AVAGO HCPL-4562-300E High bandwidth, analog/video optocoupler Datasheet

HCPL-4562, HCNW4562
High Bandwidth, Analog/Video Optocouplers
Data Sheet
Description
Features
The HCPL-4562 and HCNW4562 optocouplers provide
wide band­width isolation for analog signals. They are ideal
for video isolation when combined with their application
circuit (Figure 4). High linearity and low phase shift are
achieved through an AlGaAs LED combined with a high
speed detector. These single channel optocouplers are
avail­able in 8‑Pin DIP and Widebody package
configurations.
• Wide bandwidth[1]:
17 MHz (HCPL-4562)
9 MHz (HCNW4562)
• High voltage gain[1]:
2.0 (HCPL-4562)
3.0 (HCNW4562)
• Low GV temperature coefficient: -0.3%/°C
• Highly linear at low drive currents
• High-speed AlGaAs emitter
• Safety approval:
UL Recognized – 3750 Vrms for 1 minute (5000 V rms for 1 minute for
HCPL-4562#020 and HCNW4562) per UL 1577
CSA Approved
IEC/EN/DIN EN 60747-5-2 Approved
– VIORM = 1414 Vpeak for HCNW4562
• Available in 8-pin DIP and widebody packages
Functional Diagram
NC 1
8 VCC
ANODE 2
7 VB
CATHODE 3
6 VO
NC 4
5 GND
Applications
HCPL-4562 Functional Diagram
• Video isolation for the follow­ing standards/formats:
NTSC, PAL, SECAM, S-VHS, ANALOG RGB
• Low drive current feedback element in switching
power supplies, e.g., for ISDN networks
• A/D converter signal isolation
• Analog signal ground isolation
• High voltage insulation
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
Selection Guide
Single Channel Packages
8-Pin DIP
(300 Mil)
HCPL-4562
Widebody
(400 Mil)
HCNW4562
Ordering Information
HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is UL
Recognized with 5000 Vrms for 1 minute per UL1577.
Option
Part
RoHS
non RoHS
Number
Compliant Compliant Package
-000E
-300E
-500E
HCPL-4562 -020E
-320E
-520E
-060E
-000E
HCNW4562 -300E
-500E
Surface
Mount
Gull
Wing
Tape
& Reel
UL 5000 Vrms/
1 Minute rating
IEC/EN/DIN
EN 60747-5-2
no option 300 mil DIP-8
#300
X
X
#500
X
X
X
#020
X
#320
X
X
X
#520
X
X
X
X
#060
X[1]
no option 400 mil
X
X[2]
#300
Widebody
X
X
X
X[2]
#500
DIP-8
X
X
X
X
X[2]
Quantity
50 per tube
50 per tube
1000 per reel
50 per tube
50 per tube
1000 per reel
50 per tube
42 per tube
42 per tube
750 per reel
Notes:
1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval.
2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval.
To order, choose a part number from the part number
column and combine with the desired option from the
option column to form an order entry.
Example 1:
HCPL-4562-520E to order product of Gull Wing Surface
Mount package in Tape and Reel packaging with UL 5000
Vrms/1 minute rating and RoHS compliant.
Schematic
ANODE
2
ICC
8
IO
6
IF
+
VF
CATHODE
–
5
IB
7
VB
Option datasheets are available. Contact your Avago sales
representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products,
while (new) products launched since July 15, 2001 and
RoHS compliant will use ‘–XXXE.’
VO
3
Example 2:
HCNW4562 to order product of 8-Pin Widebody DIP
package in Tube packaging with IEC/EN/DIN EN 60747-52 VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1
minute rating and non RoHS compliant.
VCC
HCPL-4562 Schematic
GND
Package Outline Drawings
8-Pin DIP Package (HCPL-4562)
7.62 ± 0.25
(0.300 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
8
TYPE NUMBER
7
6
5
6.35 ± 0.25
(0.250 ± 0.010)
OPTION CODE*
DATE CODE
A XXXXZ
YYWW RU
1
2
3
4
UL
RECOGNITION
1.78 (0.070) MAX.
1.19 (0.047) MAX.
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
5° TYP.
3.56 ± 0.13
(0.140 ± 0.005)
4.70 (0.185) MAX.
0.51 (0.020) MIN.
2.92 (0.115) MIN.
1.080 ± 0.320
(0.043 ± 0.013)
DIMENSIONS IN MILLIMETERS AND (INCHES).
