Maxim MAX11905 20-bit, 1.6msps, low-power, fully differential Datasheet

EVALUATION KIT AVAILABLE
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
General Description
The MAX11905 is a 20-bit, 1.6Msps, single-channel, fully
differential SAR ADC with internal reference buffers. The
MAX11905 provides excellent static and dynamic performance with best-in-class power consumption that directly
scales with throughput. The device has a unipolar differential ±VREF input range. Supplies include a 3.3V supply
for the reference buffers, a 1.8V analog supply, a 1.8V
digital supply, and a 1.5V to 3.6V digital interface supply.
This ADC achieves 98.3dB SNR and -123dB THD, guarantees 20-bit resolution with no-missing codes and 6 LSB
INL (max).
The MAX11905 communicates data using a SPIcompatible serial interface. The MAX11905 is offered in a
20-pin, 4mm x 4mm, TQFN package and is specified over
the -40°C to +85°C operating temperature range.
●● High DC/AC Accuracy Provides Better Measurement
Quality
• 20-Bit Resolution with No Missing Codes
• ±6 LSB INL and ±1 LSB DNL Maximum at 20 Bits
• 98.3dB SNR and 98.1dB SINAD at fIN = 10kHz
• -123dB THD at fIN = 10kHz
●● High Sampling Rate SAR Architecture Enables Fast
Settling and Acquisition
• 1.6Msps Throughput with No Pipeline Delay
●● Integration Simplifies Design
• Integrated Reference Buffers, VREF = 2.5V to 3.6V
• ±VREF Unipolar Differential Analog Input Range
●● Scalable Ultra-Low Power Supply Reduces Power
Consumption
• 9mW at 1.6Msps
●● Flexible Low-Voltage Supplies Save Cost
• 1.8V Analog and Digital Core Supply
• 1.5V to 3.6V Digital Interface Supply
• 3.3V REFVDD Reference Buffer Supply
Applications
●●
●●
●●
●●
●●
●●
●●
Benefits and Features
Test and Measurement
Automatic Test Equipment
Medical Instrumentation
Process Control and Industrial Automation
Data Acquisition Systems
Telecommunications
Battery-Powered Equipment
●● Flexible, Industry-Standard Serial Interface and Small
Package Reduce Size
• SPI-/QSPI™-/MICROWIRE®/DSP-Compatible
• 20-Pin, 4mm x 4mm, TQFN Package
QSPI is a trademark of Motorola, Inc.
MICROWIRE is a registered trademark of National
Semiconductor Corporation.
Application Diagram
Ordering Information and Selector Guide appears at end of
data sheet.
3.6V
3.3V
REFIN
AIN+
0 TO 3.3V
7.5Ω
1.5 TO
3.6V
DIN
1nF
COG
MAX11905
SCLK
DOUT
CNVST
AIN-
REF REFGND AGND DGND
3.3V
10µF
19-6860; Rev 3; 6/16
1.8V
16-Bit to 20-Bit SAR ADC Family
REFVDD AVDD DVDD OVDD
7.5Ω
3.3V TO 0V
1.8V
4-WIRE
SPI
INTERFACE
16-BIT
18-BIT
20-BIT
1.6Msps
MAX11901
MAX11903
MAX11905
1Msps
MAX11900
MAX11902
MAX11904
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
TABLE OF CONTENTS
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
16-Bit to 20-Bit SAR ADC Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input Settling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Input Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Conversion Result Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chip ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Single-Ended Unipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Single-Ended Bipolar Input to Differential Unipolar Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Layout, Grounding, and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Integral Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Offset Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Signal-to-Noise Plus Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
www.maximintegrated.com
Maxim Integrated │ 2
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
TABLE OF CONTENTS (continued)
Effective Number of Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Total Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Spurious-Free Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Aperture Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Aperture Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Full-Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LIST OF FIGURES
Figure 1. Signal Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. Simplified Model of Input Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Ideal Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Read During Track Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. Read During SAR Conversion Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Split Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. SPI Interface Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. DIN Timing for Register Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Timing Diagram for Data Out Reading After Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11. Mode Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Unipolar Single-Ended Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Bipolar Single-Ended Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. Top Layer Sample Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
LIST OF TABLES
Table 1. ADC Driver Amplifier Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2. Voltage Reference Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3. MAX11905 External Reference Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Transfer Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. DOUT Driver Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
www.maximintegrated.com
Maxim Integrated │ 3
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Absolute Maximum Ratings
REFVDD, REF, REFIN, OVDD to GND...................-0.3V to +4V
AVDD, DVDD to GND..............................................-0.3V to +2V
DGND to AGND, REFGND...................................-0.3V to +0.3V
AIN+, AIN- to GND....... -0.3V to the lower of (VREF + 0.3V) and
