FEDL630Q464-01 Issue Date: Oct. 26, 2016 ML630Q464/Q466 Ultra Low Power 32-bit Microcontroller ■ GENERAL DESCRIPTION This LSI is a high-performance low power 32-bit microcontroller. Equipped with a 32-bit CPU core Cortex -M0+, it implements a 128 KB flash memory, 16 KB RAM, rich peripheral circuits, such as USB Full speed device, synchronous serial port, UART, I2C bus interface, supply voltage level detect circuit, RC oscillation type A/D converter, successive approximation type A/D converter, and LCD driver. The Flash ROM that is installed as program memory achieves low-voltage low-power consumption operation (read operation) is most suitable for battery-driven applications. TM ■ FEATURES • CPU − 32-bit RISC CPU (CPU name: ARM Cortex -M0+) − Thumb®/Thumb®-2 instruction supported − Serial Wire Debug Port − Minimum instruction execution time 30.5 µs (@32.768 kHz system clock) 41.7ns (@24 MHz system clock) TM • Internal memory − Re-writing the program memory area by software − Number of segments Product name ML630Q464 ML630Q466 Flash memory Program area Data area 64KB (16K × 32bit) 2KB (0.5K × 32bit) 128KB (32K × 32bit) 2KB (0.5K × 32bit) SRAM 8KB (2K × 32bit) 16KB (4K × 32bit) • Interrupt controller (NVIC) − 1 non-maskable interrupt source (Internal source: 1) − 31 maskable interrupt sources (Internal sources: 30, External sources: 1) − Priority level (4-level) can be set for each interrupt • DMA controller (DMAC) − 2 channels − Enable to allocate multiple DMA transfer request sources for each channel. − Channel priority: fixed mode/round robin mode − DMA transfer mode: cycle steal mode/burst mode − DMA request type: software requests/hardware requests − Maximum transfer count: 65,536 − Data transfer size: 8 bits/16 bits/32 bits − Transfer request source: SSIOF, UART, UARTF, I2CF, RC-ADC, SA-ADC • Time base counter (TBC) − Low-speed time base counter ×1 channel • 1 kHz Timer − 10 Hz / 1 Hz interrupt function 1/37 FEDL630Q464-01 ML630Q464/Q466 • Timers (TMR) − 8 bits × 8 channels (Timer0-7: 16-bit x 4 configuration available by using Timer0-1 or Timer2-3, Timer4-5, Timer6-7) − Selection of one shot timer mode is possible − External clock can be selected as timer clock. • Function Timers (FTM) − 16-bit × 4 channels − Equipped with the timer/capture/PWM functions using a 16-bit counter − An event trigger (external pin input interrupt or timer interrupt request) can control start/stop/clear of the timer (however, the minimum pulse width of pin input is timer clock 3φ) − 1 to 64 dividing of LSCLK/OSCLK/HSCLK/external input selectable as timer clock − Two types of PWM with the same period and different duties and complementary PWM with the dead time set can be output. • Real Time Clock (RTC) − 1 channels (99 years calendar, alarm, revision of the clock) • Watchdog timer (WDT) − Non-maskable interrupt and reset − Free running − Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s when LSCLK = 32.768 kHz) • Synchronous serial port (SSIOF/SSIO) − without FIFOs (SSIO) : 1 channel − with 16-byte transmits and receives FIFOs (SSIOF) : 1 channel − Master/slave selectable − LSB first/MSB first selectable − Clock polarity (data out at rising edge and data in at falling edge/data out at falling edge and data in at rising edge) selectable − 8-bit length/16-bit length selectable − Initial clock level (High start/Low start) selectable − supports slave-select signal (only SSIOF) • UART (UARTF/UART) − without FIFOs (UART) : 1channel − with 16-byte transmits and receives FIFOs (UARTF) :1 channels − Full duplex buffer system − Communication speed: Settable within the range of 2400bps to 115200bps. − Programmable interface (data length, parity, stop bits selectable) • I2C bus interface (I2CF/I2C) − without FIFOs(I2C) :1 channel − with 16-byte transmits and receives FIFOs (I2CF) : 1 channels − Master/slave function (only I2CF) − Fast mode (400 kHz), standard mode (100 kHz) • USB full-speed device − Compliant with Universal Serial Bus (USB) − Full speed (12 Mbps) 1 port. − End points: 5 or 6 − Supports all data transfer types (control transfer, bulk transfer, interrupt transfer, isochronous transfer). − Built-in SOF generation and CRC5/16 generation functions − Access size to data transfer FIFOs: 8 bits/16 bits/32 bits • General-purpose ports (PORT) − Input/output port × 38 channels (including secondary or tertiary or quaternary or quinary functions). (ML630Q464 and ML630Q466: including LCD com/seg ports ( each 20 ports )) 2/37 FEDL630Q464-01 ML630Q464/Q466 • RC oscillation type A/D converter (RC-ADC) − Time division × 2 channels − Starting by trigger of Timer/FTM function. − 24-bit counter • Successive approximation type A/D converter (SA-ADC) − Input × 12 channels − 12-bit A/D converter − Starting by trigger of Timer/FTM function. − Capacitive touch sense function • Analog Comparator (CMP) − Input × 2ch − Common mode input voltage: 0.2V to VDD-0.2V − Input offset voltage: 30mV(max) − Interrupt allow edge selection and sampling selection • Voltage Level Supervisor (VLS) − Threshold voltages: One of 64 levels − Acuraccy: ±3% − Interrupt or Reset generation are slectable − Voltage measurement with voltage input pin or VDD pin • Low Level Detector(LLD) − Judgment Voltage: 1.8V±0.2V − Can be used as low level detection reset. • LCD driver − Maximun 400 dots (50 segment x 8 common) − 1/1 to 1/8 duty − 1/2, 1/3 bias (built-in bias generation circuit) − Frame frequency selecable − Bias voltage multiplying clock selectable (5 types) − Contrast adjustment (32 steps) − 4 operating mode: LCD drive stop, LCD display, all LCDs on, all LCDs off − Programmable display allocation function • Random number generator (RANDOM) − Generates 8-bit random numbers • AES − 128-bit Common key − Supports key sizes of 128, 192, and 256 bits − Supports ECB, CBC, and CTR modes • Reset − Reset by the RESET_N pin input − Reset by power-on detection − Reset by overflow of watchdog timer (WDT) − Reset by threshold detection in Voltage Level Supervisor(VLS) − Reset by low level detection in Low Level Detector(LLD) − Reset by the low-speed crystal oscillation stop detection − Reset by SYSRESETREQ of Cortex -M0+ (software reset) TM 3/37 FEDL630Q464-01 ML630Q464/Q466 • Clock − Low-speed clock: − Crystal oscillation (32.768 kHz) − Built-in RC oscillation (32.768kHz) − High-speed clock: − PLL (24 MHz) generated from Crystal oscillation (32.768 kHz) − Built-in RC oscillation (16MHz) • Power management − HALT mode: Instruction execution by CPU is suspended. All peripheral circuits can keep in operating states. − HALT-H mode: Instruction execution by CPU is suspended. Stop of high-speed oscillation automatically. All peripheral circuits can keep in operating states. − DEEP-HALT mode: Instruction execution by CPU is suspended. Some peripheral circuits(Timer, LTBC etc.) can keep in operating states. − ULTRA-DEEP-HALT mode: Instruction execution by CPU is suspended. Some peripheral circuits(Timer, LTBC etc.) can keep in operating states, at VDD>2.5V. − STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.) − Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8,1/16,1/32 of the oscillation clock) − Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals. • Guaranteed operating range − Operating temperature (ambient) : −40°C to +85°C − Operating voltage: VDD = 1.8V to 3.6V • Supply current (Typ) − High-speed operation (24 MHz) : 250uA/MHz − ULTRA-DEEP-HALT : 0.80uA ● Package − 100-pin plastic TQFP − Tray ML630Q464-xxxTBZWAX ML630Q466-xxxTBZWAX 4/37 FEDL630Q464-01 ML630Q464/Q466 ■ BLOCK DIAGRAM ML630Q464/Q466 Block Diagram CPU (Cortex-m0+) SWC SWD DAP Cortex-m0+ MTB WIC Data-bus (AMBA AHB/APB) SCK0 SIN0 SOUT0 SCKF0 SINF0 SOUTF0 SSF0 RXD0 TXD0 RXDF0 TXDF0 SDA1 SCL1 SDAF0 SCLF0 DP DM PUCTL IN0 CS0 RS0 RT0 RCT0 RCM IN1 CS1 RS1 RT1 VREF SSIO×1 SSIOF×1 UART×1 UARTF×1 I2C ×1 I CF ×1 INT 1 Program Memory (Flash) 64K/128KB INT 2 Data Memory (Flash) 2KB INT 2 2 RAM 8K/16KB INT 2 USB INT 8 INT 4 INT 1 INT 1 DMAC INT 1 RC-ADC Interrupt Controller INT 1 LTBC Timer ×8 TMOUT0-9 Function Timer ×4 WDT P00 to P05 GPIO SA-ADC INT 1 RND INT 1 INT 1 LCD Driver TMCKI0-7 1kHz Timer ×1 INT 1 INT 1 TMOUTA-F RTC ×1 AES AIN0 to AIN11 COM0 to COM7 SEG0 to SEG49 Data-bus (Single cycle IO) INT 2 INT 1 NVIC Analog Comparator ×2 INT 1 P20 to P23 P30 to P37 P40 to P47 P50 to P57 P60 to P63 CMP0P CMP0M CMP1P CMP1M VLS VL1, VL2, VL3 C1, C2 LLD LCD BIAS VDD VSS VDDL RESET RESET_N OSC XT0 XT1 32kCLKO0 Power CH1, CH2 VHF Figure 1. ML630Q464/Q466 Block Diagram 5/37 FEDL630Q464-01 ML630Q464/Q466 ■ PIN CONFIGURATION Figure 2. Pin Layout of ML630Q464/Q466 6/37 FEDL630Q464-01 ML630Q464/Q466 ■ PIN LIST PIN No. .Reset State Primary Function Secondary Function Tertiary Function Quaternary Function Quinary Function Pin name I/O Pin name I/O pin name I/O pin name I/O pin name I/O – VSS – – – – – – – – – – VDD – – – – – – – – – 80 – VDDL – – – – – – – – – 70 – VHF – – – – – – – – – 90 – VREF – – – – – – – – – 74 – XT0 – – – – – – – – – 14 68 79 65 81 73 78 77 76 75 – Pull-up Input Pull-up Input Pull-up Input Pull-down Input 95 Hi-Z output 96 Hi-Z output 97 Hi-Z output 98 Hi-Z output 99 100 Hi-Z output Hi-Z output 91 Hi-Z output 92 Hi-Z output 93 Hi-Z output 94 Hi-Z output 82 Hi-Z output 83 Hi-Z output 84 Hi-Z output 85 Hi-Z output 86 Hi-Z output 87 Hi-Z output 88 Hi-Z output 89 Hi-Z output 13 to 10 9 8 7 6 15 to 48 49 Low Level Output Hi-Z output Hi-Z output Hi-Z output Hi-Z output Low Level Output Hi-Z output XT1 – – – – – – – – – RESET_N I – – – – – – – – SWC I – – – – – – – – SWD I/O – – – – – – – – BRMP I – – – – – – – – I/O IN0 I SOUT0 O RXDF0 I – – I/O CS0 O SIN0 I TXDF0 O – – I/O RCT0 O SCK0 I/O TMOUT0 O – – I/O RS0 O – – TMOUT1 O – – I/O RT0 O – – – – – – I/O RCM O – – – – – – I/O IN1 I SOUTF0 O – – – – I/O CS1 O SINF0 I – – – – I/O RS1 O SCKF0 I/O TMOUT2 O – – I/O RT1 O SSF0 I/O TMOUT3 O – – I/O SDAF0 I/O SOUT0 O – – – – I/O SCLF0 I/O SIN0 I – – – – I/O RXDF0 I SCK0 I/O TMOUT4 O – – I/O TXDF0 O 32kCLKO O TMOUT5 O – – I/O SDA1 I/O SOUTF0 O – – – – I/O SCL1 O SINF0 I – – – – I/O RXD0 I SCKF0 I/O TMOUT6 O – – I/O TXD0 O SSF0 I/O TMOUT7 O – – O – – – – – – – – I/O COM4 O – – – – – – I/O COM5 O – – – – – – I/O COM6 O – – – – – – P00/ EXI00/ AIN8 P01/ EXI01/ AIN9 P02/ EXI02/ AIN10 P03/ EXI03/ AIN11 P04/ EXI04 P05/ EXI05 P20/ EXI20/ AIN4 P21/ EXI21/ AIN5 P22/ EXI22/ AIN6 P23/ EXI23/ AIN7 P30/ EXI30/ CMP0P VVLSP P31/ EXI31/ CMP0M P32/ EXI32/ CMP1P/ AIN2 P33/ EXI33/ CMP1M/ AIN3 P34/ EXI34/ AIN0 LED P35/ EXI35/ AIN1 LED P36/ EXI36/ TMCKI4 P37/ EXI37/ TMCKI5 COM0 to COM3 P60/ EXI60 P61/ EXI61 P62/ EXI62 P63/ EXI63 I/O COM7 O – – – – – – SEG0 to SEG33 O – – – – – – – – P40/ EXI40/ LED I/O SDAF0 I/O SOUT0 O – – SEG34 O 7/37 FEDL630Q464-01 ML630Q464/Q466 PIN No. .Reset State Primary Function Pin name Secondary Function Tertiary Function Quaternary Function Quinary Function I/O Pin name I/O pin name I/O pin name I/O pin name I/O I/O SCLF0 I/O SIN0 I – – SEG35 O I/O RXDF0 I SCK0 I/O TMOUT8 O SEG36 O I/O TXDF0 O 32kCLKO O TMOUT9 O SEG37 O I/O SDA1 I/O SOUTF0 O – – SEG38 O I/O SCL1 O SINF0 I – – SEG39 O I/O RXD0 I SCKF0 I/O TMOUTA O SEG40 O I/O TXD0 O SSF0 I/O TMOUTB O SEG41 O I/O SDAF0 I/O SOUT0 O – – SEG42 O I/O SCLF0 I/O SIN0 I – – SEG43 O I/O RXDF0 I SCK0 I/O TMOUTC O SEG44 O Hi-Z output Hi-Z output Hi-Z output P41/ EXI41/ LED P42/ EXI42/ TMCKI0 P43/ EXI43/ TMCKI1 P44/ EXI44 P45/ EXI45 P46/ EXI46/ TMCKI2 P47/ EXI47/ TMCKI3 P50/ EXI50 P51/ EXI51 P52/ EXI52 60 Hi-Z output P53/ EXI53 I/O TXDF0 O 32kCLKO O TMOUTD O SEG45 O 61 Hi-Z output P54/ EXI54 I/O SDA1 I/O SOUTF0 O – – SEG46 O 62 Hi-Z output I/O SCL1 O SINF0 I – – SEG47 O 63 Hi-Z output I/O RXD0 I SCKF0 I/O TMOUTE O SEG48 O 64 Hi-Z output P55/ EXI55 P56/ EXI56/ TMCKI6 P57/ EXI57/ TMCKI7 I/O TXD0 O SSF0 I/O TMOUTF O SEG49 O DP I/O – – – – – – – – 50 Hi-Z output 51 Hi-Z output 52 Hi-Z output 53 54 Hi-Z output Hi-Z output 55 Hi-Z output 56 Hi-Z output 57 58 59 66 67 69 3 4 5 1 2 71 72 Hi-Z output Hi-Z output Low output – – – – – – – DM I/O – – – – – – – – PUCTL O – – – – – – – – VL1 VL2 VL3 C1 C2 CH1 CH2 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 8/37 FEDL630Q464-01 ML630Q464/Q466 ■ PIN DESCRIPTION In the table below indicates the functional pin description. The pin name represents the function pin name of the primary function of each terminal, The pin mode represents the set of mode register of Port Control. (1st:primary function, 2nd:secondary function, 3rd: tertiary function, 4th: quaternary function, 5th:quinary function) Pin name System RESET_N I/O Description Reset input pin. When this pin is set to a “L” level, system reset mode is set and the internal section is initialized. When this pin is set to a “H” level subsequently, program execution starts. A pull-up resistor is internally connected. BRMP I Remapping control input (for firmware update) Based on the BRMP pin setting at the time of the reset release, Bank0 is remapped. Crystal connection pin for low-speed clock. XT0 I XT1 O Capacitors CDL and CGL are connected across this pin and VSS as required. Low-speed clock output pin 32kCLKO O General-purpose input/output port P00-P05 I/O General-purpose input/output port. P20-P23 I/O General-purpose input/output port. P30-P37 I/O General-purpose input/output port. P40-P47 I/O General-purpose input/output port. P50-P57 I/O General-purpose input/output port. P60-P63 I/O General-purpose input/output port. External interrupt EXI00-05 I External maskable interrupt input pins. It is possible, for each bit, to specify whether the interrupt is enabled and EXI20-23 select the interrupt edge by software. EXI30-37 I EXI40-47 EXI50-57 EXI60-63 LED LED O UART TXD0 O RXD0 I TXDF0 O RXDF0 I 2 I C bus interface SDA1 I/O SCL1 SDAF0 SCLF0 LSI pin name Pin mode Logic RESET_N – L BRMP – H – – – – XT0 XT1 P33,P43,P53 2 nd st P00-P05 P20-P23 P30-P37 P40-P47 P50-P57 P60-P63 1 st 1 st 1 st 1 st 1 st 1 P00-P05 P20-P23 P30-P37 P40-P47 P50-P57 P60-P63 1 st N-channel open drain output pins to drive LED. P34,P35,P40,P41 1 st UART data output pin. UART data input pin. UARTF with FIFO data output pin. UARTF with FIFO data input pin. P37,P47,P57 P36,P46,P56 P01,P33,P43,P53 P00,P32,P42,P52 2 nd 2 nd 2 nd 2 I2C1 data input/output pin. This pin has an NMOS open drain output. When using this pin as a function of the 2 I C, externally connect a pull-up resistor. O I2C1 clock output pin. This pin has an NMOS open drain output. When using this pin as a function of the 2 I C, externally connect a pull-up resistor. I/O I2CF0 data input/output pin. This pin has an NMOS open drain output. When using this pin as a function of 2 the I C, externally connect a pull-up resistor. I/O I2CF0 clock input/output pin. This pin has an NMOS open drain output. When using this pin as a function of 2 the I C, externally connect a pull-up resistor. nd P34,P44,P54 2 nd P35,P45,P55 2 nd P30,P40,P50 2 nd P31,P41,P51 2 nd – – – – – – H/L – – – – – – – – – 9/37 FEDL630Q464-01 ML630Q464/Q466 Pin name I/O Synchronous serial SCK0 I/O SIN0 I SOUT0 O SCKF0 I/O SINF0 SOUTF0 SSF0 Description Synchronous serial (SSIO) clock input/output pin. Synchronous serial (SSIO) data input pin. Synchronous serial (SSIO) data output pin. Synchronous serial with FIFO (SSIOF) clock input/output pin. I Synchronous serial with FIFO (SSIOF) data input pin. O Synchronous serial with FIFO (SSIOF) data output pin. I/O Synchronous serial with FIFO (SSIOF) select