0.65 (0.025) MAX.
* MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
OPTION NUMBERS 300 AND 500 NOT MARKED.
2.54 ± 0.25
(0.100 ± 0.010)
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562)
LAND PATTERN RECOMMENDATION
9.65 ± 0.25
(0.380 ± 0.010)
8
7
6
1.016 (0.040)
5
6.350 ± 0.25
(0.250 ± 0.010)
1
2
3
10.9 (0.430)
4
1.27 (0.050)
1.19
(0.047)
MAX.
1.780
(0.070)
MAX.
9.65 ± 0.25
(0.380 ± 0.010)
7.62 ± 0.25
(0.300 ± 0.010)
3.56 ± 0.13
(0.140 ± 0.005)
1.080 ± 0.320
(0.043 ± 0.013)
0.635 ± 0.25
(0.025 ± 0.010)
0.635 ± 0.130
2.54
(0.025 ± 0.005)
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
2.0 (0.080)
+ 0.076
0.254 - 0.051
+ 0.003)
(0.010 - 0.002)
12° NOM.
8-Pin Widebody DIP Package (HCNW4562)
11.00 MAX.
(0.433)
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
9.00 ± 0.15
(0.354 ± 0.006)
5
TYPE NUMBER
A
HCNWXXXX
DATE CODE
YYWW
1
2
3
4
10.16 (0.400)
TYP.
1.55
(0.061)
MAX.
7° TYP.
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
5.10 MAX.
(0.201)
3.10 (0.122)
3.90 (0.154)
0.51 (0.021) MIN.
2.54 (0.100)
TYP.
1.78 ± 0.15
(0.070 ± 0.006)
0.40 (0.016)
0.56 (0.022)
DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562)
11.15 ± 0.15
(0.442 ± 0.006)
8
7
6
LAND PATTERN RECOMMENDATION
5
9.00 ± 0.15
(0.354 ± 0.006)
1
2
3
13.56
(0.534)
4
1.3
(0.051)
2.29
(0.09)
12.30 ± 0.30
(0.484 ± 0.012)
1.55
(0.061)
MAX.
11.00 MAX.
(0.433)
4.00 MAX.
(0.158)
1.78 ± 0.15
(0.070 ± 0.006)
2.54
(0.100)
BSC
0.75 ± 0.25
(0.030 ± 0.010)
1.00 ± 0.15
(0.039 ± 0.006)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
+ 0.076
0.254 - 0.0051
+ 0.003)
(0.010 - 0.002)
7° NOM.
Solder Reflow Temperature Profile
300
TEMPERATURE (°C)
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.
200
PEAK
TEMP.
245°C
PEAK
TEMP.
240°C
2.5°C ± 0.5°C/SEC.
30
SEC.
160°C
150°C
140°C
PEAK
TEMP.
230°C
SOLDERING
TIME
200°C
30
SEC.
3°C + 1°C/–0.5°C
100
PREHEATING TIME
150°C, 90 + 30 SEC.
50 SEC.
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
0
0
50
100
150
200
250
TIME (SECONDS)
Note: Non-halide flux should be used.
Recommended Pb-Free IR Profile
tp
Tp
TEMPERATURE
TL
Tsmax
*260 +0/-5 °C
TIME WITHIN 5 °C of ACTUAL
PEAK TEMPERATURE
20-40 SEC.
217 °C
RAMP-UP
3 °C/SEC. MAX.
150 - 200 °C
RAMP-DOWN
6 °C/SEC. MAX.
Tsmin
ts
PREHEAT
60 to 180 SEC.
25
tL
60 to 150 SEC.
t 25 °C to PEAK
TIME
NOTES:
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.
Tsmax = 200 °C, Tsmin = 150 °C
Note: Non-halide flux should be used.
* Recommended peak temperature for widebody
400 mils package is 245°C
Regulatory Information
The devices contained in this data sheet have been approved by the following organizations:
UL
IEC/EN/DIN EN 60747-5-2
Recognized under UL 1577, Component Recognition
Program, File E55361.
Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01
(HCNW4562 only)
CSA
Approved under CSA Component Acceptance Notice #5,
File CA 88324.
