion characteristics AVRH AVSS AVRH Analog input Linearity error of digital output N = Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB Differential linearity error of digital output N = 1LSB = N: VZT: VFST: VNT: V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 002-05635 Rev.*B Page 95 of 126 MB9A340NB Series 12.6 USB Characteristics (VCC = 3.0V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Input characteristics Output characteristics Symbol Pin name Value Conditions Min Max Unit Remarks Input H level voltage VIH - 2.0 VCC + 0.3 V *1 Input L level voltage VIL - VSS - 0.3 0.8 V *1 VDI - 0.2 - V *2 VCM - 0.8 2.5 V *2 2.8 3.6 V *3 0 0.3 V *3 1.3 4 4 2.0 20 20 V ns ns *4 *5 *5 Differential input sensitivity Different common mode range Output H level voltage VOH Output L level voltage VOL Crossover voltage Rising time Falling time Rising/falling time matching Output impedance Rising time Falling time Rising/falling time matching VCRS tFR tFF External pull-down resistor = 15 kΩ External pull-up resistor = 1.5 kΩ Full-Speed Full-Speed tFRFM Full-Speed 90 111.11 % *5 ZDRV tLR tLF Full-Speed Low-Speed Low-Speed 28 75 75 44 300 300 Ω ns ns *6 *7 *7 tLRFM Low-Speed 80 125 % *7 UDP0, UDM0 *1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V, VIH (Min) = 2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. Minimum differential input sensitivity [V] *2: Use the differential-Receiver to receive the USB differential data signal. The Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. Common mode input voltage [V] Document Number: 002-05635 Rev.*B Page 96 of 126 MB9A340NB Series *3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to ground and 15 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V. VCRS specified range *5: They indicate the rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission. Rising time Document Number: 002-05635 Rev.*B Falling time Page 97 of 126 MB9A340NB Series *6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistor. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω (recommendation value) must be added. And, use resistance with an uncertainty of 5% by E24 sequence. *7: They indicate the rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. Rising time Falling time See Figure Low-Speed Load (Compliance Load) for conditions of the external load. Document Number: 002-05635 Rev.*B Page 98 of 126 MB9A340NB Series Low-Speed Load (Upstream Port Load) - Reference 1 CL = 50pF to 150pF CL = 50pF to 150pF Low-Speed Load (Downstream Port Load) - Reference 2 CL = 200pF to 600pF CL = 200pF to 600pF Low-Speed Load (Compliance Load) CL = 200pF to 450pF CL = 200pF to 450pF Document Number: 002-05635 Rev.*B Page 99 of 126 MB9A340NB Series 12.7 Low-Voltage Detection Characteristics 12.7.1 Low-Voltage Detection Reset (TA = - 40°C to + 85°C) Parameter Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage LVD stabilization wait time LVD detection delay time Symbol VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH Conditions SVHR*1 = 00000 SVHR*1 = 00001 SVHR*1 = 00010 SVHR*1 = 00011 SVHR*1 = 00100 SVHR*1 = 00101 SVHR*1 = 00110 SVHR*1 = 00111 SVHR*1 = 01000 SVHR*1 = 01001 SVHR*1 = 01010 SVHR*1 = 01011 SVHR*1 = 01100 SVHR*1 = 01101 SVHR*1 = 01110 SVHR*1 = 01111 SVHR*1 = 10000 SVHR*1 = 10001 SVHR*1 = 10010 SVHR*1 = 10011 Value Min Typ Max 1.38 1.50 1.60 1.43 1.55 1.65 1.43 1.55 1.65 Same as SVHR = 00000 value 1.47 1.60 1.73 Same as SVHR = 00000 value 1.52 1.65 1.78 Same as SVHR = 00000 value 1.56 1.70 1.84 Same as SVHR = 00000 value 1.61 1.75 1.89 Same as SVHR = 00000 value 1.66 1.80 1.94 Same as SVHR = 00000 value 1.70 1.85 2.00 Same as SVHR = 00000 value 1.75 1.90 2.05 Same as SVHR = 00000 value 1.79 1.95 2.11 Same as SVHR = 00000 value 1.84 2.00 2.16 Same as SVHR = 00000 value 1.89 2.05 2.21 Same as SVHR = 00000 value 2.30 2.50 2.70 Same as SVHR = 00000 value 2.39 2.60 2.81 Same as SVHR = 00000 value 2.48 2.70 2.92 Same as SVHR = 00000 value 2.58 2.80 3.02 Same as SVHR = 00000 value 2.67 2.90 3.13 Same as SVHR = 00000 value 2.76 3.00 3.24 Same as SVHR = 00000 value 2.85 3.10 3.35 Same as SVHR = 00000 value 2.94 3.20 3.46 Same as SVHR = 00000 value Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V tLVDW - - - 5200 × tCYCP*2 μs tLVDDL - - - 200 μs Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to 00000 by Low-Voltage Detection Reset. *2: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-05635 Rev.