Freescale MW7IC2750NBR1 Rf ldmos wideband integrated power amplifier Datasheet

Document Number: MW7IC2750N
Rev. 2, 2/2010
Freescale Semiconductor
Technical Data
RF LDMOS Wideband Integrated
Power Amplifiers
The MW7IC2750N wideband integrated circuit is designed with on- chip
matching that makes it usable from 2300- 2700 MHz. This multi- stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular
base station modulation formats.
• Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 160 mA, IDQ2 = 550 mA,
Pout = 8 Watts Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts,
10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF.
Power Gain — 26 dB
Power Added Efficiency — 17%
Device Output Signal PAR — 8.6 dB @ 0.01% Probability on CCDF
ACPR @ 8.5 MHz Offset — -49 dBc in 1 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 80 Watts CW
Output Power (3 dB Input Overdrive from Rated Pout)
• Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 1 mW to 80 W CW
Pout
• Typical Pout @ 1 dB Compression Point ] 50 Watts CW
Driver Applications
• Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 160 mA, IDQ2 = 550 mA,
Pout = 4 Watts Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts,
10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF.
Power Gain — 26 dB
Power Added Efficiency — 11%
Device Output Signal PAR — 9.2 dB @ 0.01% Probability on CCDF
ACPR @ 8.5 MHz Offset — -57 dBc in 1 MHz Channel Bandwidth
Features
• 100% PAR Tested for Guaranteed Output Power Capability
• Characterized with Series Equivalent Large-Signal Impedance Parameters
and Common Source S-Parameters
• On-Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• Greater Negative Gate-Source Voltage Range for Improved Class C Operation
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
MW7IC2750NR1
MW7IC2750GNR1
MW7IC2750NBR1
2500-2700 MHz, 8 W AVG., 28 V
WiMAX
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618-02
TO-270 WB-14
PLASTIC
MW7IC2750NR1
CASE 1621-02
TO-270 WB-14 GULL
PLASTIC
MW7IC2750GNR1
CASE 1617-02
TO-272 WB-14
PLASTIC
MW7IC2750NBR1
VDS1
VGS2
VGS1
NC
NC
RFin
RFin
NC
NC
VGS1
VGS2
VDS1
1
2
3
4
5
6
7
8
9
10
11
12
14
RFout /VDS2
13
RFout /VDS2
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2008, 2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain-Source Voltage
Rating
VDS
-0.5, +65
Vdc
Gate-Source Voltage
VGS
-6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
-65 to +150
°C
TC
150
°C
Case Operating Temperature
Operating Junction Temperature
(1,2)
Input Power
TJ
225
°C
Pin
25
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
°C/W
Thermal Resistance, Junction to Case
CW Application
(Case Temperature 80°C, Pout = 50 W CW)
Stage 1, 28 Vdc, IDQ1 = 160 mA
Stage 2, 28 Vdc, IDQ2 = 550 mA
RθJC
3.0
0.7
Final Application
(Case Temperature 70°C, Pout = 8 W CW)
Stage 1, 28 Vdc, IDQ1 = 160 mA
Stage 2, 28 Vdc, IDQ2 = 550 mA
2.9
0.7
Driver Application
(Case Temperature 65°C, Pout = 4 W CW)
Stage 1, 28 Vdc, IDQ1 = 160 mA
Stage 2, 28 Vdc, IDQ2 = 550 mA
2.8
0.7
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22-A114)
1C (Minimum)
Machine Model (per EIA/JESD22-A115)
A (Minimum)
Charge Device Model (per JESD22-C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22-A113, IPC/JEDEC J-STD-020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate-Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 46 μAdc)
VGS(th)
1
2
3
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1 = 160 mA, Measured in Functional Test)
VGS(Q)
3
3.8
4.5
Vdc
Ciss
—
550
—
pF
Characteristic
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
Stage 1 — Dynamic Characteristics (4)
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
4. Part internally matched both on input and output.
(continued)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate-Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 185 μAdc)
VGS(th)
1
2
3
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2 = 550 mA, Measured in Functional Test)
VGS(Q)
2.8
3.6
4.3
Vdc
Drain-Source On-Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
0.1
0.12
0.8
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.68
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
220
—
pF
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Stage 2 — Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz,
WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset.
Power Gain
Gps
24
26
31
dB
Power Added Efficiency
PAE
15
17
—
%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF
PAR
7.8
8.6
—
dB
ACPR
—
-49
-45
dBc
IRL
—
-12
-10
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performances OFDM Signal — 10 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 =
160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input
Signal PAR = 9.5 dB @ 0.01% Probability on CCDF.
