PD -97671 IRF8308MPbF IRF8308MTRPbF DirectFET Power MOSFET l l l l l l l l l l Typical values (unless otherwise specified) RoHs Compliant Containing No Lead and Bromide VDSS VGS RDS(on) RDS(on) Low Profile (<0.7 mm) 30V max ±20V max 1.9mΩ@ 10V 2.7mΩ@ 4.5V Dual Sided Cooling Compatible Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Optimized for High Frequency Switching 28nC 8.2nC 3.5nC 34nC 20nC 1.8V Ideal for CPU Core DC-DC Converters Optimized for Sync. FET socket of Sync. Buck Converter Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques 100% Rg tested MX DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF8308MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF8308MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF8308MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF8308MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) 8 ID = 27A 6 4 TJ = 125°C 2 TJ = 25°C 0 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage 10.0 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f Max. Units 30 ±20 27 21 150 212 12 21 V A mJ A 12 ID= 21A 10 VDS = 24V VDS= 15V 8 6 4 2 0 0 20 40 60 80 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.051mH, RG = 25Ω, IAS = 21A. 1 5/4/11 IRF8308MPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250μA BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 22 RDS(on) Static Drain-to-Source On-Resistance ––– 1.90 ––– 2.70 mV/°C Reference to 25°C, ID = 1mA 2.50 mΩ VGS = 10V, ID = 27A VGS = 4.5V, ID = 21A 3.50 VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ΔVGS(th)/ΔTJ Gate Threshold Voltage Coefficient ––– -6.1 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 μA ––– ––– 150 ––– ––– 100 IGSS gfs Qg Qgs1 Gate-to-Source Forward Leakage V ––– i i VDS = VGS, ID = 100μA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 130 ––– ––– Total Gate Charge ––– 28 42 Pre-Vth Gate-to-Source Charge ––– 8.4 ––– VDS = 15V VGS = 4.5V S VDS = 15V, ID =21A Qgs2 Post-Vth Gate-to-Source Charge ––– 3.5 ––– Qgd Gate-to-Drain Charge ––– 8.2 ––– ID = 21A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 7.9 ––– See Fig. 15 Qsw ––– 12 ––– Qoss Output Charge ––– 20 ––– nC RG Gate Resistance ––– 1.2 2.2 Ω td(on) Turn-On Delay Time ––– 11 ––– VDD = 15V, VGS = 4.5V tr Rise Time ––– 19 ––– ID = 21A td(off) Turn-Off Delay Time ––– 23 ––– tf Fall Time ––– 16 ––– Ciss Input Capacitance ––– 4404 ––– Coss Output Capacitance ––– 885 ––– Crss Reverse Transfer Capacitance ––– 424 ––– Min. Typ. Max. Units nC VDS = 16V, VGS = 0V ns RG= 1.8Ω pF VDS = 15V i VGS = 0V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ––– ––– ISM MOSFET symbol 150 (Body Diode) A Pulsed Source Current g ––– ––– Conditions showing the 212 integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V trr Reverse Recovery Time ––– 20 30 ns TJ = 25°C, IF =21A Qrr Reverse Recovery Charge ––– 34 51 nC di/dt = 300A/μs (Body Diode) i i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF8308MPbF Absolute Maximum Ratings e e f Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Units 2.8 1.8 89 270 -40 to + 150 W °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e 0.022 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 R1 R1 0.02 τJ 0.01 τJ τ1 R2 R2 R3 R3 R4 R4 τa τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.1 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τι (sec) 0.99292 0.000074 2.171681 0.007859 24.14602 0.959 17.69469 32.6 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF8308MPbF 1000 1000 100 BOTTOM 10 2.5V 1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 BOTTOM 2.5V 10 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 1000 2.0 Typical RDS(on) (Normalized) ID = 27A ID, Drain-to-Source Current (Α) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 TJ = 150°C TJ = 25°C TJ = -40°C 10 1 VGS = 4.5V VGS = 10V 1.5 1.0 VDS = 10V ≤60μs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 0.5 4.0 -60 -40 -20 0 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 6 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Typical RDS (on) (mΩ) C, Capacitance(pF) Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 5 Coss = Cds + Cgd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Crss 4 3 2 TJ = 25°C 1 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF8308MPbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 150°C TJ = 25°C 100.0 TJ = -40°C 10.0 1.0 VGS = 0V 0.4 0.6 0.8 1.0 100 10 100μsec 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 1.2 1.0 10.0 100.0 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 150 ID, Drain Current (A) 1msec 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 50 2.0 ID = 100μA 1.5 1.0 0.5 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) TC , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 50 ID 7.2A 8.4A BOTTOM 21A TOP 40 30 20 10 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF8308MPbF Id Vds Vgs L VCC DUT 0 1K Vgs(th) Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF8308MPbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D S G S D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package www.irf.com 7 IRF8308MPbF DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation) Please see AN-1035 for DirectFET assembly details, stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L M R P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.68 0.72 0.68 0.72 1.38 1.42 0.80 0.84 0.38 0.42 0.88 1.02 2.28 2.42 0.59 0.70 0.03 0.08 0.08 0.17 IMPERIAL MAX MIN 0.250 0.246 0.199 0.189 0.156 0.152 0.018 0.014 0.028 0.027 0.028 0.027 0.054 0.056 0.031 0.033 0.017 0.015 0.040 0.035 0.095 0.090 0.028 0.023 0.001 0.003 0.007 0.003 Dimensions are shown in millimeters (inches) DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF8308MPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8308MTRPBF). For 1000 parts on 7" reel, order IRF8308MTR1PBF REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) METRIC METRIC IMPERIAL IMPERIAL MIN MAX MIN CODE MAX MAX MAX MIN MIN 6.9 A N.C 12.992 330.0 N.C 177.77 N.C N.C 0.75 0.795 B N.C 20.2 N.C 19.06 N.C N.C 0.53 C 0.504 0.50 12.8 13.5 0.520 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 2.31 E 3.937 100.0 N.C 58.72 N.C N.C N.C F N.C N.C N.C 0.53 N.C 0.724 18.4 13.50 G 0.47 0.488 12.4 N.C 11.9 0.567 14.4 12.01 H 0.47 0.469 11.9 11.9 0.606 N.C 15.4 12.01 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 11.90 0.484 12.30 0.215 0.219 5.45 5.55 0.201 5.10 0.209 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/11 www.irf.com 9