*B Page 100 of 126 MB9A340NB Series 12.7.2 Interrupt of Low-Voltage Detection (TA = - 40°C to + 85°C) Value Parameter Symbol Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time tLVDW LVD detection delay time tLVDDL Conditions Min Typ Max Unit 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V - - - 5200 × tCYCP* μs - - - 200 μs SVHI = 00100 SVHI = 00101 SVHI = 00110 SVHI = 00111 SVHI = 01000 SVHI = 01001 SVHI = 01010 SVHI = 01011 SVHI = 01100 SVHI = 01101 SVHI = 01110 SVHI = 01111 SVHI = 10000 SVHI = 10001 SVHI = 10010 SVHI = 10011 Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-05635 Rev.*B Page 101 of 126 MB9A340NB Series 12.8 Flash Memory Write/Erase Characteristics 12.8.1 Write / Erase time (VCC = 1.65V to 3.6V, TA = - 40°C to + 85°C) Value Parameter Typ* Max* Large Sector 1.1 2.7 Small Sector 0.3 0.9 Half word (16-bit) write time 30 Chip erase time 6.8 Sector erase time Unit Remarks s Includes write time prior to internal erase 528 μs Not including system-level overhead time 18 s Includes write time prior to internal erase *: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write. 12.8.2 Write cycles and data hold time Erase/write cycles (cycle) Data hold time (year) 1,000 20* 10,000 10* Remarks *: At average + 85C Document Number: 002-05635 Rev.*B Page 102 of 126 MB9A340NB Series 12.9 Return Time from Low-Power Consumption Mode 12.9.1 Return Factor: Interrupt/WKUP The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Value Symbol Typ Unit Max* Remarks μs Sleep mode tCYCC High-speed CR Timer mode, Main Timer mode, PLL Timer mode 40 80 μs 350 700 μs 690 880 μs 278 523 μs 318 603 μs When RAM is off 278 523 μs When RAM is on Low-speed CR Timer mode Sub Timer mode tICNT RTC mode, Stop mode Deep Standby RTC mode Deep Standby Stop mode *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by external interrupt*) External interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 002-05635 Rev.*B Page 103 of 126 MB9A340NB Series Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal resource interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual. Document Number: 002-05635 Rev.*B Page 104 of 126 MB9A340NB Series 12.9.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C) Parameter Value Symbol Typ Max* Unit 148 263 μs 148 263 μs 258 483 μs Sub Timer mode 322 516 μs RTC/Stop mode 278 523 μs Deep Standby RTC mode Deep Standby Stop mode 318 278 603 523 μs μs Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode tRCNT Remarks When RAM is off When RAM is on *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal reset Reset active Release tRCNT CPU Operation Document Number: 002-05635 Rev.*B Start Page 105 of 126 MB9A340NB Series Operation example of return from low power consumption mode (by internal resource reset*) Internal resource reset Internal reset Reset active Release tRCNT CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual. − The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on Reset Timing in 4. AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset. − When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. Document Number: 002-05635 Rev.