Insulation and Safety Related Specifications
Parameter
Symbol
8-Pin DIP
(300 Mil)
Value
Widebody
(400 Mil)
Value
Units
Minimum External
L(101)
7.1
9.6
mm
Air Gap (External
Clearance)
Minimum External
L(102)
7.4
10.0
mm
Tracking (External
Creepage)
Minimum Internal
0.08
1.0
mm
Plastic Gap
(Internal Clearance)
Minimum Internal
NA
4.0
mm
Tracking (Internal
Creepage)
Tracking Resistance
CTI
200
200
Volts
(Comparative
Tracking Index)
Isolation Group
IIIa
IIIa
Conditions
Measured from input terminals to
output terminals, shortest distance
through air.
Measured from input terminals to
output terminals, shortest distance
path along body.
Through insulation distance,
conductor to conductor, usually the
direct distance between the photoemitter and photodetector inside the
optocoupler cavity.
Measured from input terminals to
output terminals, along internal cavity.
DIN IEC 112/VDE 0303 Part 1
Material Group
(DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY)
Description
Symbol
Installation classification per DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤ 600 V rms
for rated mains voltage ≤ 1000 V rms
Climatic Classification
Pollution Degree (DIN VDE 0110/1.89)
Maximum Working Insulation Voltage
VIORM
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,
VPR
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and sample test,
VPR
tm = 60 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec)
VIOTM
Safety Limiting Values
(Maximum values allowed in the event of a failure,
also see Figure 17, Thermal Derating curve.)
Case Temperature
TS
Input Current
IS,INPUT
Output Power
PS,OUTPUT
Insulation Resistance at TS, VIO = 500 V
RS
Characteristic
Units
I-IV
I-III
55/85/21
2
1414
Vpeak
2652
Vpeak
2121
Vpeak
8000
Vpeak
150
400
700
≥ 109
°C
mA
mW
Ω
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN
60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in
application.
Absolute Maximum Ratings
Parameter
Symbol
Storage Temperature
Operating Temperature
Average Forward Input Current
Min.
Max.
Units
TS
-55
125
°C
TA
-40
IF(avg)
Peak Forward Input Current
°C
mA
25
18.6
HCNW4562
40
IF(EFF)
HCPL-4562
12.9
mA rms
VR
HCPL-4562
1.8
V
Input Power Dissipation
85
12
HCPL-4562
Reverse LED Input Voltage (Pin 3-2)
HCPL-4562
HCNW4562
IF(PEAK)
Effective Input Current
Device
PIN
HCNW4562
3
HCNW4562
40
mA
mW
Average Output Current (Pin 6)
IO(AVG)
8
mA
Peak Output Current (Pin 6)
IO(PEAK)
16
mA
Emitter-Base Reverse Voltage (Pin 5-7)
VEBR
5
V
Supply Voltage (Pin 8-5)
VCC
-0.3
30
V
Output Voltage (Pin 6-5)
VO
-0.3
20
V
Base Current (Pin 7)
IB
5
mA
Output Power Dissipation
PO
100
mW
Lead Solder Temperature
TLS
1.6
mm
Below
Seating
Plane,
10
Seconds
up
to
Seating Plane, 10 Seconds
Reflow Temperature Profile
TRP
Note
2
HCPL-4562
260
°C
HCNW4562
260
°C
Option See Package Outline
300 Drawings Section
Recommended Operating Conditions
Parameter
Symbol
Device
Min.
Max.
Units
Operating Temperature
TA
HCPL-4562
-10
70
°C
Quiescent Input Current
IFQ
HCPL-4562
6
mA
HCNW4562
10
Peak Input Current
IF(PEAK)
HCPL-4562
10
HCNW4562
17
mA
Note
Electrical Specifications (DC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified.
Parameter
Base Photo
Symbol
IPB
Current
IPB
Temperature
Device
Min.
13
HCPL-4562
∆IPB/
Typ.*
Max.
31
65
Units Test Conditions
µA
IF = 10 mA VPB ≥ 5 V
19.2
IF = 6 mA
-0.3
2 mA < IF < 10 mA,
%/°C
∆T
Fig.
Note
2, 6
2
VPB ≥ 5 V
Coefficient
IPB
HCPL-4562
0.25
%
2 mA < IF < 10 mA
Nonlinearity
HCNW4562
0.15
6 mA < IF < 14 mA
Input Forward
VF
HCPL-4562
1.1
1.3
1.6
Voltage
HCNW4562
1.2
1.6
1.8
Input Reverse
HCPL-4562
1.8
BVR
Breakdown
HCNW4562
5
V
V
3
IF = 5 mA
2, 6
3
5
IF = 10 mA
IR = 10 µA
IR = 100 µA
Voltage
Transistor
hFE
160
IC = 1 mA,
VCE = 1.25 V
Current
VCE = 1.25 V,
CTR
HCPL-4562
45
%
Transfer Ratio
HCNW4562
DC Output
HCPL-4562
4.25
HCNW4562
5.0
VOUT
Voltage
60
Current Gain
52
V
8, 9
VPB ≥ 5 V
GV = 2, VCC = 9 V
4,
15
4
Small Signal Characteristics (AC)
TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified.