+4V or ±130mA
SCLK, DIN, DOUT, CNVST, to GND............ -0.3V to the lower of
(VOVDD + 0.3V) and +4V
Maximum Current into Any Pin...........................................50mA
Continuous Power Dissipation (TA = +70°C)
TQFN (derate 30.30mW/°C above +70°C).............2424.2mW
Operating Temperature Range............................ -40°C to +85°C
Junction Temperature.......................................................+150°C
Storage Temperature Range............................. -65°C to +150°C
Lead Temperature (soldering, 10s).................................. +300°C
Soldering Temperature (reflow)........................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Package Thermal Characteristics (Note 1)
TQFN
Junction-to-Ambient Thermal Resistance (θJA)...........33°C/W
Junction-to-Case Thermal Resistance (θJC) ................ 2°C/W
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
Electrical Characteristics
(fSAMPLE = 1.6Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
+VREF
V
VREF +
0.1
V
ANALOG INPUT
Input Voltage Range (Note 3)
(AIN+) - (AIN-)
-VREF
Absolute Input Voltage Range
AIN+, AIN- relative to AGND
Common-Mode Input Range
[(AIN+) + (AIN-)]/2
VREF/2 0.1
VREF/2
VREF/2
+ 0.1
V
Input Leakage Current
Acquisition phase
-1
0.001
+1
µA
-0.1
Input Capacitance
32
pF
STATIC PERFORMANCE (Note 4)
Resolution
N
Resolution
LSB
20
VREF = 3.3V
No Missing Codes
20
Offset Error (Note 4)
-10
Offset Temperature Coefficient
Referred to REFIN reference input
Gain Error Temperature
Coefficient (Note 5)
Referred to REFIN reference input
Gain Error
Referred to REF pins
Gain Error Temperature
Coefficient (Note 5)
Referred to REF pins
www.maximintegrated.com
µV
Bits
±1
+10
±0.01
Gain Error
Integral Nonlinearity
Bits
6.3
INL
-175
±20
LSB/°C
+175
±0.2
-42
±10
±1.5
LSB
LSB/°C
+42
±0.12
-6
LSB
LSB
LSB/°C
+6
LSB
Maxim Integrated │ 4
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Electrical Characteristics (continued)
(fSAMPLE = 1.6Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
-0.9
±0.5
+0.9
LSB
Differential Nonlinearity
(Note 6)
DNL
Analog Input CMR
CMR
DC
16
LSB/V
Power-Supply Rejection
(Note 7)
PSR
PSR vs. AVDD
2
LSB/V
Power-Supply Rejection
(Note 7)
PSR
PSR vs. REFVDD
3
LSB/V
4
LSBRMS
Transition Noise
EXTERNAL REFERENCE
REF Voltage Input Range
VREF
Load Current
IREF
2.5
1.6Msps, VREF = 3.3V
REF Input Capacitance
3.3
3.6
V
600
µA
1
nF
REFERENCE BUFFER
REFIN Input Voltage Range
VREFIN
REFIN Input Current
IREFIN
2.5
CEXT = 10µF on REF pin,
CREFIN = 0.1µF on REFIN pin
Turn-On Settling Time
External Compensation
Capacitor
VREF < (VREFVDD - 200mV)
CEXT
REF pins
4.7
3
VREFVDD 200mV
V
1
nA
20
ms
10
µF
99.0
dB
DYNAMIC PERFORMANCE (Note 8)
Dynamic Range
Signal-to-Noise Ratio
Internal RefBuffer, -60dBFS input
SNR
Internal RefBuffer, fIN = 10kHz
97
98.3
dB
Signal-to-Noise Plus Distortion
SINAD
Internal RefBuffer, fIN = 10kHz,
-0.1dBFs
97
98.1
dB
Spurious-Free Dynamic Range
SFDR
Internal RefBuffer, fIN = 10kHz
125
dB
Total Harmonic Distortion
THD
Internal RefBuffer, fIN = 10kHz
-123
dB
Total Harmonic Distortion
THD
Internal RefBuffer, fIN = 100kHz
-115
dB
Total Harmonic Distortion
THD
Internal RefBuffer, fIN = 250kHz
-107
dB
SAMPLING DYNAMICS
Throughput
0
Full-Power Bandwidth
Acquisition Time
Aperture Delay
Aperture Jitter
www.maximintegrated.com
1.6
-3dB point (targeting 20MHz)
20
-0.1dB point
3
tACQ
100
Time delay from CNVST rising edge
to time at which sample is taken for
conversion
Msps
MHz
ns
1
ns
3
psRMS
Maxim Integrated │ 5
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Electrical Characteristics (continued)
(fSAMPLE = 1.6Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
POWER SUPPLIES
Analog Supply Voltage
AVDD
1.7
1.8
1.9
V
Digital Supply Voltage
DVDD
1.7
1.8
1.9
V
Reference Buffer Supply
Voltage
REFVDD
2.7
3.3
3.6
V
Interface Supply Voltage
OVDD
1.5
3.6
V
Analog Supply Current
IAVDD
VAVDD = 1.8V
2
2.5
mA
Digital Supply Current
IDVDD
VDVDD = 1.8V
2.2
2.7
mA
3.3
3.55
mA
Reference Buffer Supply
Current
IREFVDD
VREFVDD = 3.6V, internal buffers
enabled
Reference Buffer Supply
Current
IREFVDD
VREFVDD = 3.6V, internal buffers
powered down
0.26
Interface Supply Current
(Note 9)
IOVDD
VOVDD = 1.5V
0.35
VOVDD = 3.6V
1
Shutdown Current
For AVDD, DVDD, REFVDD
1
µA
Shutdown Current
For DVDD
1
µA
Power Dissipation
VAVDD = 1.8V, VDVDD = 1.8V,
VREFVDD = 3.3V, internal reference
buffers disabled
8.4
mA
mA
10.2
mW
DIGITAL INPUTS (DIN, SCLK, CNVST)
Input Voltage High
VIH
VOVDD = 1.5V to 3.6V
Input Voltage Low
VIL
VOVDD = 1.5V to 3.6V
Input Capacitance
CIN
Input Current
IIN
0.7 x
VOVDD
V
0.3 x
VOVDD
VIN = 0V or VOVDD
V
10
pF
1
µA
DIGITAL OUTPUTS (DOUT)
Output Voltage High
VOH
ISOURCE = 2mA
Output Voltage Low
VOL
ISINK = 2mA
www.maximintegrated.com
VOVDD 0.4
V
0.4
V
Maxim Integrated │ 6
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Electrical Characteristics (continued)
(fSAMPLE = 1.6Msps, VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.5V to 3.6V, VREFVDD = 3.6V, VREF = 3.3V, Internal Ref Buffers On,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
4
ns
TIMING
DIN to SCLK Rising Edge
Setup
t1
DIN to SCLK Rising Edge Hold
t2
1
ns
DOUT End-Of-Conversion
Low Time
t3
10
ns
DOUT to SCLK Rising
Edge Hold
t4
2.5
ns
DOUT to SCLK Rising
Edge Setup
t5
1.5
ns
SCLK High
t6
4.5
ns
SCLK Period
t7
10
ns
SCLK Low
t8
4.5
ns
CNVST Rising Edge To SCLK
Rising Edge
t9
0
ns
SCLK Rising Edge to CNVST
Rising Edge
t10
25
ns
CNVST High
t11
20
ns
CNVST High to EOC
t12
Conversion Period
t13
100MHz SCLK
525
625
ns
ns
Note 2: Limits are 100% production tested at TA = +25°C. Limits over the operating temperature range are guaranteed by design
and device characterization.