*B Page 106 of 126 MB9A340NB Series 13. Ordering Information On-chip Flash memory Part number On-chip SRAM MB9AF341LBPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342LBPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344LBPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341LBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342LBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344LBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341LBQN-G-AVE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342LBQN-G-AVE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344LBQN-G-AVE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341MBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342MBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344MBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341MBPMC1-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342MBPMC1-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344MBPMC1-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341MBBGL-GE1 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342MBBGL-GE1 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344MBBGL-GE1 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341NBPMC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342NBPMC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344NBPMC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte Document Number: 002-05635 Rev.*B Package Packing Plastic LQFP 64-pin (0.5mm pitch), (LQD064) Plastic LQFP 64-pin (0.65mm pitch), (LQG064) Plastic QFN 64-pin (0.5mm pitch), (VNC064) Plastic LQFP 80-pin (0.5mm pitch), (LQH080) Tray Plastic LQFP 80-pin (0.65mm pitch), (LQJ080) Plastic PFBGA 96-pin (0.5mm pitch), (FDG096) Plastic LQFP 100-pin (0.5mm pitch), (LQI100) Page 107 of 126 MB9A340NB Series On-chip Flash memory Part number On-chip SRAM MB9AF341NBPQC-G-JNE2 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342NBPQC-G-JNE2 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344NBPQC-G-JNE2 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte MB9AF341NBBGL-GE1 Main: 64 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF342NBBGL-GE1 Main: 128 Kbyte Work: 32 Kbyte 16 Kbyte MB9AF344NBBGL-GE1 Main: 256 Kbyte Work: 32 Kbyte 32 Kbyte Document Number: 002-05635 Rev.*B Package Packing Plastic QFP 100-pin (0.65mm pitch), (PQH100) Tray Plastic PFBGA 112-pin (0.8mm pitch), (LBC112) Page 108 of 126 MB9A340NB Series 14. Package Dimensions Package Type Package Code LQFP 100 LQI100 D D1 75 4 D 5 7 51 D1 51 50 76 4 5 7 75 50 76 E1 E 5 4 7 E1 E 5 4 7 3 6 26 100 1 26 25 1 25 2 5 7 e 100 BOTTOM VIEW 0.1 0 C A-B D 3 0.2 0 C A-B D b TOP VIEW 8 0.0 8 C A-B D 2 A 9 A SEAT ING PLA NE A' 0.25 L1 0.0 8 C c A1 b 10 SECTION A-A' L SIDE VIEW SYMBOL DETAIL A DIMENSIONS MIN. NOM. MAX. 1.70 A A1 0.05 b 0.15 0.15 0.27 c 0.09 0.20 D 16.00 BSC D1 14.00 BSC e 0.50 BSC E 16.00 BSC E1 14.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 NOTES : 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY. 3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H. 4. TO BE DETERMINED AT SEATING PLANE C. 5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. 7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY. 8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT. 9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP. 10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. 002-11500 *A PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A Document Number: 002-05635 Rev.*B Page 109 of 126 MB9A340NB Series Package Type Package Code QFP 100 PQH100 D D1 4 5 7 80 51 81 51 50 80 50 81 31 100 E1 E 5 7 6 3 4 31 100 1 30 e 3 0.40 C A-B D 30 2 5 7 1 0.20 C A-B D b 0.13 C A-B D BOTTOM VIEW 8 TOP VIEW 2 9 A A' SEATING PLANE L2 c 10 b 0.10 C SECTION A-A' DETAIL A SIDE VIEW SYMBOL DIMENSIONS MIN. NOM. MAX. A1 0.05 0.45 b 0.27 c 0.11 A 3.35 0.32 0.23 D 23.90 BSC D1 20.00 BSC e 0.65 BSC E 17.90 BSC E1 14.00 BSC 0 L 0.37 8 0.73 0.88 L1 1.95 REF L2 0.25 BSC 1.03 PACKAGE OUTLINE, 100 LEAD QFP 20.00X14.00X3.35 MM PQH100 REV** 002-15156 ** Document Number: 002-05635 Rev.*B Page 110 of 126 MB9A340NB Series Package Type Package Code LQFP 80 LQH080 D D1 60 4 5 7 41 41 40 61 60 40 61 21 80 5 7 E1 E 4 3 6 80 21 1 20 D e 20 2 5 7 0.10 C A-B D 3 b 0.08 C A-B 1 BOTTOM VIEW D 0.20 C A-B D 8 TOP VIEW 2 A A A' 0.08 C SIDE VIEW SEATING PLANE 9 L1 L 0.25 A1 10 c b SECTION A-A' DIMENSIONS SYMBOL MIN. NOM. MAX. A A1 1. 