Parameter
V­oltage Gain
GV Temperature
Symbol
GV
(0.1 MHz)
Device
Min.
HCPL-4562
0.8
HCNW4562
∆GV/∆T
Typ.*
2.0
Max.
Units Test Conditions
4.2
VIN = 1 VP-P
Note
1
6
3.0
-0.3
%/°C VIN = 1 VP-P,
1, 11
Coefficient
fREF = 0.1 MHz
Base Photo
VIN = 1 VP-P,
Current
Fig.
∆iPB
HCPL-4562
1.1
3.0
-dB
(6 MHz)
HCNW4562
0.36
3, 10,
fREF = 0.1 MHz
12
Variation
-3 dB Frequency
(iPB)
-3 dB Frequency
(GV )
Gain Variation
iPB
(-3 dB)
GV
HCPL-4562
6
15
MHz
VIN = 1 VP-P,
3, 10,
HCNW4562
13
fREF = 0.1 MHz
HCPL-4562
17
VIN = 1 VP-P,
6
MHz
HCNW4562
∆GV
HCPL-4562
1.1
(6 MHz)
HCNW4562
0.54 f REF = 0.1 MHz
HCPL-4562
0.8
9
1, 11
(-3 dB)
3.0
-dB
VIN = 1 VP-P,
1.5
TA = 70°C
∆GV
HCPL-4562
1.15
VIN = 1 VP-P,
(10 MHz)
HCNW4562
2.27
fREF = 0.1 MHz
HCPL-4562
±1.0
IFac = 0.7 mA p-p,
%
Gain at
IFdc = 3 to 9 mA
f = 3.58 MHz
IFac = 1 mA p-p,
HCNW4562
±0.9
Differential
HCPL-4562
±1
deg.
IFac = 0.7 mA p-p,
IFdc = 3 to 9 mA
f = 3.58 MHz
IFac = 1 mA p-p,
HCNW4562
±0.6
Total Harmonic
THD
Distortion
Output Noise
HCPL-4562
2.5
HCNW4562
0.75
VO(noise)
950
%
3, 7
8
3, 7
9
4
10
IFdc = 7 to 13 mA
Phase at
1, 11
TA = -10°C
Differential
7
fREF = 0.1 MHz
TA = 25°C
-dB
7
12
IFdc = 7 to 13 mA
VIN = 1 VP-P,
f = 3.58 MHz, GV = 2
µV rms 10 Hz to 10 MHz
1
Voltage
Isolation Mode
IMRR
Rejection Ratio
HCPL-4562
122
HCNW4562
119
dB
f = 120 Hz, GV = 2
14
11
Package Characteristics
All Typicals at TA = 25°C
Parameter
Sym.
Device
Min.
Typ.
Max.
Units
Input-Output
VISO
HCPL-4562
3750
V rms
Momentary
HCNW4562
5000
Withstand
HCPL-4562
5000
Voltage*
(Option 020)
Input-Output
RI-O
HCPL-4562
1012
Ω
12
Resistance
HCNW4562
10
1013
1011
Input-Output
CI-O
HCPL-4562
0.6
pF
Capacitance
HCNW4562
0.5
0.6
Test Conditions
Fig.
Note
RH ≤50%,
t = 1 min.,
TA = 25°C
5, 12
5, 13
5, 13
VI-O = 500 Vdc
TA = 25°C
TA = 100°C
f = 1 MHz
5
5
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage
rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety
specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E.
Notes:
1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-4562), IFQ = 10 mA (HCNW4562).
2. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (HCPL-4562).
3. Maximum variation from the best fit line of IPB vs. IF expressed as a percentage of the peak-to-peak full scale output.
4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
6. Flat-band, small-signal voltage gain.
7. The frequency at which the gain is 3 dB below the flat-band gain.
8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range.
9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given
range.
10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD
of the isolated video circuit is measured using a 2.6 kΩ load in series with the 50 Ω input impedance of the spectrum analyzer.