input/output pin. FTM TMOUT0-9 TMOUTA-F O FTM output pin. TMCKI0-7 I External clock input pin for FTM. LSI pin name Pin mode P02,P32,P42,P52 P01,P31,P41,P51 P00,P30,P40,P50 P22,P36,P46,P56 3 rd 3 rd 3 rd 3 P21,P35,P45,P55 P20,P34,P44,P54 P23,P37,P47,P57 3 rd 3 rd 3 P02,P03,P22,P23 P32,P33,P36,P37 P42,P43,P46,P47 P52,P53,P56,P57 P42,P43,P46,P47 P36,P37,P56,P57 4 rd rd th 1 st Logic – – – – – – L – – RC oscillation type A/D converter IN0 I Oscillation input pin of Channel 0. P00 2 nd CS0 O Reference capacitor connection pin of Channel 0. P01 2 nd RS0 O Reference resistor connection pin of Channel 0. P03 2 nd RT0 O P04 2 nd RCT0 O P02 2 nd RCM O Resistor sensor connection pin for measurement of Channel 0. Resistor/capacitor sensor connection pin of Channel 0 for measurement. RC oscillation monitor pin. P05 2 nd IN1 I Oscillation input pin of Channel 1. P20 2 nd CS1 O Reference capacitor connection pin of Channel 1. P21 2 nd O Reference resistor connection pin of Channel 1. 2 nd 2 nd RS1 P22 Resistor sensor connection pin for measurement of Channel 1. Successive approximation type A/D converter P23 Reference power supply pin for successive approximation type A/D converter. Analog input for successive approximation type A/D converter. VREF RT1 O VREF I AIN0-11 I – (AIN0-3) P32-35, (AIN4-7) P20-23, (AIN8-11) P00-03 1 st – – – – – – – – – – – – Analog comparator CMP0P I Comparator0 Non-inverted input pin. P30 1 st CMP0M I Comparator0 Inverted input pin. P31 1 st CMP1P I Comparator1 Non-inverted input pin. P32 1 st CMP1M I Comparator1 Inverted input pin. P33 1 st – – – – USB FS Device DP DM PUCTL I/O USB dev D+ pin. I/O USB dev D- pin. O USB dev pull-up control DP – – DM – – PUCTL – – SWC – – SWD – – DEBUG Interface SWC SWD I Serial clock of Serial Wire Debug Port I/O Serial I/O data of Serial Wire Debug Port 10/37 FEDL630Q464-01 ML630Q464/Q466 Pin name Power supply VSS VDD VDDL VHF CH1 – CH2 LCD driver COM0 – COM3 COM4 – COM7 SEG0 – SEG33 SEG34 – SEG49 C1 – C2 VL1 – VL3 I/O Description LSI pin name – Negative power supply pin. Positive power supply pin. Positive power supply pin (internally generated) for internal logic. Capacitors CL is connected between this pin and VSS. Positive power supply pin (internally generated) for built-in halver circuit. Capacitor CVH is connected between this pin and VSS. Capacitor pins of built-in halver circuit – Common pins of LCD driver COM0 – COM3 – Common pins of LCD driver P60-P63 – Segment pins of LCD driver SEG0 – SEG33 – Segment pins of LCD driver P40-P47 P50-P57 C1 – C2 VL1 – VL3 – – – – – – Capacitor pins of built-in generation bias circuit Reference voltage input pins of built-in bias generation circuit VSS VDD VDDL Pin mode Logic – – – – – – VHF – – CH1 – CH2 – – – – 2 nd – 5 th – – – – – – – 11/37 FEDL630Q464-01 ML630Q464/Q466 ■ TERMINATION OF UNUSED PINS Table 1 shows methods of terminating the unused pins. Table 1 Termination of Unused Pins Pin RESET_N BRMP SWC SWD VREF P00 to P05 P20 to P23 P30 to P37 P40 to P47 P50 to P57 P60 to P63 COM0 to COM3 SEG0 to SEG33 DP, DM, PUCTL VL1, VL2, VL3 C1, C2 Recommended pin termination open Connect a pull-down resistor. Connect a pull-up resistor. Connect a pull-up resistor. Connect to VDD open open open open open open open open open open open [Note] For unused input ports or unused input/output ports, if the corresponding pins are configured as high-impedance inputs and left open, the supply current may become excessively large. Therefore, it is recommended to configure those pins as either inputs with a pull-down resistor/pull-up resistor or outputs. 12/37 FEDL630Q464-01 ML630Q464/Q466 ■ Electrical Characteristics ● ABSOLUTE MAXIMUM RATINGS (VSS=0V) Parameter Symbol Condition Rating Unit Power supply voltage 1 VDD Ta=25°C -0.3 to +4.6 V Power supply voltage 2 VDDL Ta=25°C -0.3 to +2.0 V Power supply voltage 3 VL1-3 Ta=25°C -0.3 to +6.0 V VIN Ta=25°C -0.3 to VDD+0.3 V Input voltage (5 V tolerant) (P36, P37, P40-P47, P50-P57, P60-P63) VINT Ta=25°C -0.3 to +6.0 V Output voltage 1 VOUT1 Ta=25°C -0.3 to VDD+0.3 V Output voltage 2 (COM0 to COM7 SEG0 to SEG49) VOUT2 Ta=25°C -0.3 to VL1-3+0.3 V Output current 1 IOUT1 Ta=25°C -12 to +11 mA Output current 2 IOUT2 Ta=25°C -12 to +20 mA Power dissipation PD Ta=25°C 0.9 W Storage temperature TSTG – -55 to +150 °C Input voltage(P00-P05, P20-P23, P30-P35, SWC, SWD, BRMP, RESET_N, DP, DM) 13/37 FEDL630Q464-01 ML630Q464/Q466 ● RECOMMENDED OPERATING CONDITIONS (VSS=0V) Parameter Symbol Condition Range Unit Operating temperature (Ambience) TOP – -40 to +85 °C Operating voltage VDD – 1.8 to 3.6 V Reference voltage VREF – 1.8 to VDD V fOP – LSCLK:32.768k HSCLK:500k to 24M Hz fXTL – 32.768k Hz Operating frequency (CPU) Low speed crystal oscillation frequency Low speed crystal oscillation external capacitor 1 Low speed crystal oscillation external capacitor 2 *1 Low speed crystal oscillation external capacitor 3 VDDL external capacitor VL1,2,3pin external capacitor C1-C2 external capacitor CH1, CH2 external capacitor VHF external capacitor CDL CGL CDL CGL CDL CGL *2 Using VT-200-FL(from SII) Using DT-26(from Daishinku) Using VT-200-F(from SII) 6.8 to 12 6.8 to 12 12 to 16 12 to 16 12 to 22 12 to 22 pF pF pF CL ESR ≦500mΩ 2.2 ± 30% µF Ca,b,c – 1.0 ± 30% µF C12 – 1.0 ± 30% µF CH12 – 1.0 ± 30% µF CHF – 1.0 ± 30% µF *1 : Please use this crystal except DEEPHALT mode because this LSI may not be functioning at DEEPHALT mode with the crystal. Please evaluate the matching when other crystal oscillator/ceramic oscillator is used. *2:Please evaluate on user’s conditions, put on CL0( = 0.1uF) if necessary. 