Note 3: See the Analog Inputs section.
Note 4: See the Definitions section at the end of the data sheet.
Note 5: See the Definitions section at the end of the data sheet. Error contribution from the external reference not included.
Note 6: Parameter is guaranteed by design.
Note 7: Defined as the change in positive full-scale code transition caused by a ±5% variation in the supply voltage.
Note 8: Sine wave input, fIN = 10kHz, AIN = -0.5dB below full scale.
Note 9: CLOAD = 10pF on DOUT. fCONV = 1.6Msps. All data is read out.
www.maximintegrated.com
Maxim Integrated │ 7
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Typical Operating Characteristics
(VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1.6Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN
to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
toc1
DNL vs. TEMPERATURE
INL vs. TEMPERATURE
toc3
4
MAX INL (LSB)
2
1.0
1
0.5
0
-0.5
-2
-1.0
-3
-1.5
-40
-25
-10
5
20
35
50
65
TEMPERATURE (oC)
80
95
110
INL vs. AVDD SUPPLY VOLTAGE
-2.0
125
3
MAX INL (LSB)
4
MIN INL (LSB)
3
-10
5
20
35
50
65
TEMPERATURE (oC)
80
95
110
125
toc6
MIN DNL (LSB)
1
1
DNL (LSB)
INL (LSB)
-25
MAX DNL (LSB)
2
2
0
-1
0
-1
-2
-3
-2
-4
-5
-40
DNL vs. AVDD SUPPLY VOLTAGE
toc5
5
MIN DNL (LSB)
0.0
-1
-4
MAX DNL (LSB)
1.5
MIN INL (LSB)
DNL (LSB)
INL (LSB)
3
toc4
2.0
1.70
1.73
1.75
www.maximintegrated.com
1.78
1.80
1.83
VAVDD (V)
1.85
1.88
1.90
-3
1.70
1.73
1.75
1.78
1.80
VAVDD (V)
1.83
1.85
1.88
1.90
Maxim Integrated │ 8
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Typical Operating Characteristics (continued)
(VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1.6Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN
to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
INL vs. VREFVDD SUPPLY VOLTAGE
DNL vs. VREFVDD SUPPLY VOLTAGE
toc7
10
VAVDD = 1.8V
VREF = 2.5V
MAX INL (LSB)
8
MIN INL (LSB)
6
1.5
DNL (LSB)
INL (LSB)
2
0
-2
VAVDD = 1.8V
VREF = 2.5V
MIN DNL (LSB)
0.5
0.0
-0.5
-4
-1.0
-6
-1.5
-8
2.7
2.8
2.9
3.0
3.1
3.2
VREFVDD (V)
3.3
3.4
3.5
-2.0
3.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VREFVDD (V)
OFFSET AND GAIN ERROR vs. TEMPERATURE
20
OFFSET ERROR vs. AVDD SUPPLY VOLTAGE
toc9
toc10
1.00
OFFSET (LSB)
0.75
GAIN ERROR (LSB)
10
0.50
OFFSET ERROR (LSB)
ERROR (LSB)
MAX DNL (LSB)
1.0
4
-10
toc8
2.0
0
-10
0.25
0.00
-0.25
-0.50
-0.75
-20
-40
-25
-10
5
20
35
50
65
TEMPERATURE (°C)
80
95
110
-1
-2
-3
-4
-5
-6
-7
3000
2000
1000
524293
3.6
524288
3.5
524283
3.4
524278
3.3
524273
3.1
3.2
VREFVDD (V)
524268
3
toc12
4000
524263
2.9
1.9
STDEV = 4.3 LSB
524258
2.8
1.85
5000
0
2.7
1.8
VAVDD (V)
6000
NUMBER OF OCCURRENCES
OFFSET ERROR (LSB)
0
1.75
7000
toc11
VREF = 2.5V
VAVDD = 1.8V
1
1.7
OUTPUT NOISE HISTOGRAM
OFFSET ERROR vs. REFVDD VOLTAGE
2
-8
-1.00
125
OUTPUT CODE (DECIMAL)
www.maximintegrated.com
Maxim Integrated │ 9
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Typical Operating Characteristics (continued)
(VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1.6Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN
to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
SFDR AND THD vs. TEMPERATURE
SNR AND SINAD vs. TEMPERATURE
toc15
SNR
SINAD
99
toc16
135
-THD
SFDR
133
131
SFDR AND THD (dB)
SNR AND SINAD (dB)
100
98
97
129
127
125
123
121
119
96
117
95
115
-40
-25
-10
5
20
35
50
65
TEMPERATURE (°C)
80
95
SNR AND SINAD vs. REFERENCE VOLTAGE
100
110
125
-25
-10
5
20
35
50
65
TEMPERATURE (°C)
80
95
110
125
THD AND SFDR vs. REFERENCE VOLTAGE
toc17
toc18
130
SINAD
SNR
99
-40
SFDR
-THD
128
SFDR AND THD (dB)
SNR AND SINAD (dB)
125
98
97
96
95
94
123
120
118
115
113
2
2.3
www.maximintegrated.com
2.6
VREF (V)
2.9
3.2
3.5
110
2.0
2.2
2.3
2.5
2.6
2.8
VREF (V)
2.9
3.1
3.2
Maxim Integrated │ 10
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Typical Operating Characteristics (continued)
(VAVDD = 1.8V, VDVDD = 1.8V, VOVDD = 1.8V, VREFVDD = 3.6V, fSAMPLE = 1.6Msps, VREF = 3.3V, Internal Ref Buffer On, TA = TMIN
to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
CURRENT vs. TEMPERATURE
4.0
SHUTDOWN CURRENT vs. TEMPERATURE
toc19
SHUTDOWN CURRENT (µA)
3.5
CURRENT (mA)
3.0
2.5
2.0
IOVDD
1.5
IREFVDD (BUFFER OFF)
IREFVDD
1.0
IDVDD
IAVDD
0.5
0.0
-40
-25
-10
5
20
35
50
65
TEMPERATURE (°C)
80
95
110
125
26
24
22
20
18
16
14
12
10
8
6
4
2
0
toc20
IAVDD
IOVDD
IREFVDD
IDVDD
-40
-25
-10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
CURRENT vs. SAMPLING RATE
2.5
2.0
CURRENT (mA)
toc21
IDVDD
IOVDD
IAVDD
1.5
1.0
0.5
0.0
0.0
0.4
0.8
1.2
1.6
SAMPLING RATE (Msps)
www.maximintegrated.com
Maxim Integrated │ 11
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Pin Configuration
REFGND
4
AIN-
5
19
18
17
16
MAX11905
8
9
10
OVDD
DOUT
DGND
AIN+
7
AGND
6
15
DGND
14
DIN
13
CNVST
12
SCLK
11
3
REFVDD
REFGND
AGND
2
AGND
REF
AVDD
1
20
+
REF
REFIN
TOP VIEW
DVDD
TQFN
4mm × 4mm
EXPOSED PAD IS GROUND. IT MUST BE SOLDERED TO PCB.