Relative Constellation Error (2)
Error Vector Magnitude
(2)
RCE
—
-33
—
dB
EVM
—
2.3
—
% rms
Typical Performances OFDM Signal — 7 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 =
160 mA, IDQ2 = 550 mA, Pout = 8 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input
Signal PAR = 9.5 dB @ 0.01% Probability on CCDF.
Mask
Mask System Type G
Point B at 3.5 MHz Offset
Point C at 5 MHz Offset
Point D at 7.4 MHz Offset
Point E at 14 MHz Offset
Point F at 17.5 MHz Offset
Relative Constellation Error (2)
Error Vector Magnitude
(2)
dBc
—
—
—
—
—
-27
-40
-43
-58
-63
—
—
—
—
—
RCE
—
-33
—
dB
EVM
—
2.3
—
% rms
1. Part internally matched both on input and output.
2. RCE = 20Log(EVM/100)
(continued)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
3
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, 2700 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
55
—
—
60
—
W
IMD Symmetry @ 50 W PEP, Pout where IMD Third Order
Intermodulation ` 30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
50
—
MHz
Gain Flatness in 200 MHz Bandwidth @ Pout = 8 W Avg.
GF
—
0.5
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 50 W CW
Φ
—
1.1
—
°
Delay
—
2.3
—
ns
Part-to-Part Insertion Phase Variation @ Pout = 50 W CW,
f = 2600 MHz, Six Sigma Window
ΔΦ
—
38.7
—
°
Gain Variation over Temperature
(-30 °C to +85°C)
ΔG
—
0.037
—
dB/°C
ΔP1dB
—
0.005
—
dBm/°C
Average Group Delay @ Pout = 50 W CW, f = 2600 MHz
Output Power Variation over Temperature
(-30 °C to +85°C)
MHz
Typical Driver Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 4 W Avg.,
f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset.
Power Gain
Gps
—
26
—
dB
Power Added Efficiency
PAE
—
11
—
%
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF
PAR
—
9.2
—
dB
ACPR
—
-57
—
dBc
Input Return Loss
IRL
—
-13
—
dB
Relative Constellation Error @ Pout = 2.5 W Avg. (1)
RCE
—
-39
—
dB
Adjacent Channel Power Ratio
1. RCE = 20Log(EVM/100)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
4
RF Device Data
Freescale Semiconductor
VDD2
VDD1
Z5
1
C2
C4
C6
DUT
C8
2 NC
C13
Z12
3 NC
4 NC
RF
INPUT
14
5 NC
Z1
Z3
Z2
C10
Z6
6
Z7
C12
Z8
Z9
7
C1
VGG1
9 NC
10
R2
VGG2
C15
8 NC
R1
11
13
C11
Quiescent Current
Temperature
Compensation
Z11
12
Z4
C9
C3
C5
Z1
Z2
Z3
Z4, Z5
Z6
Z7
Z10
RF
OUTPUT
C14
C7
0.662″ x 0.064″ Microstrip
1.530″ x 0.064″ Microstrip
0.126″ x 0.060″ Microstrip
0.771″ x 0.046″ Microstrip
0.192″ x 0.860″ Microstrip
0.280″ x 0.719″ Microstrip
Z8
Z9
Z10
Z11, Z12
PCB
0.417″ x 0.064″ Microstrip
1.137″ x 0.064″ Microstrip
0.293″ x 0.064″ Microstrip
0.615″ x 0.095″ Microstrip
Rogers RO4350B, 0.030″, εr = 3.5
Figure 3. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Schematic
Table 6. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C2, C3, C13, C14
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88B
Murata
C4, C5, C8, C9, C15
5.1 pF Chip Capacitors
ATC100B5R1CT500XT
ATC
C6, C7
1 μF, 100 V Chip Capacitors
GRM32ER72A105KA01L
Murata
C10, C11
0.2 pF Chip Capacitors
ATC100B0R2BT500XT
ATC
C12
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
R1, R2
1 KΩ, 1/4 W Chip Resistors
CRCW12061001FKEA
Vishay
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
5
C2
VG2
C13
VD1
C4
C8
VG1
C10
CUT OUT AREA
C6
C1
MW7IC2750N
Rev. 6
C7
C11
VG1
VG2
R1
R2
C15
C12
C5
C14
C9
VD1
C3
Figure 4. MW7IC2750NR1(GNR1)(NBR1) Test Circuit Component Layout
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
6
RF Device Data
Freescale Semiconductor
17
Gps, POWER GAIN (dB)