70 0.05 0.15 b 0.15 0.27 c 0.09 0.20 D 14.00 BSC. D1 12.00 BSC. e 0.50 BSC E 14.00 BSC. E1 12.00 BSC. L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 80 LEAD LQFP 12.0X12.0X1.7 MM LQH080 Rev ** 002-11501 ** Document Number: 002-05635 Rev.*B Page 111 of 126 MB9A340NB Series Package Type Package Code LQFP 80 LQJ080 D D1 60 4 5 7 41 41 61 40 E1 60 40 61 21 80 E 5 7 4 3 6 80 21 1 20 20 2 5 7 1 0.10 C A-B D 3 e 0.20 C A-B D b ddd C A-B D 8 2 A 9 A A' 0.10 C SEATING PLANE c L1 0.2 5 A1 10 b SECTION A-A' L SYMBOL DIMENSIONS MIN. NOM. MAX. 1.70 A A1 0.00 b 0.16 c 0.09 0.20 0.32 0.38 0.20 D 16.00 BSC D1 14.00 BSC e 0.65 BSC E 16.00 BSC 14.00 BSC E1 L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 8 PACKAGE OUTLINE, 80 LEAD LQFP 14.0X14.0X1.7 MM LQJ080 REV** 002-14043 ** Document Number: 002-05635 Rev.*B Page 112 of 126 MB9A340NB Series Package Type Package Code LQFP 64 LQD064 4 D D1 48 5 7 33 33 32 49 48 32 49 17 64 5 7 E1 E 4 3 6 17 64 1 16 e 1 16 2 5 7 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.08 C A-B D 8 TOP VIEW A 2 9 A A' 0.08 C SEATING PLANE L1 0.25 L A1 c b SECTION A-A' 10 SIDE VIEW SYMBOL DIMENSIONS MIN. NOM. MAX. A A1 1. 70 0.00 0.20 b 0.15 0.2 c 0.09 0.20 D 12.00 BSC. D1 10.00 BSC. e 0.50 BSC E 12.00 BSC. E1 10.00 BSC. L 0.45 0.60 0.75 L1 0.30 0.50 0.70 PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev** 002-11499 ** Document Number: 002-05635 Rev.*B Page 113 of 126 MB9A340NB Series Package Type Package Code LQFP 64 LQG064 D D1 48 4 5 7 33 33 32 49 48 32 49 17 64 E1 E 5 7 4 3 17 64 1 16 e 1 16 2 5 7 3 BOTTOM VIEW 0.10 C A-B D 0.20 C A-B D b 0.13 C A-B D 8 TOP VIEW 2 A A A' 0.10 C SEATI NG PLA NE 0.2 5 L1 L 9 A1 10 c b SEC TION A -A' SIDE VIEW SYMBOL DIMENSION MIN. NOM. MAX. 1.70 A A1 0.00 0.20 b 0.27 c 0.09 0.32 0.37 0.20 D 14.00 BSC D1 12.00 BSC e 0.65 BSC E 14.00 BSC E1 12.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 0 PACKAGE OUTLINE, 64 LEAD LQFP 12.0X12.0X1.7 MM LQG064 REV** 002-13881 ** Document Number: 002-05635 Rev.*B Page 114 of 126 MB9A340NB Series Package Type Package Code QFN 64 VNC064 0.10 D 0.10 C 2X D2 A 48 33 33 32 49 C A B 48 32 49 0.10 C A B 5 (ND-1) E e 17 64 1 INDEXMARK 8 E2 16 9 B e L 0.10 C TOP VIEW 64 17 16 BOTTOM VIEW 2X b 1 4 0.10 0.05 C A B C 0.10 C A 0.05 C SEATINGPLANE C A1 SIDE VIEW DIMENSIONS NOTES: SYMBOL MIN. NOM. MAX. A A1 0.90 0.00 0.05 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4 D 9.00 BSC E 9.00 BSC b 0.20 0.25 0.30 D2 6.00 BSC E2 6.00 BSC 6. 7. e 0.50 BSC 8 R 0.20 REF L 0.35 0.40 0.45 N 64 ND 16 5 9 DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA. ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE. MAX. PACKAGE WARPAGE IS 0.05mm. MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS. PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. PACKAGE OUTLINE, 64 LEAD QFN 9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev*.* 002-13234 ** Document Number: 002-05635 Rev.*B Page 115 of 126 MB9A340NB Series Package Type Package Code FBGA 112 LBC112 A 0.20 C 11 2X 10 9 6 8 7 6 5 4 3 2 1 L PIN A1 CORNER INDEX MARK K J H G F E D 7 C B A 6 B 0.20 C TOP VIEW 2X BOTTOM VIEW DETAIL A 5 112x φb C 0.10 C DETAIL A 0.08 C A B SIDE VIEW NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS SYMBOL MIN. NOM. MAX. 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020. A - - 1.45 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH. A1 0.25 0.35 0.45 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. D 10.00 BSC SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. E 10.00 BSC N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX D1 8.00 BSC E1 8.00 BSC MD PLANE PARALLEL TO DATUM C. 11 ME 11 N 112 b SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A 0.35 0.45 eD 0.80 BSC eE 0.80 BSC SD 0.00 SE 0.00 6. "SD" AND "SE" ARE MEASUREDWITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. 