11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler’s ability to reject signals or noise that may exist between input and
output terminals, is defined by 20 log10 [(VOUT/VIN)/(VOUT /VIM)], where VIM is the isolation mode voltage signal.
12. In accordance with UL 1577, each optocoupler is proof tested by apply­ing an insulation test voltage ≥4500 V rms for 1 second (leakage detection current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related
Charac­teristics Table, if applicable.
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detection current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related
Characteristics Table, if applicable.
10
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
Figure 1. Gain and bandwidth test circuit
162 Ω (HCPL-4562)
90.9 Ω (HCNW4562)
Figure 2. Base photo current test circuit
Figure 3. Base photo current frequency response test circuit
Figure 4. Recommended isolated video interface circuit
11
IF – INPUT FORWARD VOLTAGE – mA
HCNW4562
HCPL-4562
100
IF
+
VF
–
10
TA = 70 °C
1.0
TA = 25 °C
TA = -10 °C
0.1
0.01
1.0
1.1
1.2
1.3
1.4
1.5
VF – FORWARD VOLTAGE – V
Figure 5. Input current vs. forward voltage
HCPL-4562 fig 5a
IPB – BASE PHOTO CURRENT – µA
HCNW4562
HCPL-4562
80
70
60
50
40
TA = 25 °C
VPB > 5 V
30
20
10
0
0
2
4
6
8 10 12 14 16 18 20
IF – INPUT CURRENT – mA
Figure 6. Base photo current vs. input current
HCPL-4562 fig 6a
HCPL-4562
HCNW4562
SMALL-SIGNAL GAIN
1
1
PHASE
0
0.98
0.96
NORMALIZED
IF = 6 mA
f = 3.58 MHz
TA = 25 °C
SEE FIG. 3
0.94
0.92
0
2
4
6
GAIN
-1
-2
-3
8 10 12 14 16 18 20
IF – INPUT CURRENT – mA
Figure 7. Small-signal response vs. input current
12
HCPL-4562 fig 7a
SMALL-SIGNAL PHASE – DEGREES
2
1.02
NORMALIZED CURRENT TRANSFER RATIO
HCNW4562
HCPL-4562
1.04
1.02
1.00
0.98
NORMALIZED
TA = 25 °C
IF = 6.0 mA
VCE = 1.25 V
VPB > 5 V
0.96
0.94
0.92
0.90
0.88
0.86
-10
0
10
20
30
40
50
60
70
T – TEMPERATURE – °C
Figure 8. Current transfer ratio vs. temperature
CTR – NORMALIZED CURRENT TRANSFER RATIO
HCPL-4562 fig 8a
HCNW4562
HCPL-4562
1.10
1.00
VCE = 5.0 V
0.90
VCE = 1.25 V
0.80
NORMALIZED
TA = 25 °C
IF = 6 mA
VCE = 1.25 V
VPB > 5 V
0.70
0.60
0.50
0
2
4
6
VCE = 0.4 V
8 10 12 14 16 18 20
IF – INPUT CURRENT – mA
Figure 9. Current transfer ratio vs. input current
∆iPB – BASE PHOTO CURRENT VARIATION – dB
HCPL-4562 fig 9a
HCNW4562
HCPL-4562
-0.9
-1.1
FREQUENCY = 6 MHz
-1.3
-1.5
-1.7
FREQUENCY = 10 MHz
-1.9
-2.1
TA = 25 °C
FREF = 0.1 MHz
-2.3
-2.5
-2.7
1
2
3
4
5
6
7
8
9 10 11 12
IFQ – QUIESCENT INPUT CURRENT – mA
Figure 10. Base photo current variation vs. bias conditions
13
HCPL-4562 fig 10a
HCPL-4562
NORMALIZED VOLTAGE GAIN – dB
3
HCNW4562
2
TA = -10 °C