Pin Description
PIN
NAME
I/O
FUNCTION
Reference. REF is a bypass pin for the reference either driven by the internal reference buffers
or the external reference directly. Bypass these pins with 10µF capacitors to REFGND.
1, 2
REF
I/O
3, 4
REFGND
I
Reference Ground
5
AIN-
I
Negative Analog Input
6
AIN+
I
Positive Analog Input
7
AGND
I
Analog Ground
8
OVDD
I
Digital Interface Supply. Nominally at 1.8V. Bypass to DGND with a 10µF capacitor in parallel
with a 0.1µF capacitor (10µF || 0.1µF).
9
DOUT
O
Digital Output Data
10
DGND
I
Digital Ground
11
DVDD
I
Digital Supply. Nominally at 1.8V. Bypass with a 10µF capacitor in parallel with a 0.1µF
capacitor (10µF || 0.1µF).
12
SCLK
I
Serial Clock Input
13
CNVST
I
Conversion Start. The analog inputs (AIN+, AIN-) are sampled at the rising edge and conversion
process is started.
14
DIN
I
Serial Data Input. DIN data is latched into the serial interface on the rising edge of SCLK.
15
DGND
I
Digital Ground
www.maximintegrated.com
Maxim Integrated │ 12
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Pin Description (continued)
PIN
NAME
I/O
FUNCTION
16
REFVDD
I
Reference Buffer Supply. Nominally at 3V. Bypass to AGND with a 10µF capacitor in parallel
with a 0.1µF capacitor (10µF || 100nF).
17, 18
AGND
I
Analog Ground. Bypass to AGND with a 10µF capacitor in parallel with a 0.1µF capacitor
(10µF || 100nF).
19
AVDD
I
Analog Supply. Nominally at 1.8V.
20
REFIN
I
Input for the Internal Reference Buffer. Voltage must be at least 300mV lower than
REFVDD voltage. If REFIN = 0V, reference buffer will be disabled.
—
EP
—
Exposed Pad. Must be connected to the same plane as AGND.
Functional Diagram
REFIN
REFVDD
REFGND
REFERENCE
BUFFER
AVDD
REFERENCE
BUFFER
DVDD
MAX11905
REF
OVDD
REF
DIN
AIN+
SCLK
INTERFACE
20-BIT ADC
AIN-
CNVST
AGND
www.maximintegrated.com
DOUT
DGND
Maxim Integrated │ 13
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Detailed Description
The MAX11905 is a 20-bit, 1.6Msps maximum sampling
rate, fully differential input, single-channel SAR ADC with
SPI interface. This part features industry-leading sample
rate and resolution, while consuming very low power. The
MAX11905 has an integrated reference buffer to minimize
board space, component count, and system cost. An
internal oscillator drives the conversion and sets conversion time, easing external timing considerations.
Analog Inputs
Both analog inputs, AIN+ and AIN-, range from 0V to
VREF. Thus, the differential input interval VDIFF = (AIN+)
- (AIN-) ranges from -VREF to +VREF, and the full-scale
range is:
FSR = 2 x VREF
The nominal resolution step width of the least significant
bit (LSB) is:
=
LSB
FSR
=
,N 20
2N
The differential analog input must be centered around
a signal common mode of VREF/2, with a tolerance of
±100mV.
The reference voltage can range from 2.5V to the reference supply, REFVDD, if an external reference buffer
is used. When using the on-board reference buffer the
reference voltage can range from 2.5V to 200mV below
reference supply REFVDD. This will guarantee adequate
headroom for the internal reference buffers.
Figure 1 illustrates signal ranges for AIN+/AIN-, reference
voltage VREF and reference supply voltage REFVDD.
Figure 2 shows the input equivalent circuit of MAX11905.
The ADC samples both inputs, AIN+ and AIN-, with a fully
differential on-chip track-and-hold exhibiting no pipeline
delay or latency.
The MAX11905 has dedicated input clamps to protect
the inputs from overranging. Diodes D1 and D2 provide
ESD protection and act as a clamp for the input voltages.
Diodes D1/D2 can sustain a maximum forward current
of 100mA. The sampling switches connect inputs to the
sampling capacitors.
Figure 3 shows the timing of the digitizing cycle: Conversion
frame, SAR conversion, Track and Read operations.
V
VREF +200mV ≤ VREFVDD
IF BUFFER IS ENABLED
REFVDD
200mV
≤ 3.6V
VREF ≤ VREFVDD ≤ 3.6V
IF BUFFER IS DISABLED
VREF
AIN+
0.5 x VREF
AIN0V
time
Figure 1. Signal Ranges
www.maximintegrated.com
Maxim Integrated │ 14
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
REFVDD
D1
RON = 260Ω
AIN+
CIN = 30pF
D2
VDC
REFVDD
D1
RON = 260Ω
AINCIN = 30pF
D2
Figure 2. Simplified Model of Input Sampling Circuit
SAR Conversion
1/Sample Rate
SAR Conversion
Track
Read Data
1/Sample Rate
Track
Read Data
Sample 2
Sample 1
CNVST
SCLK
Sample 1
DOUT
MSB
MSB-1
Sample 2
LSB+1
LSB
Reading sample1 during track
MSB
MSB-1
LSB+1
LSB
Reading sample 2 during track
Figure 3. Conversion Frame, SAR Conversion, Track and Read Operation
www.maximintegrated.com
Maxim Integrated │ 15
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Input Settling
capacitor, PCB parasitic capacitor), and tTRACK is the
track time.