26.6
26.4
26.2
26
25.8
25.6
16
VDD = 28 Vdc, Pout = 8 W (Avg.), IDQ1 = 160 mA
IDQ2 = 550 mA, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz
Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
15
PARC
-50
-14
-51
-16
-52
IRL
-18
25.4
-53
25.2 ACPR
-54
-22
-55
2700
-24
25
2500
2525
2550
2575
2600
2625
2650
2675
-20
-0.6
-0.8
-1
-1.2
PARC (dB)
18
IRL, INPUT RETURN LOSS (dB)
26.8
19
Gps
PAE
ACPR (dBc)
27
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
-1.4
-1.6
f, FREQUENCY (MHz)
10.5
26.4 V = 28 Vdc, P = 4 W (Avg.), I
DD
out
DQ1 = 160 mA
3
26.2 IDQ2 = 550 mA, OFDM 802.16d, 64 QAM /4, 4 Bursts
10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB
26 @ 0.01% Probability on CCDF
8.5
25.8
-57
9.5
-56
PARC
-58
25.6
25.4
25.2
IRL
-59
2525
2550
2575
2600
2625
2650
2675
-15
-17
-19
-60
-21
-61
2700
-23
ACPR
25
2500
-13
0
-0.2
-0.4
-0.6
PARC (dB)
11.5
26.6
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
26.8
12.5
Gps
PAE
ACPR (dBc)
27
PAE, POWER ADDED
EFFICIENCY (%)
Figure 5. WiMAX Broadband Performance @ Pout = 8 Watts Avg.
-0.8
-1
f, FREQUENCY (MHz)
Figure 6. WiMAX Broadband Performance @ Pout = 4 Watts Avg.
29
29
IDQ2 = 826 mA
IDQ1 = 240 mA
27
28
688 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
28
550 mA
26
25
412 mA
24
23
22
0.1
VDD = 28 Vdc
IDQ1 = 160 mA
f = 2600 MHz
275 mA
1
10
200 mA
27
160 mA
26
25
24
23
100
120 mA
22
0.1
VDD = 28 Vdc
IDQ2 = 550 mA
f = 2600 MHz
80 mA
1
10
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Power Gain versus Output Power
@ IDQ1 = 160 mA
Figure 8. Power Gain versus Output Power
@ IDQ2 = 550 mA
100
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
7
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
0
VDD = 28 Vdc, Pout = 53 W (PEP), IDQ1 = 160 mA
IDQ2 = 550 mA, Two-Tone Measurements
(f1 + f2)/2 = Center Frequency of 2600 MHz
-10
-20
IM3-U
-30
IM3-L
IM5-U
IM5-L
-40
-50
IM7-U
IM7-L
-60
1
10
100
TWO-T ONE SPACING (MHz)
27
0
26.5
26
25.5
25
24.5
-30
40
35
ACPR
Gps
-1
30
PAE
-1 dB = 8.41 W
-2
25
-2 dB = 13.08 W
-3 dB = 18.16 W
-3
20
PARC
VDD = 28 Vdc, IDQ1 = 160 mA
IDQ2 = 550 mA, f = 2600 MHz, OFDM 802.16d
64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth
Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF
-4
-5
5
20
15
10
25
15
-35
-40
-45
ACPR (dBc)
1
PAE, POWER ADDED EFICIENCY (%)
27.5
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 9. Intermodulation Distortion Products
versus Tone Spacing
-50
-55
-60
10
30
Pout, OUTPUT POWER (WATTS)
Figure 10. Output Peak-to-Average Ratio
Compression (PARC) versus Output Power
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA
f = 2600 MHz, OFDM 802.16d, 64 QAM 3/4,
4 Bursts, 10 MHz Channel Bandwidth, Input
Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF
40
35
30
-15
-40 _C
-20
25_C
85_C -25
25_C
-30
-35
25
TC = -40_C
20
85_C
Gps
25_C
15
PAE
10
-40
-40 _C
ACPR (dBc)
PAE, POWER ADDED EFFICIENCY (%),
Gps, POWER GAIN (dB)
45
-45
-50
ACPR
-55
5
0
-60
1
10
70
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 11. WiMAX, ACPR, Power Gain and
Power Added Efficiency versus Output Power
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
30
10
20
0
10
-10
-20
0
S11 (dB)
S21 (dB)
S21
S11
-30
-10
VDD = 28 Vdc
IDQ1 = 160 mA, IDQ2 = 550 mA
-20
1800
2000
2200
2400
2600
2800
3000
3200
-40
3400
f, FREQUENCY (MHz)
Figure 12. Broadband Frequency Response
109
MTTF (HOURS)
108
1st Stage
107
2nd Stage