1
0
TA = 25 °C
-1
TA = 70 °C
-2
-3
NORMALIZED
TA = 25 °C
f = 0.1 MHz
-4
-5
-6
-7
0.01 0.1
1.0
10 100 1000 10,000 100,000
f – FREQUENCY – KHz
Figure 11. Normalized voltage gain vs. frequency
NORMALIZED BASE PHOTO CURRENT – dB
HCPL-4562 fig 11a
HCPL-4562
0.5
HCNW4562
0
-0.5
-1.0
NORMALIZED
TA = 25 °C
f = 0.1 MHz
-1.5
-2.0
-2.5
-3.0
-3.5
-4.0
-4.5
0.01 0.1
1.0
10 100 1000 10,000 100,000
f – FREQUENCY – KHz
Figure 12. Normalized base photo current vs. frequency
HCPL-4562 fig 12a
HCPL-4562
0
IPB PHASE
SEE FIGURE 3
∅ – PHASE – DEGREES
-25
-50
-75
TA = 25 °C
-100
-125
VIDEO INTERFACE
CIRCUIT PHASE
SEE FIGURE 4
-150
-175
-200
-225
-250
0
2
4
6
8 10 12 14 16 18 20
f – FREQUENCY – MHz
Figure 13. Phase vs. frequency
HCPL-4562 fig 13a
14
HCNW4562
IMRR – ISOLATION MODE REJECTION RATIO – dB
HCNW4562
HCPL-4562
150
TA = 25 °C
120
-20 dB/DECADE SLOPE
90
60
IMRR = 20 LOG10
30
0
0.01
0.1
1.0
Gv
vOUT/vIM
10
100 1000 10,000
f – FREQUENCY – KHz
Figure 14. Isolation mode rejection ratio vs. frequency
HCPL-4562 fig 14a
HCPL-4562
VO – DC OUTPUT VOLTAGE – V
6.0
HCNW4562
5.5
5.0
4.5
4.0
3.5
3.0
50 100 150 200 250 300 350 400 450
hFE – TRANSISTOR CURRENT GAIN
Figure 15. DC output voltage vs. transistor current gain
VCC
ICQ4 = 2 mA
R9
ADDITIONAL
BUFFER
STAGE
Q4
Q3
Q5
R11
R10
VOUT
R12
LOW
IMPEDANCE
LOAD
OUTPUT POWER – PS, INPUT CURRENT – IS
HCPL-4562 fig 15a
HCNW4562
1000
PS (mW)
900
IS (mA)
800
700
600
500
400
300
200
100
0
0
25
50
75
100 125 150 175
TS – CASE TEMPERATURE – °C
Figure 16. Output buffer stage for low impedance loads
15
HCPL-4562 fig 16
Figure 17. Thermal derating curve, dependence of
safety limiting value
with casefig
temperature
per IEC/
HCPL-4562
17b
EN/DIN EN 60747-5-2
Conversion from HCPL‑4562 to HCNW4562
In order to obtain similar circuit performance when
converting from the HCPL-4562 to the HCNW4562,
it is recommended to increase the Quiescent Input
Current, IFQ, from 6 mA to 10 mA. If the application circuit
in Figure 4 is used, then potentiom­eter R4 should be
adjusted appropriately.
Design Considerations of the Application Circuit
The appÏication circuit in Figure 4 incorporates
several features that help maximize the bandwidth
performance of the HCPL-4562/HCNW4562. Most
important of these features is peaked response of the
detector circuit that helps extend the frequency range
over which the voltage gain is relatively constant. The
number of gain stages, the overall circuit topology, and
the choice of DC bias points are all consequences of
the desire to maximize bandwidth performance.
To use the circuit, first select R1 to set VE for the desired
LED quiescent current by:
IFQ =
VE
G V VE R 10
�≈
R4
( � I PB /� I F ) R 7 R 9