0.55 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. PACKAGE OUTLINE, 112 BALL FBGA 10.00X10.00X1.45 MM LBC112 REV** 002-13225 ** Document Number: 002-05635 Rev.*B Page 116 of 126 MB9A340NB Series Package Type Package Code FBGA 96 FDG096 A 0.20 C 11 2X 10 9 6 8 7 6 5 4 3 2 1 L PIN A1 CORNER INDEX MARK K J H G F E D 7 0.20 C TOP VIEW C B A 6 B 2X BOTTOM VIEW DETAIL A 0.20 C 0.08 C C 96xφb DETAIL A 5 0.05 SIDE VIEW C A B NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS SYMBOL MIN. NOM. MAX. 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020. A - - 1.30 3. "e" REPRESENTSTHE SOLDER BALL GRID PITCH. A1 0.15 0.25 0.35 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. D 6.00 BSC SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. E 6.00 BSC N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX D1 5.00 BSC E1 5.00 BSC MD 11 ME 11 N 96 b SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A 0.20 0.30 eD 0.50 BSC eE 0.50 BSC SD 0.00 SE 0.00 PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. 0.40 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. PACKAGE OUTLINE, 96 BALL FBGA 6.0X6.0X1.3 MM FDG096 REV** 002-13224 ** Document Number: 002-05635 Rev.*B Page 117 of 126 MB9A340NB Series 15. Errata This chapter describes the errata for MB9A340N, MB9A340NA and MB9A340MB series. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions. 15.1 Part Numbers Affected Part Number Initial Revision MB9AF341NPMC-G-JNE2, MB9AF342NPMC-G-JNE2, MB9AF344NPMC-G-JNE2, MB9AF341NPQC-G-JNE2, MB9AF342NPQC-G-JNE2, MB9AF344NPQC-G-JNE2, MB9AF341NBGL-GE1, MB9AF342NBGL-GE1, MB9AF344NBGL-GE1, MB9AF341MPMC-G-JNE2, MB9AF342MPMC-G-JNE2, MB9AF344MPMC-G-JNE2, MB9AF341MPMC1-G-JNE2, MB9AF342MPMC1-G-JNE2, MB9AF344MPMC1-G-JNE2, MB9AF341MBGL-GE1, MB9AF342MBGL-GE1, MB9AF344MBGL-GE1, MB9AF341LPMC1-G-JNE2, MB9AF342LPMC1-G-JNE2, MB9AF344LPMC1-G-JNE2, MB9AF341LPMC-G-JNE2, MB9AF342LPMC-G-JNE2, MB9AF344LPMC-G-JNE2, MB9AF341LQN-G-AVE2, MB9AF342LQN-G-AVE2, MB9AF344LQN-G-AVE2 Rev. A MB9AF341NAPMC-G-JNE2, MB9AF342NAPMC-G-JNE2, MB9AF344NAPMC-G-JNE2, MB9AF341NAPQC-G-JNE2, MB9AF342NAPQC-G-JNE2, MB9AF344NAPQC-G-JNE2, MB9AF341NABGL-GE1, MB9AF342NABGL-GE1, MB9AF344NABGL-GE1, MB9AF341MAPMC-G-JNE2, MB9AF342MAPMC-G-JNE2, MB9AF344MAPMC-G-JNE2, MB9AF341MAPMC1-G-JNE2, MB9AF342MAPMC1-G-JNE2, MB9AF344MAPMC1-G-JNE2, MB9AF341MABGL-GE1, MB9AF342MABGL-GE1, MB9AF344MABGL-GE1, MB9AF341LAPMC1-G-JNE2, MB9AF342LAPMC1-G-JNE2, MB9AF344LAPMC1-G-JNE2, MB9AF341LAPMC-G-JNE2, MB9AF342LAPMC-G-JNE2, MB9AF344LAPMC-G-JNE2, MB9AF341LAQN-G-AVE2, MB9AF342LAQN-G-AVE2, MB9AF344LAQN-G-AVE2 Rev. B MB9AF341NBPMC-G-JNE2, MB9AF342NBPMC-G-JNE2, MB9AF344NBPMC-G-JNE2, MB9AF341NBPQC-G-JNE2, MB9AF342NBPQC-G-JNE2, MB9AF344NBPQC-G-JNE2, MB9AF341NBBGL-GE1, MB9AF342NBBGL-GE1, MB9AF344NBBGL-GE1, MB9AF341MBPMC-G-JNE2, MB9AF342MBPMC-G-JNE2, MB9AF344MBPMC-G-JNE2, MB9AF341MBPMC1-G-JNE2, MB9AF342MBPMC1-G-JNE2, MB9AF344MBPMC1-G-JNE2, MB9AF341MBBGL-GE1, MB9AF342MBBGL-GE1, MB9AF344MBBGL-GE1, MB9AF341LBPMC1-G-JNE2, MB9AF342LBPMC1-G-JNE2, MB9AF344LBPMC1-G-JNE2, MB9AF341LBPMC-G-JNE2, MB9AF342LBPMC-G-JNE2, MB9AF344LBPMC-G-JNE2, MB9AF341LBQN-G-AVE2, MB9AF342LBQN-G-AVE2, MB9AF344LBQN-G-AVE2 15.2 Qualification Status Product Status: In Production − Qual. Document Number: 002-05635 Rev.*B Page 118 of 126 MB9A340NB Series 15.3 Errata Summary This table defines the errata applicability to available devices. Items Part Number Silicon Revision Fix Status [1] FLASH lower bank read during write Refer to 15.1 Initial rev. Fixed in Rev. A [2] FLASH read during write & erase suspend Refer to 15.1 Initial rev. Fixed in Rev. A [3] Regulator issue Refer to 15.1 Initial rev., Rev. A Fixed in Rev. B [4] HDMI-CEC arbitration lost issue Refer to 15.1 Initial rev., Rev. A Fixed in Rev. B [5] HDMI-CEC polling message issue Refer to 15.1 Initial rev., Rev. A , Rev. B Next silicon is not planned 1. FLASH lower bank read during write PROBLEM DEFINITION During writing (programming) to FLASH memory of an upper bank, FLASH memory of a lower bank could not be read at a specific timing in some operation combinations. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) This issue may happen when read data or fetch instruction from the FLASH memory lower bank (smaller sector), while a write (program) operation to the FLASH memory upper bank (larger sector) is in progress. SCOPE OF IMPACT Instructions could not be fetched (read) correctly from the lower bank, and then execution of the (corrupted) instructions may cause a hard fault or run-away. If an instruction in RAM reads a data from the lower bank while writing to the upper bank, an incorrect value might be read. WORKAROUND To rewrite the upper bank of FLASH memory, put the write instruction in RAM instead of the lower bank and execute it from the RAM. Do not access the lower bank until the write operation is completed (RDY=1). Especially to avoid a vector fetch from the lower bank of the FLASH memory by an interrupt occurred, the interrupt should be prohibited or the vector address should be set to RAM by the vector table offset register. FIX STATUS This issue was fixed in Rev. A. 2. FLASH Read during Write & Sector Erase Suspend PROBLEM DEFINITION When writing is executed during sector erase suspend, FLASH memory could not be read correctly at a specific timing. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) This issue may happen when read data or fetch instruction from the FLASH memory bank (higher or lower), while a write (program) operation is in progress to the opposite bank which has a sector erase suspended. The following flow could not be executed correctly. (a) Erase a sector of a bank (b) Suspend the sector erase operation (c) Write to a different sector of the bank (d) Execute an instruction or read data in the opposite bank SCOPE OF IMPACT Document Number: 002-05635 Rev.*B Page 119 of 126 MB9A340NB Series Instructions could not be fetched (read) correctly, and then execution of the (corrupted) instructions may cause a hard fault or run-away. If an instruction in RAM reads a data from the bank, an incorrect value might be read. WORKAROUND Do not execute the write operation to a different sector in the same bank at sector erase suspend. FIX STATUS This issue was fixed in Rev. A. 3. Regulator issue PROBLEM DEFINITION The regulator does not get initialized while internal power-up sequence. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) This issue rarely happens depending on states of internal circuits which the user cannot control. SCOPE OF IMPACT MCU does not start operation if this issue occurs. WORKAROUND This error cannot be avoided by any software. FIX STATUS This issue was fixed in Rev. B. 4. HDMI-CEC arbitration lost issue PROBLEM DEFINITION Large external load on CEC bus may cause arbitration lost. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) The arbitration lost detection mechanism samples outputting signals and determines that arbitration lost occurs if sampled signals do not match the outputting signals. The large external load on the CEC bus increases slew rate of the signals. The increased slew rate makes the mismatch between outputting signals and sampled signals and the mismatch misleads MCU that arbitration lost occurs. SCOPE OF IMPACT Once the arbitration lost is detected, the CEC aborts the transmission. Any transmission cannot be completed. WORKAROUND This error cannot be avoided by any software. Reduce the external load. FIX STATUS This issue was fixed in Rev. B. 5. HDMI-CEC polling message issue PROBLEM DEFINITION Error#1) While MCU sends a Polling Message, it always returns a NACK to a message coming to the MCU from another node. Error#2) MCU always waits for 7-bit signal free on CEC line before it drives the line even when the last line initiator was another node. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) This error always happens. SCOPE OF IMPACT MCU does not reply properly to another node. Document Number: 002-05635 Rev.*B Page 120 of 126 MB9A340NB Series WORKAROUND The software workaround is applied to Error #1. 