During track phase (Figure 3), the sample switches are
closed and the analog inputs are directly connected to the
sample capacitors. The charging of the sample capacitor
to the input voltage is determined by the source resistance and sampling capacitor size. The rising edge of
CNVST is the sampling instant for the ADC. At this instant,
the track phase ends, the sample switch opens, and the
device enters into the successive approximation (SAR)
conversion phase. In the conversion phase, a differential
comparator compares the voltage on the sample capacitor against the CDAC value, which cycles through values
between VREF/2 and VREF/220 using the successive
approximation technique. The final result can be read via
the SPI bus. The ADC automatically goes back into track
phase at the end of SAR conversion and powers down its
active circuits. That is, the ADC consumes no static power
in track mode.
The conversion results will be accurate if the ADC tracks
the input signal for an interval longer than the input signal’s settling time. If the signal cannot settle within the
track time due to excessive source resistance, external
ADC drivers are required to achieve faster settling. Since
the MAX11905 has a fixed conversion time set by an
internal oscillator, track time can be increased by lowering
the sample rate for better settling.
The settling behavior is determined by the time constant
in the sampling network. The time constant depends upon
the total resistance (source resistance + switch resistance) and total capacitance (sampling capacitor, external
input capacitor, PCB parasitic capacitors).
Modeling the input circuit with a single pole network, the
time constant, RTOTAL × CLOAD, of the input should not
exceed tTRACK/15, where RTOTAL is the total resistance
(source resistance + switch resistance), CLOAD is the
total capacitance (sampling capacitor, external input
When an ADC driver is used, it is recommended to use
a series resistance (typically 5Ω to 50Ω) between the
amplifier and the ADC input, as shown in the Application
Diagram. Below are some of the requirements for the
ADC driver amplifier:
1) Fast settling time: For a multichannel multiplexed circuit the ADC driver amplifier must be able to settle with
an error less than 0.5 LSB during the minimum track
time when a full-scale step is applied.
2) Low noise: It is important to ensure that the ADC driver
has a sufficiently low-noise density in the bandwidth
of interest of the application. When the MAX11905 is
used with its full bandwidth of 20MHz, it is preferable
to use an amplifier with an output noise spectral density of less than 3nV/√Hz, to ensure that the overall
SNR is not degraded significantly. It is recommended
to insert an external RC filter at the ADC input to
attenuate out-of-band input noise.
3) To take full advantage of the ADC’s excellent dynamic
performance, Maxim recommends the use of an ADC
driver with equal or even better THD performance.
This will ensure that the ADC driver does not limit
distortion performance in the signal path. Table 1 summarizes the most important features of the MAX9632
when used as an ADC driver.
Input Filtering
Noisy input signals should be filtered prior to the ADC
driver amplifier input with an appropriate filter to minimize
noise. The RC network shown in the Application Diagram
is mainly designed to reduce the load transient seen by
the amplifier when the ADC starts the track phase. This
network also has to satisfy the settling time requirement
and provides the benefit of limiting the noise bandwidth.
Table 1. ADC Driver Amplifier Recommendation
AMPLIFIER
INPUT-NOISE
DENSITY (nV/√Hz)
SMALL-SIGNAL
BANDWIDTH (MHz)
SLEW RATE
(V/µs)
THD
(dB)
ICC
(mA)
COMMENTS
MAX9632
1
55
30
-128
3.9mA
Low noise, THD at 10kHz
www.maximintegrated.com
Maxim Integrated │ 16
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Voltage Reference Configurations
The MAX11905 features internal reference buffers,
helping to reduce component count and board space.
Alternatively, the user may drive the reference nodes REF
with an external reference. To use the internal reference
buffers, drive the REFIN pin with an external reference
voltage source. It will appear on the REF pin as a buffered
reference output. The internal reference buffers can be
disabled by writing to a register (see the Mode Register
section) or tying REFIN to 0V. Once the on-chip reference
buffers are disabled, REF pins can be directly driven by
external reference buffers. A simplified diagram is shown
to clarify the required connections for external reference.
A low-noise, low-temperature drift reference is required
to achieve high system accuracy. The MAX6126 and
MAX6325 are particularly well suited for use with the
MAX11905. The MAX6126 and MAX6325 offer, respectively, 0.02% and 0.04% initial accuracy and 3ppm/°C and
1ppm/°C (max) temperature coefficient for high-precision
applications. Maxim recommends bypassing REFIN and
REF with a 2.2µF capacitor close to the ADC pins.
Transfer Function
Figure 4 shows the ideal transfer characteristics for the
MAX11905.
The default data format is two’s complement. However,
offset binary format can be chosen by setting mode register BIT 1 (see the Mode Register section).
Table 4 shows the codes in terms of input voltage applied.
The data reported is with VREF of 3.0V, that gives a fullscale range of 6V.
