HCPL-4562, HCNW4562 High Bandwidth, Analog/Video Optocouplers Data Sheet Description Features The HCPL-4562 and HCNW4562 optocouplers provide wide bandwidth isolation for analog signals. They are ideal for video isolation when combined with their application circuit (Figure 4). High linearity and low phase shift are achieved through an AlGaAs LED combined with a high speed detector. These single channel optocouplers are available in 8‑Pin DIP and Widebody package configurations. • Wide bandwidth[1]: 17 MHz (HCPL-4562) 9 MHz (HCNW4562) • High voltage gain[1]: 2.0 (HCPL-4562) 3.0 (HCNW4562) • Low GV temperature coefficient: -0.3%/°C • Highly linear at low drive currents • High-speed AlGaAs emitter • Safety approval: UL Recognized – 3750 Vrms for 1 minute (5000 V rms for 1 minute for HCPL-4562#020 and HCNW4562) per UL 1577 CSA Approved IEC/EN/DIN EN 60747-5-2 Approved – VIORM = 1414 Vpeak for HCNW4562 • Available in 8-pin DIP and widebody packages Functional Diagram NC 1 8 VCC ANODE 2 7 VB CATHODE 3 6 VO NC 4 5 GND Applications HCPL-4562 Functional Diagram • Video isolation for the following standards/formats: NTSC, PAL, SECAM, S-VHS, ANALOG RGB • Low drive current feedback element in switching power supplies, e.g., for ISDN networks • A/D converter signal isolation • Analog signal ground isolation • High voltage insulation CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Selection Guide Single Channel Packages 8-Pin DIP (300 Mil) HCPL-4562 Widebody (400 Mil) HCNW4562 Ordering Information HCPL-4562 is UL Recognized with 3750 Vrms for 1 minute per UL1577 unless otherwise specified. HCNW4562 is UL Recognized with 5000 Vrms for 1 minute per UL1577. Option Part RoHS non RoHS Number Compliant Compliant Package -000E -300E -500E HCPL-4562 -020E -320E -520E -060E -000E HCNW4562 -300E -500E Surface Mount Gull Wing Tape & Reel UL 5000 Vrms/ 1 Minute rating IEC/EN/DIN EN 60747-5-2 no option 300 mil DIP-8 #300 X X #500 X X X #020 X #320 X X X #520 X X X X #060 X[1] no option 400 mil X X[2] #300 Widebody X X X X[2] #500 DIP-8 X X X X X[2] Quantity 50 per tube 50 per tube 1000 per reel 50 per tube 50 per tube 1000 per reel 50 per tube 42 per tube 42 per tube 750 per reel Notes: 1. IEC/EN/DIN EN 60747-5-2 VIORM = 630 Vpeak Safety Approval. 2. IEC/EN/DIN EN 60747-5-2 VIORM = 1414 Vpeak Safety Approval. To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: HCPL-4562-520E to order product of Gull Wing Surface Mount package in Tape and Reel packaging with UL 5000 Vrms/1 minute rating and RoHS compliant. Schematic ANODE 2 ICC 8 IO 6 IF + VF CATHODE – 5 IB 7 VB Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use ‘–XXXE.’ VO 3 Example 2: HCNW4562 to order product of 8-Pin Widebody DIP package in Tube packaging with IEC/EN/DIN EN 60747-52 VIORM = 1414 Vpeak Safety Approval and UL 5000 Vrms/1 minute rating and non RoHS compliant. VCC HCPL-4562 Schematic GND Package Outline Drawings 8-Pin DIP Package (HCPL-4562) 7.62 ± 0.25 (0.300 ± 0.010) 9.65 ± 0.25 (0.380 ± 0.010) 8 TYPE NUMBER 7 6 5 6.35 ± 0.25 (0.250 ± 0.010) OPTION CODE* DATE CODE A XXXXZ YYWW RU 1 2 3 4 UL RECOGNITION 1.78 (0.070) MAX. 1.19 (0.047) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 5° TYP. 3.56 ± 0.13 (0.140 ± 0.005) 4.70 (0.185) MAX. 0.51 (0.020) MIN. 2.92 (0.115) MIN. 1.080 ± 0.320 (0.043 ± 0.013) DIMENSIONS IN MILLIMETERS AND (INCHES). 0.65 (0.025) MAX. * MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020 OPTION NUMBERS 300 AND 500 NOT MARKED. 