1. Store 0x0 to SFREE register. 2. Monitor CEC line with GPIO and wait until 1 lasts for the signal free time. 3. Store frame data to TXDATA register and store 0x0F to RCADR1 or RCADR2 register. It sends a message after 3~4 clocks of 32.768 kHz clock when TXDATA is stored 0x0F. If the device receives a frame from another node within 2~3 clocks after storing TXDATA, the bus error occurs and if the device receives a frame from another node within 3~4 clocks after storing TXDATA, the arbitration lost occurs. In these cases: 4-A-1. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK 4-A-2. Return back to step 2 above If the device receives a frame from another node within 1~2 clocks after storing TXDATA, take these steps. 4-B-1. Monitor CEC line with GPIO after 50us from storing TXDATA 4-B-2. Set TXEN to 1 -> 0 -> 1 immediately when GPIO finds state low on the CEC line 4-B-3. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK 4-B-4. Return back to step 2 above For Error #2, there is no software workaround, but signal free time of fixed 7-bit does not violate HDMI-CEC specification. The specification says signal free time must be more than and equals to 5-bit. FIX STATUS The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned. Document Number: 002-05635 Rev.*B Page 121 of 126 MB9A340NB Series 16. Major Changes Spansion Publication Number: DS706-00039 Page Section Revision 2.0 FEATURE • On-chip Memories 2 • USB Interface 6 • Unique ID PRODUCT LINEUP 7 • Function 48 HANDLING DEVICES MEMORY MAP 53 • Memory Map (2) PIN STATUS IN EACH CPU STATE 58 • List of Pin Status ELECTRICAL CHARACTERISTICS 3.DC Characteristics 65 (1) Current rating 4.AC Characteristics (3) Built-in CR Oscillation 68 Characteristics • Built-in high-speed CR (7) External Bus Timing 72, 73 • Separate Bus Access Asynchronous SRAM Mode • Separate Bus Access Synchronous 74 SRAM Mode 79, 81, (9) CSIO Timing 83, 85 88 (11) I2C Timing 5. 12-bit A/D Converter 91 • Electrical characteristics for the A/D converter (Preliminary value) 93 • Definition of 12-bit A/D Converter Terms 7. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset 99 (2) Interrupt of Low-Voltage Detection Revision 2.1 Revision 3.0 98 - - - - 2 3 FEATURES •External Bus Interface •Multi-function Serial Interface Document Number: 002-05635 Rev.*B Change Results Revised the descriptions of [Flash memory]. Revised the descriptions of [USB function]. Added the descriptions of "Unique ID". Added the descriptions. Revised the Pin status type of "I". Revised the descriptions of Power supply current. Added the "Flash memory write/erase current". Added the footnote. Revised the table and the footnote. Revised the table and the figure. Revised the title to "CSIO Timing". Revised the note. Revised the footnote. • Revised the parameter. • Revised the symbol. • Corrected the value. • Revised the parameter. • Revised the symbol. • Corrected "Conditions" and "Value" in the table. • Added the Item. • Added the footnote. Added the Item. Company name and layout design change Corrected the Series name. MB9A340NA Series → MB9A340NB Series Corrected the Product name as follows. MB9AF344LB, MB9AF342LB, MB9AF341LB MB9AF344MB, MB9AF342MB, MB9AF341MB MB9AF344NB, MB9AF342NB, MB9AF341NB Added the Item. • Maximum area size : Up to 256 Mbytes Corrected the description of "I2C" Page 122 of 126 MB9A340NB Series Page 7 51 52 63 64,65 86 Section PRODUCT LINEUP •Function BLOCK DIAGRAM MEMORY MAP •Memory Map (1) ELECTRICAL CHARACTERISTICS 2.Recommended Operating Conditions 3.DC Characteristics (1)Current rating (9)CSIO Timing •Synchronous serial (SPI=1, SCINV=1) (9) CSIO Timing • External clock(EXT=1): asynchronous only (12)I2C Timing 88 91 5.12-bit A/D Converter •Electrical Characteristics for the A/D Converter 101 ORDERING INFORMATON Revision 4.0 Features 2 USB Interface Memory Map 53 · Memory map(2) 64 - 66 67 70 71 80 - 87 Electrical Characteristics 3. DC Characteristics (1) Current rating Electrical Characteristics 3. DC Characteristics (2) Pin Characteristics Electrical Characteristics 4. AC Characteristics (4-1) Operating Conditions of Main and USB PLL (4-2) Operating Conditions of Main PLL Electrical Characteristics 4. AC Characteristics (6) Power-on Reset Timing Electrical Characteristics 4. AC Characteristics (9) CSIO/UART Timing Document Number: 002-05635 Rev.