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 8 W Avg., and PAE = 17%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 13. MTTF versus Junction Temperature
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
9
WIMAX TEST SIGNAL
100
-10
10
-20
-30
1
-40
0.1
(dB)
PROBABILITY (%)
Input Signal
10 MHz
Channel BW
-50
0.01
OFDM 802.16d, 64 QAM 3/4, 4 Bursts
10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
0
2
4
6
-60
-70
8
PEAK-T O-A VERAGE (dB)
Figure 14. OFDM 802.16d Test Signal
10
-80
ACPR in 1 MHz
Integrated BW
-90
-20
-15
-10
ACPR in 1 MHz
Integrated BW
-5
0
5
10
15
20
f, FREQUENCY (MHz)
Figure 15. WiMAX Spectrum Mask Specifications
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 2500 MHz
f = 2700 MHz
Zin
f = 2700 MHz
f = 2500 MHz
Zload
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA, Pout = 8 W Avg.
f
MHz
Zin
W
Zload
W
2500
49.58 + j35.82
3.52 - j1.79
2525
50.78 + j36.71
3.46 - j1.82
2550
52.04 + j37.58
3.37 - j1.86
2575
53.39 + j38.45
3.24 - j1.88
2600
54.82 + j39.30
3.09 - j1.87
2625
56.35 + j40.14
2.94 - j1.84
2650
57.96 + j40.95
2.77 - j1.77
2675
59.68 + j41.74
2.60 - j1.66
61.50 + j42.49
2.44 - j1.56
2700
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 16. Series Equivalent Source and Load Impedance
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
11
Table 7. Common Source S-Parameters (VDD = 28 V, IDQ1 = 160 mA, IDQ2 = 550 mA, TC = 25°C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1500
0.754
78.5
0.001
-17.9
0.000774
17.4
0.994
174.5
1550
0.734
70.1
0.001
-1 18.8
0.000326
85.4
0.993
175.3
1600
0.716
61.7
0.003
-1 16.5
0.000392
58.7
0.998
174.6
1650
0.697
53.4
0.009
-135.3
0.000268
27.8
0.997
173.9
1700
0.677
45.1
0.024
-152.3
0.000211
-33.8
0.996
172.9
1750
0.651
36.6
0.064
-179.9
0.000309
148.0
0.991
171.7
1800
0.619
27.6
0.141
146.0
0.000599
148.7
0.981
170.3
1850
0.578
17.7
0.255
113.0
0.000732
142.6
0.970
169.0
1900
0.527
5.6
0.425
84.8
0.000734
149.1
0.957
167.3
1950
0.462
-9.3
0.701
61.4
0.000911
144.7
0.941
165.6
2000
0.392
-27.8
1.237
39.8
0.00154
174.4
0.924
163.6
2050
0.312
-51.0
2.342
15.9
0.00286
159.0
0.895
160.9
2100
0.218
-74.1
4.772
-1 1.8
0.00377
142.2
0.843
156.6
2150
0.139
-77.4
11.680
-51.5
0.00588
128.7
0.691
149.4
2200
0.426
-69.8
27.658
-129.7
0.00919
73.9
0.342
-169.4
2250
0.490
-123.5
21.740
150.4
0.00545
38.1
0.800
-166.9
2300
0.416
-146.4
16.087
106.5
0.00314
33.9
0.864
-174.9
2350
0.352
-160.1
13.279
71.6
0.00239
24.9
0.879
-177.0
2400
0.321
-166.6
11.654
41.9
0.00175
33.1
0.891
-177.5
2450
0.274
-173.2
10.543
13.4
0.00197
27.7
0.908
-177.4
2500
0.233
-177.6
9.748
-13.4
0.00181
34.5
0.924
-177.5
2550
0.178
179.0
8.983
-40.5
0.00204
31.5
0.943
-177.7
2600
0.123
-167.7
8.199
-65.8
0.00218
35.6
0.957
-178.0
2650
0.108
-148.8
7.452
-89.9
0.00208
33.2
0.970
-178.7
2700
0.121
-132.6
6.730
-1 13.1
0.00198
23.8
0.978
-179.6
2750
0.146
-1 19.9
6.008
-135.3
0.00191
31.0
0.985
179.4
2800
0.184
-1 19.9
5.323
-156.1
0.00211
23.7
0.987
178.3
2850
0.214
-121.0
4.700
-175.6
0.00159
15.5
0.987
177.3
2900
0.261
-127.6
4.109
166.0
0.00205
14.6
0.985
176.3
2950
0.316
-134.0
3.591
149.0
0.00171
19.2
0.984
175.4
3000
0.372
-141.4
3.130
133.3
0.00103
16.7
0.984
174.5
3050
0.430
-150.2
2.733
118.1
0.00095
26.4
0.984
173.8
3100
0.485
-158.9
2.388
103.6
0.00103
36.9
0.984
173.2
3150
0.534
-166.3
2.091
90.1
0.00108
24.1
0.985
172.7
3200
0.585
-172.7
1.846
77.3
0.00127
47.6
0.984
172.4
3250
0.625
-178.0
1.635
65.2
0.00119
57.1
0.986
172.1
3300
0.657
177.3
1.472
52.9
0.00132
53.2
0.985
171.9
3350
0.686
173.2
1.342