Table 2. Voltage Reference Configurations
REFERENCE
CONFIGURATION
INTERNAL
REFERENCE BUFFERS
REFIN
VREF
VREFVDD
Internal Reference Buffer
ON
2.5V to VREFVDD - 0.2V
2.5V to VREFVDD - 0.2V
2.7V to 3.6V
OFF
Tie to 0V or disable
through serial interface
2.5V to VREFVDD
2.5V to 3.6V
External Reference
Buffer
Table 3. MAX11905 External Reference Recommendations
PART
VOUT (V)
TEMPERATURE
COEFFICIENT
(ppm/°C, max)
INITIAL
ACCURACY
(%)
NOISE
(0.1Hz TO 10Hz)
(µVP-P)
PACKAGE
MAX6126
2.5, 3
3
0.02
1.45
µMAX-8, SO-8
MAX6325
2.5
1
0.04
1.5
SO-8
www.maximintegrated.com
Maxim Integrated │ 17
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
OUTPUT CODE
(OFFSET
BINARY)
OUTPUT CODE
(TWO'S COMPLEMENT)
FS - 1.5 x LSB
FS - 1.5 x LSB
111...111
011...111
111...110
011...110
111...101
011...101
000...010
100...010
000...001
000...000 19 19
-2 -2 +1-219+2
19
19
2 -2 2 -1 2
19
VIN = (AIN+) - (AIN-)
DIFFERENTIAL
ANALOG INPUT
(LSB)
100...001
100...000 19 19
-2 -2 +1-219+2
19
19
2 -2 2 -1 2
19
VIN = (AIN+) - (AIN-)
DIFFERENTIAL
ANALOG INPUT
(LSB)
2 X VREF
2 x VREF
ZERO SCALE
(ZS)
VIN = -VREF
FULL SCALE
(FS)
VIN = +VREF
ZERO SCALE
(ZS)
VIN = -VREF
FULL SCALE
(FS)
VIN = +VREF
Figure 4. Ideal Transfer Characteristic
Table 4. Transfer Characteristic
DIFFERENTIAL ANALOG INPUT
FULL-SCALE RANGE = 6V (V)
HEXADECIMAL
TWO’S COMPLEMENT
HEXADECIMAL OFFSET
BINARY
FS - 1 LSB
2.99999428
0x7FFFF
0xFFFFF
Midscale + 1 LSB
0.00000572
0x00001
0x80001
Midscale
0.00000000
0x00000
0x80000
Midscale - 1 LSB
-0.00000572
0xFFFFF
0x7FFFF
-FS + 1 LSB
-2.99999428
0x80001
0x00001
-FS
-3.00000000
0x80000
0x00000
MIDCODE VALUE
www.maximintegrated.com
Maxim Integrated │ 18
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Digital Interface
The MAX11905 has three different modes to read the data:
The MAX11905 has a SPI interface with CNVST controlling the sampling, and SCLK, DOUT, DIN forming the
standard SPI signals. The SAR conversion begins with
the rising edge of CNVST. The minimum CNVST high
time is 20ns and CNVST should be brought low before
DOUT goes low, which signals the completion of a SAR
conversion. The DOUT goes low for 10ns, followed by
the output of the MSB on the DOUT pin. The 20-bit conversion result can then be read via the SPI interface by
sending 20 SCLK pulses. DOUT going low also signals
the start of the track phase. The ADC stays in track phase
until the next rising edge of CNVST.
1/Sample Rate
SAR Conversion
●● Reading during track phase (Figure 5)
●● Reading during SAR conversion phase (Figure 6)
●● Split reading (Figure 7)
When reading during track phase mode, the data is read
only while the ADC is in track mode. Figure 5 shows the
SPI signal for this reading mode.
In the reading during SAR conversion phase mode,
the data is read only in the SAR conversion phase.
Figure 6 illustrates all SPI signals for this mode. Note that
the data being read only during the SAR conversion phase
corresponds to the previous conversion frame.
1/Sample Rate
SAR Conversion
Track
Read Data
Track
Read Data
Sample 2
Sample 1
CNVST
SCLK
Sample 1
MSB MSB-1
DOUT
Sample 2
LSB+1
MSB MSB-1
LSB
Reading sample1 during track
LSB+1
LSB
Reading sample 2 during track
Figure 5. Read During Track Phase
SAR Conversion
Read Data
1/Sample Rate
SAR Conversion
Read Data
Track
1/Sample Rate
Track
Sample 2
Sample 1
CNVST
SCLK
Sample 0
DOUT
Sample 1
MSB MSB-1
LSB+1
LSB
READING SAMPLE 0 DURING SAR
CONVERSION
MSB MSB-1
LSB+1
LSB
READING SAMPLE 1 DURING SAR
CONVERSION
Figure 6. Read During SAR Conversion Phase
www.maximintegrated.com
Maxim Integrated │ 19
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
In the split reading mode, the data is read during the track
phase and the following SAR conversion phase. Figure 7
shows the descriptive timing diagram.
SPI Timing Diagram
At higher sampling rates, the track time may not be long
enough to allow reading all 20 bits of data. In this case,
the data read can be started in track mode, and then
continued in the subsequent SAR conversion phase. Note
that the read operation must be completed before DOUT
goes low, signaling the end of the SAR conversion phase.
Also note that no SCLK pulses should be applied close to
the sampling edge (rising edge of CNVST), to safeguard
the sampling edge from digital noise (see the Quiet Time
specification t10). This split reading feature can be used
to accommodate slower SPI clocks.
The dashed connections are optional.
SAR Conversion
1/Sample Rate
Track
Figure 8 shows the typical digital SPI interface connection
between the MAX11905 and host processor.
Figure 9 shows the timing diagram for configuration registers.
Figure 10 shows the timing diagram for data output reading after conversion.
Read Data
SAR Conversion
1/Sample Rate
Track
Read Data
Sample 2
Sample 1
CNVST
Quiet Time
SCLK
Sample 1
Sample 2
MSB MSB-1
DOUT
LSB+1
LSB
MSB MSB-1
Reading sample 1
Figure 7. Split Read Mode
MAX11905
Host Processor
DIN
DOUT
SCLK
SCLK
DOUT
DIN
IRQ
CNVST
CNVST
Figure 8. SPI Interface Connection
www.maximintegrated.com
Maxim Integrated │ 20
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
t1
0.7 x OVDD
SCLK
t2
DIN
0.7 x OVDD
0.3 x OVDD
Figure 9. DIN Timing for Register Write Operations
t13
t12
t11
0.7 x OVDD
0.7 x OVDD
CNVST
t10
SCLK
t6
t9
t8
t7
0.7 x OVDD
0.7 x OVDD
0.3 x OVDD
t3
DOUT
t5
t4
MSB
MSB-1
MSB-2
0.7 x OVDD
0.3 x OVDD
Figure 10. Timing Diagram for Data Out Reading After Conversion
www.maximintegrated.com
Maxim Integrated │ 21
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Register Write
All SPI operations start with a command word. The structure of the command word is shown below. If there is no start
bit, i.e. DIN is low, the part will output the conversion result and then go idle (see Figures 5, 6, and 7). The 16-bit mode
register is the only register that can be written to. Figure 11 shows the waveform for a mode register write operation.