14/37 FEDL630Q464-01 ML630Q464/Q466 ● Operating Conditions of Flash Memory Parameter Symbol Operating temperature (Ambience) TOP Operating voltage Write time Erase unit (VSS= 0V) Unit Condition Range Data area : write/erase -40 to +85 °C Program area : write/erase 0 to +40 °C VDD Write/erase 1.8 to 3.6 V CEPD Data area (1,024B x 2) 10,000 times CEPP Program area 100 times – Block erase Program area 8 Data area 2 KB Sector erase 1 KB Erase time(Maximum) – Block erase/Sector erase 100 ms Write unit – – 1 word (4 byte) – 15/37 FEDL630Q464-01 ML630Q464/Q466 ● AC characteristics (Oscillation, reset) Parameter Symbol Low speed crystal oscillation start time TXTL Low speed built-in RC *1*2*3 oscillation frequency (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Max. Min. Typ. – – – 2 Ta=25°C Typ -1.5% 32.768 Typ +1.5% Ta=-40 to 85°C typ-5% 32.768 typ+5% Ta=25°C typ -1% 16 typ +1% Ta=-40 to 85°C typ -5% 16 typ +5% fLCR s kHz High speed build-in RC *1*2 oscillation frequency fHCR PLL frequency fPLL fXTL=32.768kHz typ -0.25% 24 typ +0.25% MHz Low speed crystal oscillation stop detection time TSTOP – – 600 – µs Reset pulse width PRST – 200 – – µs Reset noise elimination pulse width PNRST – – – 0.3 µs Power-on reset activation power rise time TPOR – – – 10 ms MHz 1 *1 : Mean value of 1024 cycle. *2 : Guarantee value at the time of the shipment. *3 : Except DeepHALT mode and Ultra-DeepHALT mode. VDD 0.9*VDD 0.3*VDD RESET_N 0.3*VDD PRST 0.3*VDD PRST External reset sequence 0.9*VDD VDD 0.1*VDD TPOR Power on reset sequence 16/37 FEDL630Q464-01 ML630Q464/Q466 DC Characteristics (IDD) ● Parameter Symbol Power consumption 1 IDD1 IDD2-1 Power consumption 2 IDD2-2 (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) *1 Rating Measuring Condition Unit circuit Min. Typ. Max. CPU is Stopped Low/High-speed oscillation is stopped ULTRA-DEEP-HALT mode *3*4 (LBTC function) Low-speed crystal oscillating (32.768kHz) High-speed oscillation is stopped. 2.5V≦VDD DEEP-HALT mode *3*4 (LBTC function) Low-speed crystal oscillating (32.768kHz) High-speed oscillation is stopped. HALT mode *3*4 (LTBC function) Low-speed crystal oscillating (32.768kHz) High speed oscillation is stopped. Power consumption 3 IDD3 Power consumption 4 IDD4 CPU Low-speed *2*4 Low-speed crystal oscillating High speed oscillation is stopped. Power consumption 5 IDD5 CPU High-speed(16MHz) *2*4 High-speed Built-in RC oscillating Power consumption 5 IDD5 CPU High-speed(24MHz) *2*4 High-speed PLL oscillating Ta=25°C – 0.70 2.5 Ta=-40 to 85°C – – 28 Ta=25°C – 0.80 2.5 Ta=-40 to 85°C – – 20 Ta=25°C – 1.30. 3.0 Ta=-40 to 85°C – – 28 Ta=25°C – 2.2 5.0 Ta=-40 to 85°C – – 32 Ta=25°C – 9.0 14 Ta=-40 to 85°C – – 45 Ta=25°C – 3.8 5.0 Ta=-40 to 85°C – – 5.5 Ta=25°C – 6.0 7.0 Ta=-40 to 85°C – – 7.5 µA µA µA 1 µA µA mA mA 1 * :typ.rating is VDD=3.0V 2 * :at CPU activity rate =100%(No HALT state) 3 * : using 32.768KHz crystal oscillator VT-200-FL (from SII)(CGL/CDL=12pF) using 32.768KHz crystal oscillator DT-26(from Daishinku)(CGL/CDL=12pF) 4 * : CLKCON valid bits are “0”, RSTCON valid bits are “1” 17/37 FEDL630Q464-01 ML630Q464/Q466 ● DC Characteristics (VLS) Parameter Symbol (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. *1 1.200 *1 1.225 *1 1.250 *1 1.275 *1 1.300 *1 1.325 VLSLV[5:0] = 00H VLSLV[5:0] = 01H VLSLV[5:0] = 02H VLSLV[5:0] = 03H VLSLV[5:0] = 04H VLSLV[5:0] = 05H *1 1.350 *1 1.375 *1 1.400 *1 1.425 *1 1.450 *1 1.475 *1 1.500 *1 1.525 *1 1.550 VLSLV[5:0] = 06H VLSLV[5:0] = 07H VLSLV[5:0] = 08H VLSLV[5:0] = 09H VLSLV[5:0] = 0AH VLSLV[5:0] = 0BH VLSLV[5:0] = 0CH VLSLV[5:0] = 0DH VLSLV[5:0] = 0EH *1 1.575 *1 1.600 *1 1.625 *1 1.650 *1 1.675 *1 1.700 VLSLV[5:0] = 0FH VLSLV[5:0] = 10H VLSLV[5:0] = 11H VLSLV[5:0] = 12H VLSLV[5:0] = 13H VLSLV[5:0] = 14H VLS judge voltage (VDD=fall) *1 VLSLV[5:0] = 15H VVLS *1 VLSLV[5:0] = 16H *1 VLSLV[5:0] = 17H Typ. -3% 1.725 1.750 1.775 VLSLV[5:0] = 18H 1.800 VLSLV[5:0] = 19H 1.825 VLSLV[5:0] = 1AH 1.850 VLSLV[5:0] = 1BH 1.875 VLSLV[5:0] = 1CH 1.900 VLSLV[5:0] = 1DH 1.925 VLSLV[5:0] = 1EH 1.950 VLSLV[5:0] = 1FH 1.975 VLSLV[5:0] = 20H 2.000 VLSLV[5:0] = 21H 2.050 VLSLV[5:0] = 22H 2.100 VLSLV[5:0] = 23H 2.150 VLSLV[5:0] = 24H 2.200 VLSLV[5:0] = 25H 2.250 VLSLV[5:0] = 26H 2.300 VLSLV[5:0] = 27H 2.350 VLSLV[5:0] = 28H 2.400 VLSLV[5:0] = 29H 2.450 VLSLV[5:0] = 2AH 2.500 VLSLV[5:0] = 2BH 2.550 VLSLV[5:0] = 2CH 2.600 Typ. +3% V 1 18/37 FEDL630Q464-01 ML630Q464/Q466 VLSLV[5:0] = 2DH 2.650 VLSLV[5:0] = 2EH 2.700 VLSLV[5:0] = 2FH 2.750 VLSLV[5:0] =30H 2.800 VLSLV[5:0] = 31H 2.850 VLSLV[5:0] = 32H 2.900 VLSLV[5:0] = 33H 2.950 VLSLV[5:0] = 34H 3.000 VLSLV[5:0] = 35H VLSLV[5:0] = 36H VLSLV[5:0] = 37H Typ. -3% Parameter Symbol