( 1)
For a constant value V INp-p , the circuit topology
≈� VIN /R 4
( 2)
i F p-p
p-p
(adjusting
gainV with
R4) preserves linearity by
VE the G
V E R 10
IiF Q = the
�≈ modulation
( 1)
keeping
factor (MF) dependent only
F p-p
p-p
p-p R i PB p-p
( � I=PB /�VINp-p
I Fp-p
) R 7R 9
( 3)
on VE. � ≈4
I F Q V I PB Q G VVE R
V E
10
≈
Ii F Q =≈� VE �/R
(( 1)
2)
F p-p
R 4IN 4( � I PB /� I F ) R 7 R 9
p-p
i F (( p-p)
V
INp-p
p-p
p-p)
VE ) : G
R
FIactor
(( 4)
GV V
VEE=
R 10
i p-p= V( MF
E i PB
10 V
��≈
1)
p-p
p-p2 I VVINp-p
p-p 2
≈
Ii FFFQQp-p
=≈� R
1)
F
Q
E
≈
�
=
((( 3)
(
�
I
/�
I
)
R
R
V
G
V
R
V
/R
2)
4
PB
F
7
9
E4INI 4( � I PBV/� V
EF ) R
107 R 9
FIp-p
R
I
p-p
I F QF Q=
�≈
( 1)
PB Q
E
R4
( � I PB /� I F ) R 7 R 9
i PB
VRINp-p
p-p
p-p
p-p
p-p≈
9 p-p
�� �V
/R
2)
iiiFFp-p
≈IN
4 i –=
3)
VBINp-p
p-p
V
=
V
–
V
[V
(((5)
≈
V
/R
2)
F
(
p-p)
OF p-p
CC
B
E
E p-p
X - ( I PB Q - I B XQ ) R 7 ]
IN
4
(
p-p)
Modulation
p-p
4
I
I
V
R
FQ ≈
PB
Q
Fiactor
(
MF
)
:
(
4)
10E=
�
V
/R
(
2)
F p-p
IN 4 2 I
p-p
2
V
i PB p-p
VINp-p
ii F p-p
FQ
E
p-p
p-p
p-p
F p-p
p-p = VINp-p
p-p
p-p � ≈ i PB p-p
(( 3)
� ≈ iI
3)
i =p-p)VINp-p
V p-p
V
iIIFFp-p
Q
PBp-p
Q F (( p-p)
p-p INp-p
p-p
VEE=
F Q �(≈
PB
Q =
F actor
MFIPB
) :p-p
( 4)
3)
VEQR210I F QRV9 E 2 VE
I F=Q V G–VI PB
VIOPB
V
–
[
V
(
I
I
)
R
]
(
5)
( 6)
BE
BE X
PB Q
B XQ
7
Q �≈CC
R 10 VINp-p
p-p
p-p)
R 7 R ii94FF (((( p-p)
p-p)
p-p
p-p) = VINp-p
FFFor
actor
(
MF
)
:
(
a
given
G
,
V
,
and
V
,
DC
output
voltage
will
vary
actor ( MF ) : V 2
= CC
( 4)
4)
i Ep-p)
V
F QR 9 V2
E
2F (II( p-p)
2INp-p
Vp-p
F
Q
E
only
with
h
.
FV
actor
(
MF
)
:
=
4)
VB E –
[ V B E X - ( I PB Q - I B XQ) R 7 ]
((5)
O = VCC –FEX
24 I F QR 10 2 VE
VGCC V- 2R VB E
≈
( 7)
I BPBXQ
� –V V E –10 R
6)
9
QV
V
=
(( 5)
RR67BRhE9F4–E X R 9 [[ V
B E X -- (( II PB Q -- II B XQ )) R
7 ]]
VOO = VCC
V
R
5)
CC – V
BE4
B
E
X
PB
Q
B
XQ
7
R
R10
9
VO = VCCG– VVB ER– R 10
[ V B E X - ( I PB Q - I B XQ) R 7 ]
( 5)
V E 4 10 R 10
I
�
( 6)
≈
PB
Q
Where: VRO R 4.25 V
7� 9
I CQ4
�
� 9.0 mA
( 8)
Q4 ≈ VCC - 2 VB E
470
I B XQ ≈� GRV11VE R 10
( 7)
G VR 6VEhRF E10X
II PB Q ��≈
(( 6)
6)
PB Q ≈ G RV
R
R9 10
VR 7
E
R
I PB Q �≈ VCC 7- 29 VB E
( 6)
R 7R 9
1
I BRXQ
�
7)
9 ≈
(( 9)
V
* VRO6 hF E4.25
and,
X
1
IRCQ4
�
�
�
9.0
mA
(
8)
≈
10
Q4
1VR+ s- R2 9V
C
+
470
B ECQ 3
11
2� R �1 1 f T44
CC - 2 VB E
II B XQ ≈
�≈� VCC
(( 7)
7)
B XQ
R
h
VCC
2
V
6
F
E
X
B
E
V
4.25
V
RO6 hF E X
IIBCQ4
≈
�
( 8)
7)
XQ
�
�
�
9.0
mA
(
≈
X
RQ4
1
RR116 hF E470
9
( 9)
* VOUT � I PB R 7 R 9
V
V
R
1
O s�≈R 4.25
10 ≈
V
4.25
V
1
+
C
�
(
10)
+
O
IG
�
�
�
9.0
mA
(( 8)
CQ
VQ4 ≈
I CQ4
� IN
� �94.25
8)
2� RmA
�1 1 f T44
I F RV3 4 R� 109.0
CQ4
470
Q4 ≈ VR
V11
O
R
470
R
1
11 �
9 �
I CQ4
� 9.0 mA
( 9)
8)