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Start
0
Adr 3
Adr 2
Adr 1
Adr 0
R/W
0
CNVST
DOUT
SCLK
DIN
ST
0
A3
A2
A1
A0
R/W
0
D15
D14
D1
D0
Figure 11. Mode Register Write
Register Read
A read operation is specified by setting the R/W bit high. Data will be output by the MAX11905 after the 8th rising SCLK
edge. Figure 12 shows the waveform for a mode register read.
CNVST
D7
DOUT
D6
D1
D0
SCLK
DIN
ST
0
A3
A2
A1
A0
R/W
0
Figure 12. Register Read
www.maximintegrated.com
Maxim Integrated │ 22
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Register Map
FUNCTION
ADDRESS
R/W BITS
DATA WIDTH
Read or Write Mode Register
0001
1 or 0
16
Mode Register
Read Conversion Result*
0010
1
20
Conversion Result
Read Chip ID
Reserved, Do Not Use
DATA
0100
1
8
Chip ID
All other
—
—
Reserved, Do Not Use
*Conversion result can also be read as shown in Figures 5, 6, and 7.
Mode Register
The reset state is: 0x0000. That is, the reference buffers are enabled if a valid reference voltage is applied at the REFIN
pin. If external reference buffers are used, tie REFIN low and the buffers will be automatically powered down.
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9
BIT 8
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
Reset
DD1
DD0
—
—
PD
REF1
POR
pass
OTP
busy
OB
PD
REF2
—
—
—
—
—
DD2
Reset:
Reset the part when high.
DD[2:0]:
Program the driver strength on DOUT.
PD REF1:
Power down the first reference buffer when set.
POR pass:
High to indicate that POR was successful. If this bit is low, RESET should be asserted.
OTP busy:
High to indicate that the device is powering up.
OB:
Output data format is offset binary when high. two’s complement when low.
PD REF2:
Power down the second reference buffer when set.
DD[2:0] program the driver strength on DOUT pin. Higher driver strengths are for systems that have larger capacitive
loads on DOUT. The lowest driver strength that works should be chosen to save power and improve performance.
The driver strength is ordered from 1 to 6. The driver strength 1 is the weakest while the driver strength 6 is the strongest.
Table 5 shows the mapping between the register value D[2:0] and the correspondent driver strength.
Table 5. DOUT Driver Strength
DD[2:0]
DRIVER STRENGTH
000
4
001
5
010
6
011
Not Valid
100
1
101
2
110
3
111
Not Valid
www.maximintegrated.com
Maxim Integrated │ 23
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Conversion Result Register
A 20-bit read-only register, can be read directly or via a command read sequence.
Chip ID Register
This register holds a 4-bit code that can be used to verify the silicon revision. The ID = 1001b.
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
—
—
—
—
ID3
ID2
ID1
ID0
Typical Application Circuit
Real-world signals usually require conditioning before
they can be digitized by an ADC. The following outlines
common examples of analog signal processing circuits for
shifting, gaining, attenuating, and filtering signals.
Single-Ended Unipolar Input to Differential
Unipolar Output
The circuit in Figure 13 shows how a single-ended, unipolar signal can interface with the MAX11905. This signal
conditioning circuit transforms a 0V to +VREF single-ended input signal to a fully differential output signal with a
signal peak-to-peak amplitude of 2 x VREF and commonmode voltage (VREF/2). In this case, the single-ended
signal source drives the high-impedance input of the first
amplifier. This amplifier drives the AIN+ input of ADC and
the second stage amplifier with peak-to-peak amplitude
of VREF and common-mode output voltage of VREF/2.
The second amplifier inverts this input signal and adds
an offset to generate an inverted signal with peak-to-peak
amplitude of VREF and common-mode output voltage of
VREF/2, which drives the AIN- input of ADC.
Single-Ended Bipolar Input to Differential
Unipolar Output
The MAX11905 is a differential input ADC that accepts
a differential input signal with unipolar common mode.
Figure 14 shows a signal conditioning circuit that transforms a -2 x VREF to +2 x VREF single-ended bipolar
input signal to a fully differential output signal with amplitude peak-to-peak 2 x VREF and common-mode voltage
VREF/2.
The single-ended bipolar input signal drives the inverting
input of the first amplifier. This amplifier inverts and adds
an offset to the input signal. It also drives the AIN- input
of ADC and the second stage amplifier with peak-to-peak
amplitude of VREF and common-mode output voltage of
VREF/2. The second amplifier is also in inverting configu-
www.maximintegrated.com
ration and drives the AIN+ input of the ADC. This amplifier adds an offset to generate a signal with peak-to-peak
amplitude of VREF and common-mode output voltage
of VREF/2. The input impedance, seen by the signal
source, depends on the input resistor of the first-stage
inverting amplifier. Input impedance must be chosen carefully based on the output source impedance of the signal
source.
Layout, Grounding, and Bypassing
For best performance, use PCBs with ground planes.
Ensure that digital and analog signal lines are separated
from each other. Do not run analog and digital lines parallel to one another (especially clock lines), and avoid running digital lines underneath the ADC package. A single
solid GND plane configuration with digital signals routed
from one direction and analog signals from the other provides the best performance. Connect the GND pin on the
MAX11905 to this ground plane. Keep the ground return
to the power supply for this ground low impedance and as
short as possible for noise-free operation.
A 2nF C0G ceramic chip capacitor should be placed
between AIN+ and AIN- as close as possible to the
MAX11905. This capacitor reduces the voltage transient
seen by the input source circuit.