LLD judge Voltage VLLR 3.100 3.150 VLSLV[5:0] = 38H 3.200 VLSLV[5:0] = 39H 3.250 VLSLV[5:0] = 3AH 3.300 VLSLV[5:0] = 3BH 3.350 VLSLV[5:0] = 3CH 3.400 VLSLV[5:0] = 3DH 3.450 VLSLV[5:0] = 3EH 3.500 VLSLV[5:0] = 3FH VVLS Hysteresis VVLS – width HVLS X 1.0% (VDD=rise) VLSLV[3:0] are bits of the VLSCON register to change detection voltage level. *1 : Setable only at the time of select to VVLSP pin. ● DC characteristics (LLD) 3.050 Typ. +3% V 1 3.550 VVLS X 2.7% VVLS X 4.5% V (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Max. Min. Typ. – 1.60 1.80 2.00 V 1 ● DC/AC characteristics (Analog comparator) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. Parameter Symbol Common Input voltage range VCMPIN – 0.2 – VDD -0.2 V Input offset voltage VCMPOF – -30 – 30 mV Comparator judge time TCMP CMPP- CMPM =40mV – – 2 µs 1 19/37 FEDL630Q464-01 ML630Q464/Q466 ● DC characteristics (LCD Driver) Parameter VL1 voltage VL1 temperature 1 deviation* VL1 voltage 1 dependency* Symbol VL1 (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. LCN[4:0] = 00H*2 0.89 0.94 0.99 LCN[4:0] = 01H*2 0.91 0.96 1.01 LCN[4:0] = 02H*2 0.93 0.98 1.03 LCN[4:0] = 03H*2 0.95 1.00 1.05 LCN[4:0] = 04H*2 0.97 1.02 1.07 LCN[4:0] = 05H*2 0.99 1.04 1.09 LCN[4:0] = 06H*2 1.01 1.06 1.11 LCN[4:0] = 07H*2 1.03 1.08 1.13 LCN[4:0] = 08H*2 1.05 1.10 1.15 LCN[4:0] = 09H*2 1.07 1.12 1.17 LCN[4:0] = 0AH*2 1.09 1.14 1.19 LCN[4:0] = 0BH*2 1.11 1.16 1.21 LCN[4:0] = 0CH*2 1.13 1.18 1.23 LCN[4:0] = 0DH*2 1.15 1.20 1.25 LCN[4:0] = 0EH*2 1.17 1.22 1.27 LCN[4:0] = 0FH* 2 1.19 1.24 1.29 VDD = 3.0V, V Tj = 25°C LCN[4:0] = 10H 1.21 1.26 1.31 LCN[4:0] = 11H 1.23 1.28 1.33 LCN[4:0] = 12H 1.25 1.30 1.35 LCN[4:0] = 13H 1.27 1.32 1.37 LCN[4:0] = 14H 1.29 1.34 1.39 1 LCN[4:0] = 15H 1.31 1.36 1.41 LCN[4:0] = 16H 1.33 1.38 1.43 LCN[4:0] = 17H 1.35 1.40 1.45 LCN[4:0] = 18H 1.37 1.42 1.47 LCN[4:0] = 19H 1.39 1.44 1.49 LCN[4:0] = 1AH 1.41 1.46 1.51 LCN[4:0] = 1BH 1.43 1.48 1.53 LCN[4:0] = 1CH 1.45 1.50 1.55 LCN[4:0] = 1DH 1.47 1.52 1.57 LCN[4:0] = 1EH 1.49 1.54 1.59 LCN[4:0] = 1FH 1.51 1.56 1.61 ∆VL1 VDD = 3.0V – −0.06 – %/°C ∆VL1 VDD = 1.8 to 3.6V – 5 20 mV/V VDD = 3.0V, Tj = 25°C 1MΩ load (VL3−VSS) Typ. −10% Typ. −10% Typ. +4% Typ. +4% V VL2 voltage VL2 VL3 voltage VL3 VL1×2 VL1×3 LCD bias voltage TBIAS – – – 600 ms generation time 1 * :VL1 can not exceed VDD level. The maximum VL1 becomes VDD level when the VL1 calculated by the temperature deviation and voltage dependency is going to exceed the VDD level. 2 * : 1/3 bias only. 20/37 FEDL630Q464-01 ML630Q464/Q466 ● DC characteristics (VOHL, IOHL) Parameter Output voltage 1 ( P00-P05, P20-P23, P30-P37, P40-P47, P50-P57,, P60-P63, SWD,PUCTL) Symbol (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. VOH1 IOH=-1.0mA VDD -0.5 – – VOL1 IOL=+0.5mA – – 0.4 2.7V ≤VDD ≤3.6V IOL=+5.0mA – – 0.6 IOL=+2.0mA – – 0.4 – – 0.4 Output voltage 2 ( P34, P35, P40, P41 ) (LED mode is selected) VOL2 Output voltage 3 (P30, P31, P34, P35, P40, P41, P44, P45, P50, P51, P54, P55 ) 2 (I C mode is selected) VOL3 IOL3= +3mA (I Cspec) (VDD ≥2V) Output voltage 4 ( P30, P31, P34, P35, P40, P41, P44, P45, P50, P51, P54, P55 ) 2 (I C mode is selected) VOL4 IOL4= +2mA(I Cspec) (VDD < 2V) – – VDD ×0.2 VOH5 1/3bias, IOH5=-0.02mA, VL1=1.2V VL3 -0.2 – – VOM5 1/3bias, IOM5=+0.02mA, VL1=1.2V – – VL2 +0.2 VOM5S 1/3bias, IOM5S=-0.02mA, VL1=1.2V VL2 -0.2 – – VOML5 1/3bias, IOML5=+0.02mA, VL1=1.2V – – VL1 +0.2 VOML5S 1/3bias, IOML5S=-0.02mA, VL1=1.2V VL1 -0.2 – – VOL5 1/3bias, IOL5=+0.02mA, VL1=1.2V – – 0.2 VOH5 1/2bias, IOH5=-0.01mA, VL1=1.4V VL3 -0.3 ― ― VOM5 1/2bias, IOM5=+0.01mA, VL1=1.4V ― ― VL2 +0.3 VOM5S 1/2bias, IOM5S=-0.01mA, VL1=1.4V VL2 -0.3 ― ― VOML5 1/2bias, IOML5=+0.01mA, VL1=1.4V ― ― VL1 +0.3 VOML5S 1/2bias, IOML5S=-0.01mA, VL1=1.4V VL1 -0.3 ― ― VOL5 1/2bias, IOL5=+0.01mA, VL1=1.4V ― ― 0.3 Output voltage 5 (COM0~7) (SEG00~49) (LCD mode is selected) Output voltage 5 (COM0~7) (SEG00~49) (LCD mode is selected) 2 2 V 2 21/37 FEDL630Q464-01 ML630Q464/Q466 Output leak 1 ( P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63, SWD,PUCTL ) IOOH1 VOH=VDD (at high impedance) – – +1 µA IOOL1 VOL=VSS (at high impedance) -1 – 3 – 22/37 FEDL630Q464-01 ML630Q464/Q466 ● DC characteristics (IIHL) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. Parameter Symbol Input current 1 (RESET_N) IIH1 VIH1=VDD – – 1 IIL1 VIL1=VSS -900 -300 -20 Input current 3 IIH3 VIH3=VDD (at pull down) 1 15 200 IIL3 VIL3=VSS (at pull up) -200 -15 -1 IIH3Z VIH3=VDD (at high impedance) – – 1 IIL3Z VIL3=VSS (at high impedance) -1 – – IIH4Z VIH4=5.0V (at high impedance) – – 1 (P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63, SWC, SWD, BRMP) µA 4 Input current 4 (P36, P37, P40-P47, P50-P57, P60-P63) 1 * :typ.rating is VDD=3.0V, Ta=25°C ● DC characteristics (VIHL) Parameter Symbol Input voltage 1 VIH1 (RESET_N, SWD, SWC, BRMP, P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63 ) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Measuring Condition Unit circuit Min. Typ. Max. – 0.7 ×VDD – VDD VIL1 – 0 – 0.3 ×VDD CIN f=10kHz Vrms=50mV Ta=25°C – – 10 V 5 pF – Input terminal capacitance (RESET_N, SWD, SWC, BRMP, P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63 ) 23/37 FEDL630Q464-01 ML630Q464/Q466 ● DC characteristics (USB) (VDD=3.0 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Parameter Symbol Condition Differential input sensitivity VDI Differential common mode range Single end input threshold voltage *1 Unit Min. Typ. Max. Absolute value of the difference between the DP and DM pins 0.2 - - V VCM Includes VDI range 0.8 - 2.5 V VSE - 0.8 - 2.0 V High level output voltage VOH 15k W RL is connected to GND 2.8 - - V Low level output voltage VOL 1.5k W RL to 3.6 V - - 0.3 V Hi-Z state input/output leakage current ILO 0 V < VIN < 3.3 V -10 10 uA ZDRV Steady state 28 44 Ω Driver output resistance Measu ring circuit 24/37 FEDL630Q464-01 ML630Q464/Q466 ● MEASURING CIRCUITS MEASURING CIRCUIT1 CGL XT0 32.768kHz crystal XT1 C2 CDL C1 VDD VDDL V C12 VSS VL1 VL2 VL3 A CV CL Ca Cb Cc CV : 1µF CL : 2.2µF Ca,Cb,Cc : 1µF C12 : 1µF CGL : 12pF CDL :12pF 32.768kHz crystal oscilation: (DT-26 from Daishinku) MEASURING CIRCUIT 2 (*2) VIL Input pins (*1) Output pins VIH VDD VDDL VL1 VL2 VL3 V VSS (*1) Input logic circuit to determine the specified measuring conditions. (*2) Measured at the specified output pins. 25/37 FEDL630Q464-01 ML630Q464/Q466 MEASURING CIRCUIT 3 (*2) Input pins Output pins VIH (*1) VIL VDD VDDL VL1 VL2 VL3 A VSS *1: Input logic circuit to determine the specified measuring conditions. *2: Measured at the specified output pins. MEASURING CIRCUIT 4 Input pins Output pins (*3) A VDD VDDL VL1 VL2 VL3 VSS *3: Measured at the specified output pins. MEASURING CIRCUIT 5 VIL Output pins Input pins (*1) VDD VDDL VL1 VL2 VL3 VSS Waveform monitoring VIH *1: Input logic circuit to determine the specified measuring conditions. 26/37 FEDL630Q464-01 ML630Q464/Q466 ● AC characteristics (USB) Parameter Rise time (*1) Fall time (*1) Output signal voltage crossover (VDD=3.0 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Rating Symbol Condition Unit Min. Typ. Max. TR TF CL = 50 pF CL = 50 pF 4 4 – – 20 20 ns ns VCRS CL = 50 pF 0.8 – 2.5 V Applied pin DP, DM Average bit rate 11.97 – 12.03 Mbps (12Mbps ±0.25%) * 1: TR and TF: Rise time and fall time between 10% and 90% of the pulse amplitude, respectively Data rate TDRATE 27/37 FEDL630Q464-01 ML630Q464/Q466 ● AC charctoristics (synchronous serial port) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Parameter Symbol SCK input cycle (slave mode) tSCYC SCK output cycle (master mode) tSCYC Rating Conditon Unit Min. Typ. Max. High-speed oscillation is not active 10 – – µs High-speed oscillation is active 500 – – ns – – SCK* – s High-speed oscillation is not active 4 – – µs High-speed oscillation is active 200 – – ns 1 SCK input pulse width (slave mode) tSW SCK output pulse width (master mode) tSW – tSCYC ×0.4 tSCYC ×0.5 tSCYC ×0.6 s SOUT output delay time (slave mode) tSD – – – 180 ns SOUT output delay time (master mode) tSD – – – 80 ns SIN input Setup time (slave mode) tSS – 50 – – ns SIN input Setup time (master mode) tSS – 130 – – ns SINinput Hold time tSH – 50 – – ns 1 * : The clock period which is selected by the below registers(min:250ns@ regularly, min:500ns@P02,P22 is used) In case of SSIO : S0CK2-0 of serial port 0 mode register(SIO0MOD). In case of SSIOF : SF0BR9-0 of SIOF0 port register(SF0BRR) tSCYC tSW tSW SCK0/SCKF0 ("0" during transmission/reception) SCK0/SCKF0 ("1" during transmission/reception) tSD tSD SOUT0/SOUTF0 tSS tSH SIN0/SINF0 28/37 FEDL630Q464-01 ML630Q464/Q466 ● AC characteristics(I2C Bus interface : Standard mode 100kHz) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) Parameter Symbol Condition SCL clock frequency SCL hold time (Start/restart condition) SCL”L” level time fSCL tHD:STA SCL”H” level time SCL setup time (restart condition) SDA setup time SDA setup time (stop condition) Bus-free time Rating Unit Min. Typ. Max. – 0 – 100 kHz – 4.0 – – µs tLOW – 4.7 – – µs tHIGH – 4.0 – – µs tSU:STA – 4.7 – – µs tSU:DAT – 0.25 – – µs tSU:STO – 4.0 – – µs tBUF – 4.7 – – µs ● AC characteristics(I2C bus interface : fast mode 400kHz) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40 to +85°C, unless otherwise specified) *1: Parameter Symbol Condition SCL clock frequency fSCL SCLhold time (start/restart condition) Rateing Unit Min. Typ. Max. – 0 – 400 kHz tHD:STA – 0.6 – – µs SCL”L” level time tLOW – 1.3 – – µs SCL”H” level time tHIGH – 0.6 – – µs SCL setup time (restart condition) tSU:STA – 0.6 – – µs SDA setup time tSU:DAT – 0.1 – – µs SDA setup time (stop condition) tSU:STO – 0.6 – – µs Bus-free time tBUF – 1.3 – – µs Only at the time of SYSCLK=16MHz or 24MHz Start condition Restart condition Stop condition SDA SCL tHD:STA tLOW tHIGH tSU:STA tHD:STA tSU:DAT tSU:STO tBUF 29/37 FEDL630Q464-01 ML630Q464/Q466 ● AC characteristics (RC-ADC) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40~+85°C, unless otherwise specified) Rating Symbol Condition unit Min. Typ. Max. RS0,RS1,RT0, – 1 – 400 kΩ RT0-1,RT1 Parameter Resister for oscillation Oscillation freqency VDD = 3.0V CVR=820pF CS=560pF fOSC1_0 Resister for oscillation =1kΩ – 528 – kHz fOSC2_0 Resister for oscillation =10kΩ – 59 – kHz fOSC3_0 Resister for oscillation =100kΩ – 5.9 – kHz Kf1_0 RT0, RT0-1, RT1=1kΩ 8.225 8.94 9.655 – Kf2_0 RT0, RT0-1, RT1=10kΩ 0.99 1 1.01 – Kf3_0 RT0, RT0-1, RT1=100kΩ 0.093 0.101 0.109 – RS to RT oscillation 1 frequency ratio * VDD = 3.0V CVR=820pF CS=560pF 1 * :Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same conditions. Kfx = fOSCX (RT0-CS0 oscillation) fOSCX (RS0-CS0 oscillation) ( x = 1, 2, 3 ) fOSCX (RT0-1-CS0 oscillation) fOSCX (RS0-CS0 oscillation) , fOSCX (RT1-CS1 oscillation) fOSCX (RS1-CS1 oscillation) , Measuring circuit IN0 CS0 RCT0 (*1) Input pins VIH VIL RT1 RS1 CS1 RT0 RS0 RT0 VDDL RT0, RT0-1, RT1: 1kΩ/10kΩ/100kΩ RS0, RS1: 10kΩ CS0, CT0, CS1: 560pF CVR0, CVR1: 820pF IN1 CS1 RS1 RT1 RCM VDD CV RS0 CVR1 RT0-1 CT0 CS0 CVR0 Measure frequency (fOSCX) VSS CL1 CL0 (*1) Input logic circuit to determine the specified measuring conditions. 【Note】 ・Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise around the node. ・When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please shield the signal by VSS(GND). ・Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved components may affect to the A/D conversion operation by noise the components itself may have. 30/37 FEDL630Q464-01 ML630Q464/Q466 ● AC characteristics (Low speed clock output) (VDD=1.8 to 3.6V, VSS=0V, Ta=-40~+85°C, unless otherwise specified) Parameter Symbol Condition Clock output frequency tclk – Rating Min. Typ. Max. – 32.768 – Unit kHz 31/37 FEDL630Q464-01 ML630Q464/Q466 ● Electrical Characteristics of SA-ADC (VDD=1.8 to 3.6V, VSS=0V, Ta=-40~+85°C, unless otherwise specified) Parameter Symbol Condition Resolution n – Integral non-linearity error Rating 2.7V ≤ VREF ≤ 3.6V 2.2V ≤ VREF < 2.7V 1.8V ≤ VREF < 2.2V (using Low-speed clock) 2.7V ≤ VREF ≤ 3.6V 2.2V ≤ VREF < 2.7V 1.8V ≤ VREF < 2.2V (using Low-speed clock) INL Min. Typ. Max. – −4 −6 12 – – – +4 +6 −10 – +10 −3 −5 – – +3 +5 −9 – +9 Unit bit Differential non-linearity error DNL 2.2V ≤ VREF ≤ 3.6V −6 – +6 Zero-scale error VOFF 1.8V ≤ VREF < 2.2V (using Low-speed clock) −10 – +10 2.2V ≤ VREF ≤ 3.6V −6 – +6 Full-scale error FSE −10 – +10 Input impidance RI 1.8V ≤ VREF < 2.2V (using Low-speed clock) – – – 5k Ω Reference voltage VREF – 1.8 – VDD V Using High-speed clock(max. 4MHz) – 170 – Using Low-speed clock – 16 – Conversion time tCONV LSB clk Measuring circuit VDD Reference Voltage VREF 1μF A 10μF - RI ≤ 5kΩ AIN + 0.47μF VSS 32/37 FEDL630Q464-01 ML630Q464/Q466 ● Power-on and shutdown Procedures In case of power-on or shutdown of VDD, the procedures and constraints are shown as following. 0.9*VDD VDD 0.1*VDD 30mV or less (VSS = 0) TPOR VDDL 100mV or less (VSS = 0) Power down/on and power on reset sequence Note: If VDDL level is 100mV or more over, reset the IC by RESET_N pin after power-on. 33/37 FEDL630Q464-01 ML630Q464/Q466 APPLICATION CIRCUIT EXAMPLE 3.3V P00/IN0 VDD CS0 P01/CS0 CV RESET_N CL RT0 P04/RT0 P02/RCT0 P05/RCM VDDL CL0 P20/IN1 CS1 P21/CS1 CH1 CH12 ML630Q464/ CH2 CGL CDL RT1 P23/RT1 P30/SDAF0 P31/SCLF0 Vss P32 XT0 (Output) XL 32.768KHz Xtal CVR1 RS1 P22/RS1 Q466 VHF CVH CVR0 RS0 P03/RS0 RESET_N WP SDA SCL Vcc 2 I C EEPROM XT1 A0 A1 A2 Vss SWC SWD VREF C1 C2 VL1 VL2 VL3 P34 /LED P35 /LED CAV Ca Cb Cc C12 LED CV CL CGL,CDL Ca~Cc CH12 CAV CS0, CS1 RT0, RT1 XL : 1uF* : 2.2uF : 12 to 16pF* : 1uF* : 1uF* : 1uF* : 560 pF : Thermistor (103AT/Semitec) : DT-26, Daishinku CL0 : open* C12 CVH RS0, RS1 CVR0, CVR1 : 1uF* : 1uF* : 10 KΩ : 820 pF *: Make a decision the parameters after evaluating on user’s conditions when designing circuits for mass production. 34/37 FEDL630Q464-01 ML630Q464/Q466 PACKAGE DIMENSIONS ML630Q464/Q466 PACKAGE DIMENSIONS Figure B-1 TQFP100 Notes for Mounting the Surface Mount Type Package The surface mount type packages are very susceptible to heat in reflow and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions(reflow method, temperature and times). 35/37 FEDL630Q464-01 ML630Q464/Q466 REVISION HISTORY Document No. Date FEDL630Q464-01 Oct. 26. 2016 Page Previous Current Edition Edition - - Description Final Edition 36/37 FEDL630Q464-01 ML630Q464/Q466 Notes 1) The information contained herein is subject to change without notice. 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor. 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products.The peripheral conditions must be taken into account when designing circuits for mass production. 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information. 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document. 6) The Products specified in this document are not designed to be radiation tolerant. 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems. 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters. 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein. 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information. 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations. 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act. 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor. Copyright 2016 LAPIS Semiconductor Co., Ltd. 2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/ 37/37