(
Q4 *≈
16R 10
R 11
470
1
�
I
1 + s R C PB 3 +
where
typically9 CQ
= 2�
0.0032
R �1 1 f T44
R
R 99 * VOUT � I PB� I F R1
17 R 9
(( 9)
9)
≈
≈
*
GR10
�
�
( 10)
R
1
V
R 9 1 + s R C 1+
1
9
1)
VIOF Q= =VCC –�≈VB E –
[V
- (I
- I
) R ]
((5)
R4
( �4I PB R
/� 10
I F ) RB7ERX 9 PB Q B XQ 7
R9
VO = VCC – VB E –
[ V B E X - ( I PB Q - I B XQ) R 7 ]
( 5)
4
R 10
≈� VIN /R 4
( 2)
i F p-p
p-p
G V VE R 10
IiPB
( 6)
i PB p-p
VINp-p
Q �≈
F p-p
p-p
p-p
p-p
� ≈ R 7R 9 =
( 3)
I F Q G I PBVQR
VE
I PB Q �≈ V E 10
( 6)
Figure
15 Rshows
the
dependency of the DC output
7R 9
VINp-p
voltage on
VCChFEX
- 2.i FV(( p-p)
p-p
p-p)
BE
FIactor
� ( MF
):
=
( 4)
7)
B XQ ≈
R
h
2
I
2
V
6
F
E
X
F
Q
E value of R such that
For 9 V < VCC < 12 V, select the
11
V - 2 VB E
I B XQ ≈� CC
( 7)
R h X
VO6 F E4.25
R9V
VOI CQ4
=Q4 V≈
[ V� B E9.0
( I PB Q - I B XQ) R 7 ]
((5)
�CC – VB�E –
8)
X - mA
R 10
R 11 4 470
VO
4.25 V
I CQ4
�
� gain of� the
9.0 mA
≈
Q4 voltage
The
second stage (Q 3 )( 8)is
R 11
470
R
1
9
approximately
( 9)
* G V Requal to:
1
IRPB10Q �≈ 1 +V sE R 10 C
( 6)
+
9
CQ
3
R 7R 9
R9
1 2� R �1 1 f T44
( 9)
*
R 10 1 + s R C
1
9
CQ 3 +
2� R �1 1 f T44
V
2
V
CC
B
E
I B XQ≈≈� VOUT ≈ � I PB R 7 R 9
( 7)
GV �
( 10)
R � hF E X11 includes the parallel combination
Increasing
of
VINR′611 (R′
� I F R 4 R 10
R11 andVthe
load
impedance)
or
reducing
R
(keeping
�I
R 7R 9
9
≈ OUT �≈ PB
R9G
/RV10� ratio
constant)
will
improve the bandwidth. ( 10)
�
I
PB
V
�
I
R
R
V
4.25
V
INO
F
4 =100.0032
where
I CQ4 ≈
� typically
�
� 9.0 mA
( 8)
� Ito
F drive a low impedance load,
R 11
470
If itQ4is necessary
I PB be preserved by adding an
bandwidth
may � also
where typically
= 0.0032
�
F
additional emitter I following
the buffer stage (Q5 in
R9
1
Figure
to
* 16), in which case R11 can be increased( 9)
R
1
s R 9 C CQ 3 +
set 10
ICQ4 ≅12+mA.
2� R �1 1 f T44
Finally, adjust R4 to achieve the desired voltage gain.
GV ≈
�
VOUT � I PB R 7 R 9
�≈
VIN
� I F R 4 R 10
where typically
� I PB
� IF
( 10)
= 0.0032
Definition:
GV = Voltage Gain
IFQ = Quiescent LED forward current
iFp-p = Peak-to-peak small signal LED forward current
VINp-p = Peak-to-peak small signal input voltage
iPBp-p = Peak-to-peak small signal
base photo current
IPBQ = Quiescent base photo current
VBEX = Base-Emitter voltage of HCPL-4562/
HCNW4562 transistor
IBXQ = Quiescent base current of HCPL-4562/
HCNW4562 transistor
hFEX = Current Gain (IC/IB) of HCPL-4562/
HCNW4562 transistor
VE = Voltage across emitter degeneration resistor R4
fT4 = Unity gain frequency of Q5
CCQ3 = Effective capacitance from collector of Q3 to ground
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0571EN
AV02-1361EN - June 23, 2008
Similar pages