*B Change Results Added the footnote Corrected the figure Corrected the address "External Device Area" Add the footnote •Corrected the Condition •Delete the minimum value •Corrected the remarks •Add the footnote Corrected the figure of "MS bit=1" Corrected the figure Corrected the description as follows. •Typical mode → Standard-mode •High-speed mode→ Fast-mode •Corrected the terminal name AN00 ~ AN23 → ANxx •Corrected the minimum value of "Sampling time" •Corrected the max and min value of "State transition time to operation permission" •Corrected the footnote Corrected the "Part number" Added the description of PLL for USB Added the summary of Flash memory sector and the note · Changed the table format · Added Main Timer mode current · Moved A/D Converter Current Added input leak current of CEC pin at power off. Added the figure of Main PLL connection and USB PLL connection · Added Time until releasing Power-on reset · Changed the figure of timing · Modified from UART Timing to CSIO/UART Timing · Changed from Internal shift clock operation to Master mode · Changed from External shift clock operation to Slave mode Page 123 of 126 MB9A340NB Series Page Section Change Results Electrical Characteristics 5. 12bit A/D Converter · Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage · Added Conversion time at AVcc < 2.7V 102 105 Electrical Characteristics 9. Return Time from Low-Power Consumption Mode Added Return Time from Low-Power Consumption Mode 106, 107 Ordering Information Changed notation of part number 92 NOTE: Please see “Document History” about later revised information. Document Number: 002-05635 Rev.*B Page 124 of 126 MB9A340NB Series Document History Document Title: MB9A340NB Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller Document Number: 002-05635 Revision ECN ** - Orig. of Submission Change Date AKIH 06/10/2015 Description of Change Migrated to Cypress and assigned document number 002-05635. No change to document contents or format. *A 5199288 AKIH 04/01/2016 Updated to Cypress format. Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply rise time(Tr)[ms]” to “Power ramp rate(dV/dt)[mV/μs]” and added some comments (Page 71) Modified RTC description in “Features, Real-Time Clock(RTC)” as below Changed starting count value from 01 to 00. Deleted “second , or day of the week” in the Interrupt function (Page 3) Added Notes for JTAG (Page 39), Changed “J-TAG” to” JTAG” in “4 List of Pin Functions” (Page 29) Updated Package code and dimensions as follows (Page 8-15, 107-117) *B 5534251 YSKA 07/26/2017 FPT-64P-M38 -> LQD064, FPT-64P-M39 -> LQG064, LCC-64P-M24 -> VNC064, FPT-80P-M37 -> LQH080, FPT-80P-M40 -> LQJ080, BGA-96P-M07 -> FDG096, FPT-100P-M23 -> LQI100, FPT-100P-M36 -> PQH100 BGA-112P-M04 -> LBC112 Added “15. Errata” (Page 118) Change the name from “USB Function” to “USB Device” (Page 1, 7, 38) Add “Analog reference voltage(AVRL)” in “12.2 Recommended Operating Conditions” and “12.6 12-bit A/D Converter”(Page 62, 93) Corrected the following statement Analog port input current Analog port input leak current in chapter 12.6. 12-bit A/D Converter (Page 93) Added the Baud rate spec in “12.5.10 CSIO/UART Timing”(Page 80, 82, 84, 86) Document Number: 002-05635 Rev.*B Page 125 of 126 MB9A340NB Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products ARM® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs Touch Sensing USB Controllers Wireless/RF PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwi se have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-05635 Rev.*B July 26, 2017 Page 126 of 126