40.8
0.00200
53.8
0.985
171.7
(continued)
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
12
RF Device Data
Freescale Semiconductor
Table 7. Common Source S-Parameters (VDD = 28 V, IDQ1 = 160 mA, IDQ2 = 550 mA, TC = 25°C, 50 Ohm System) (continued)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
3400
0.702
169.7
1.243
28.4
0.00230
54.4
0.982
171.3
3450
0.718
166.7
1.193
10.8
0.00211
62.5
0.947
170.1
3500
0.721
164.7
0.937
3.1
0.00233
24.3
0.976
173.0
3550
0.746
162.0
0.914
-7.9
0.00213
51.7
0.981
171.9
3600
0.758
158.9
0.857
-21.4
0.00236
55.6
0.978
171.1
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
13
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
Ideal
P3dB = 49.27 dBm (85 W)
P1dB = 48.21 dBm (66 W)
Actual
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA
Pulsed CW, 10 μsec(on), 10% Duty Cycle,
f = 2500 MHz
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
P3dB = 48.62 dBm (73 W)
P1dB = 47.59 dBm (57 W)
Actual
VDD = 28 Vdc, IDQ1 = 160 mA, IDQ2 = 550 mA
Pulsed CW, 10 μsec(on), 10% Duty Cycle,
f = 2700 MHz
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Pin, INPUT POWER (dBm)
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
Test Impedances per Compression Level
P1dB
Ideal
Zsource
Ω
Zload
Ω
28.46 + j5.15
1.67 - j1.53
Figure 17. Pulsed CW Output Power
versus Input Power @ 28 V @ 2500 MHz
Test Impedances per Compression Level
P1dB
Zsource
Ω
Zload
Ω
36.24 + j1.75
1.19 - j1.29
Figure 18. Pulsed CW Output Power
versus Input Power @ 28 V @ 2700 MHz
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
14
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
15
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
16
RF Device Data
Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
17
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
18
RF Device Data
Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
19
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
20
RF Device Data
Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
21
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
22
RF Device Data
Freescale Semiconductor
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
RF Device Data
Freescale Semiconductor
23
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages
• AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
Development Tools
• Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part's Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
May 2008
• Initial Release of Data Sheet
1
Oct. 2008
• Corrected footnote reference in Typical Performances OFDM Signal - 10 MHz Bandwidth table, p. 3
• Updated Fig. 13, MTTF versus Junction Temperature, to correct a calculation error, p. 9
2
Feb. 2010
• Modified VSWR rating to show the 3 dB overdrive capability, p. 1
• Corrected maximum input power level to the tested value, from 13 dBm to 25 dBm in Maximum Ratings
table, p. 2
• Fig. 3, Test Circuit Schematic, corrected Rogers RO4350B dielectric constant from 3.66 εr to 3.5 εr, p. 5
• Added AN3789, Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages to
Product Documentation, Application Notes, p. 24
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
24
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer's technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008, 2010. All rights reserved.
MW7IC2750NR1 MW7IC2750GNR1 MW7IC2750NBR1
Document
RF
DeviceNumber:
Data MW7IC2750N
Rev. 2, 2/2010
Freescale
Semiconductor
25
Similar pages