For best performance, connect the REF output to the
ground plane with a 16V, 10µF ceramic chip capacitor
with a X5R dielectric in a 1210 or smaller case size.
Ensure that all bypass capacitors are connected directly
into the ground plane with an independent via.
Bypass AVDD, DVDD, and OVDD to the ground plane with
10µF ceramic chip capacitors on each pin as close as possible to the device to minimize parasitic inductance. For
best performance, bring the AVDD and DVDD power plane
in from the analog interface side of the MAX11905 and the
OVDD power plane from the digital interface side of the
device. Figure 15 shows the top layer of a sample layout.
Maxim Integrated │ 24
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
2.5V TO
VREFVDD - 0.2V
RS
VREF
0.5 x VREF
R
0V
R
1.8V
1.5V TO
3.6V
1.8V
REFVDD AVDD
DVDD OVDD
MAX11905
SCLK
REFIN
AIN+
DIN
CS
COG
DOUT
RS
VREF
2
2.7V
TO
3.6V
DSP
SPI
INTERFACE
CNVST
AIN-
REF REFGND AGND DGND
+
-
10µF
Figure 13. Unipolar Single-Ended Input
R
2.5V TO
VREFVDD - 0.2V
R
RS
R
+2 x VREF
4R
0V
-2 x VREF
R
VREF
2
+
-
VREF
2
+
-
4R
1.8V
REFVDD AVDD
REFIN
AIN+
CS
COG
RS
2.7V
TO
3.6V
1.5V TO
3.6V
1.8V
DVDD OVDD
DIN
MAX11905
SCLK
DOUT
DSP
SPI
INTERFACE
CNVST
AIN-
REF REFGND AGND DGND
10µF
Figure 14. Bipolar Single-Ended Input
www.maximintegrated.com
Maxim Integrated │ 25
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Figure 15. Top Layer Sample Layout
www.maximintegrated.com
Maxim Integrated │ 26
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Definitions
Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values on
an actual transfer function from a straight line. For these
devices, this straight line is a line drawn between the end
points of the transfer function, once offset and gain errors
have been nullified.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between
an actual step width and the ideal value of 1 LSB. For
these devices, the DNL of each digital output code is
measured and the worst-case value is reported in the
Electrical Characteristics table. A DNL error specification
of less than ±1 LSB guarantees no missing codes.
Offset Error
The offset error is defined as the deviation between the
actual output and ideal output measured with 0V differential analog input voltage.
Gain Error
Gain error is defined as the difference between the
actual output range measured and the ideal output range
expected. It is measured with signal applied at the input
with an amplitude close to full-scale range.
Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital
samples, signal-to-noise ratio (SNR) is the ratio of the fullscale analog input power to the RMS quantization error
(residual error). The ideal, theoretical minimum analogto-digital noise is caused by quantization noise error only
and results directly from the ADC’s resolution (N bits):
SNR = (6.02 x N + 1.76)dB
In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc.
SNR is computed by taking the ratio of the signal power to
the noise power, which includes all spectral components
not including the fundamental, the first five harmonics,
and the DC offset.
Effective Number of Bits
The effective number of bits (ENOB) indicates the global
accuracy of an ADC at a specific input frequency and
sampling rate. An ideal ADC’s error consists of quantization noise only. With an input range equal to the full-scale
range of the ADC, calculate the ENOB as follows:
SINAD - 1.76
6.02
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the power
contained in the first five harmonics of the converted data
to the power of the fundamental. This is expressed as:
ENOB =
P 2 + P 2 + P 2 + P 2 
3
4
5 
= 10 × log  2
THD


P12
where P1 is the fundamental power and P2 through P5 is
the power of the 2nd- through 5th-order harmonics.
Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the
power of the fundamental (maximum signal component)
to the power of the next-largest frequency component.
Aperture Delay
Aperture delay (tAD) is the time delay from the sampling
clock edge to the instant when an actual sample is taken.
Aperture Jitter
Aperture jitter (tAJ) is the sample-to-sample variation in
aperture delay.
Full-Power Bandwidth
A large -0.5dBFS analog input signal is applied to an
ADC, and the input frequency is swept up to the point
where the amplitude of the digitized conversion result
has decreased by 3dB. This point is defined as full-power
input bandwidth frequency.
Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the
fundamental input frequency’s power to the power of all
the other ADC output signals:


Signal
SINAD(dB)
= 10 × LOG

(Noise + Distortion 
www.maximintegrated.com
Maxim Integrated │ 27
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Selector Guide
BITS
SPEED
(ksps)
FULLY
DIFFERENTIAL
INPUT (MAX) (V)
REFERENCE
BUFFERS
PACKAGE
MAX11900
16
1000
±3.6
Internal/External
4mm x 4mm TQFN-20
MAX11901
16
1600
±3.6
Internal/External
4mm x 4mm TQFN-20
MAX11902
18
1000
±3.6
Internal/External
4mm x 4mm TQFN-20
MAX11903
18
1600
±3.6
Internal/External
4mm x 4mm TQFN-20
MAX11904
20
1000
±3.6
Internal/External
4mm x 4mm TQFN-20
MAX11905
20
1600
±3.6
Internal/External
4mm x 4mm TQFN-20
PART
Package Information
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX11905ETP+
-40°C to +85°C
20 TQFN-EP*
+Denotes lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Chip Information
PROCESS: CMOS
www.maximintegrated.com
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status
only. Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
20 TQFN-EP
T2044+5
21-0139
90-0429
Maxim Integrated │ 28
MAX11905
20-Bit, 1.6Msps, Low-Power, Fully Differential
SAR ADC
Revision History
REVISION
NUMBER
REVISION
DATE
PAGES
CHANGED
DESCRIPTION
0
2/14
Initial release
—
1
12/14
Updated Benefits and Features section
1
2
4/15
Removed future product references in the 16-Bit to 20-Bit SAR ADC Family table
and Selector Guide
3
6/16
Corrected typo under Beneftis and Features section
1, 28
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.
© 2016 Maxim Integrated Products, Inc. │ 29
Similar pages