2.54 ± 0.25 (0.100 ± 0.010) NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562) LAND PATTERN RECOMMENDATION 9.65 ± 0.25 (0.380 ± 0.010) 8 7 6 1.016 (0.040) 5 6.350 ± 0.25 (0.250 ± 0.010) 1 2 3 10.9 (0.430) 4 1.27 (0.050) 1.19 (0.047) MAX. 1.780 (0.070) MAX. 9.65 ± 0.25 (0.380 ± 0.010) 7.62 ± 0.25 (0.300 ± 0.010) 3.56 ± 0.13 (0.140 ± 0.005) 1.080 ± 0.320 (0.043 ± 0.013) 0.635 ± 0.25 (0.025 ± 0.010) 0.635 ± 0.130 2.54 (0.025 ± 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 2.0 (0.080) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12° NOM. 8-Pin Widebody DIP Package (HCNW4562) 11.00 MAX. (0.433) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 9.00 ± 0.15 (0.354 ± 0.006) 5 TYPE NUMBER A HCNWXXXX DATE CODE YYWW 1 2 3 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7° TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 0.51 (0.021) MIN. 2.54 (0.100) TYP. 1.78 ± 0.15 (0.070 ± 0.006) 0.40 (0.016) 0.56 (0.022) DIMENSIONS IN MILLIMETERS (INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 LAND PATTERN RECOMMENDATION 5 9.00 ± 0.15 (0.354 ± 0.006) 1 2 3 13.56 (0.534) 4 1.3 (0.051) 2.29 (0.09) 12.30 ± 0.30 (0.484 ± 0.012) 1.55 (0.061) MAX. 11.00 MAX. (0.433) 4.00 MAX. (0.158) 1.78 ± 0.15 (0.070 ± 0.006) 2.54 (0.100) BSC 0.75 ± 0.25 (0.030 ± 0.010) 1.00 ± 0.15 (0.039 ± 0.006) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 7° NOM. Solder Reflow Temperature Profile 300 TEMPERATURE (°C) PREHEATING RATE 3°C + 1°C/–0.5°C/SEC. REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC. 200 PEAK TEMP. 245°C PEAK TEMP. 240°C 2.5°C ± 0.5°C/SEC. 30 SEC. 160°C 150°C 140°C PEAK TEMP. 230°C SOLDERING TIME 200°C 30 SEC. 3°C + 1°C/–0.5°C 100 PREHEATING TIME 150°C, 90 + 30 SEC. 50 SEC. TIGHT TYPICAL LOOSE ROOM TEMPERATURE 0 0 50 100 150 200 250 TIME (SECONDS) Note: Non-halide flux should be used. Recommended Pb-Free IR Profile tp Tp TEMPERATURE TL Tsmax *260 +0/-5 °C TIME WITHIN 5 °C of ACTUAL PEAK TEMPERATURE 20-40 SEC. 217 °C RAMP-UP 3 °C/SEC. MAX. 150 - 200 °C RAMP-DOWN 6 °C/SEC. MAX. Tsmin ts PREHEAT 60 to 180 SEC. 25 tL 60 to 150 SEC. t 25 °C to PEAK TIME NOTES: THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 °C, Tsmin = 150 °C Note: Non-halide flux should be used. * Recommended peak temperature for widebody 400 mils package is 245°C Regulatory Information The devices contained in this data sheet have been approved by the following organizations: UL IEC/EN/DIN EN 60747-5-2 Recognized under UL 1577, Component Recognition Program, File E55361. Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01 (HCNW4562 only) CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. Insulation and Safety Related Specifications Parameter Symbol 8-Pin DIP (300 Mil) Value Widebody (400 Mil) Value Units Minimum External L(101) 7.1 9.6 mm Air Gap (External Clearance) Minimum External L(102) 7.4 10.0 mm Tracking (External Creepage) Minimum Internal 0.08 1.0 mm Plastic Gap (Internal Clearance) Minimum Internal NA 4.0 mm Tracking (Internal Creepage) Tracking Resistance CTI 200 200 Volts (Comparative Tracking Index) Isolation Group IIIa IIIa Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Measured from input terminals to output terminals, along internal cavity. DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) Option 300 - surface mount classification is Class A in accordance with CECC 00802. IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCNW4562 ONLY) Description Symbol Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage ≤ 600 V rms for rated mains voltage ≤ 1000 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage VIORM Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, VPR tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) VIOTM Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 17, Thermal Derating curve.) Case Temperature TS Input Current IS,INPUT Output Power PS,OUTPUT Insulation Resistance at TS, VIO = 500 V RS Characteristic Units I-IV I-III 55/85/21 2 1414 Vpeak 2652 Vpeak 2121 Vpeak 8000 Vpeak 150 400 700 ≥ 109 °C mA mW Ω *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-2, for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. Absolute Maximum Ratings Parameter Symbol Storage Temperature Operating Temperature Average Forward Input Current Min. Max. Units TS -55 125 °C TA -40 IF(avg) Peak Forward Input Current °C mA 25 18.6 HCNW4562 40 IF(EFF) HCPL-4562 12.9 mA rms VR HCPL-4562 1.8 V Input Power Dissipation 85 12 HCPL-4562 Reverse LED Input Voltage (Pin 3-2) HCPL-4562 HCNW4562 IF(PEAK) Effective Input Current Device PIN HCNW4562 3 HCNW4562 40 mA mW Average Output Current (Pin 6) IO(AVG) 8 mA Peak Output Current (Pin 6) IO(PEAK) 16 mA Emitter-Base Reverse Voltage (Pin 5-7) VEBR 5 V Supply Voltage (Pin 8-5) VCC -0.3 30 V Output Voltage (Pin 6-5) VO -0.3 20 V Base Current (Pin 7) IB 5 mA Output Power Dissipation PO 100 mW Lead Solder Temperature TLS 1.6 mm Below Seating Plane, 10 Seconds up to Seating Plane, 10 Seconds Reflow Temperature Profile TRP Note 2 HCPL-4562 260 °C HCNW4562 260 °C Option See Package Outline 300 Drawings Section Recommended Operating Conditions Parameter Symbol Device Min. Max. Units Operating Temperature TA HCPL-4562 -10 70 °C Quiescent Input Current IFQ HCPL-4562 6 mA HCNW4562 10 Peak Input Current IF(PEAK) HCPL-4562 10 HCNW4562 17 mA Note Electrical Specifications (DC) TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified. Parameter Base Photo Symbol IPB Current IPB Temperature Device Min. 13 HCPL-4562 ∆IPB/ Typ.* Max. 31 65 Units Test Conditions µA IF = 10 mA VPB ≥ 5 V 19.2 IF = 6 mA -0.3 2 mA < IF < 10 mA, %/°C ∆T Fig. Note 2, 6 2 VPB ≥ 5 V Coefficient IPB HCPL-4562 0.25 % 2 mA < IF < 10 mA Nonlinearity HCNW4562 0.15 6 mA < IF < 14 mA Input Forward VF HCPL-4562 1.1 1.3 1.6 Voltage HCNW4562 1.2 1.6 1.8 Input Reverse HCPL-4562 1.8 BVR Breakdown HCNW4562 5 V V 3 IF = 5 mA 2, 6 3 5 IF = 10 mA IR = 10 µA IR = 100 µA Voltage Transistor hFE 160 IC = 1 mA, VCE = 1.25 V Current VCE = 1.25 V, CTR HCPL-4562 45 % Transfer Ratio HCNW4562 DC Output HCPL-4562 4.25 HCNW4562 5.0 VOUT Voltage 60 Current Gain 52 V 8, 9 VPB ≥ 5 V GV = 2, VCC = 9 V 4, 15 4 Small Signal Characteristics (AC) TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified. Parameter Voltage Gain GV Temperature Symbol GV (0.1 MHz) Device Min. HCPL-4562 0.8 HCNW4562 ∆GV/∆T Typ.* 2.0 Max. Units Test Conditions 4.2 VIN = 1 VP-P Note 1 6 3.0 -0.3 %/°C VIN = 1 VP-P, 1, 11 Coefficient fREF = 0.1 MHz Base Photo VIN = 1 VP-P, Current Fig. ∆iPB HCPL-4562 1.1 3.0 -dB (6 MHz) HCNW4562 0.36 3, 10, fREF = 0.1 MHz 12 Variation -3 dB Frequency (iPB) -3 dB Frequency (GV ) Gain Variation iPB (-3 dB) GV HCPL-4562 6 15 MHz VIN = 1 VP-P, 3, 10, HCNW4562 13 fREF = 0.1 MHz HCPL-4562 17 VIN = 1 VP-P, 6 MHz HCNW4562 ∆GV HCPL-4562 1.1 (6 MHz) HCNW4562 0.54 f REF = 0.1 MHz HCPL-4562 0.8 9 1, 11 (-3 dB) 3.0 -dB VIN = 1 VP-P, 1.5 TA = 70°C ∆GV HCPL-4562 1.15 VIN = 1 VP-P, (10 MHz) HCNW4562 2.27 fREF = 0.1 MHz HCPL-4562 ±1.0 IFac = 0.7 mA p-p, % Gain at IFdc = 3 to 9 mA f = 3.58 MHz IFac = 1 mA p-p, HCNW4562 ±0.9 Differential HCPL-4562 ±1 deg. IFac = 0.7 mA p-p, IFdc = 3 to 9 mA f = 3.58 MHz IFac = 1 mA p-p, HCNW4562 ±0.6 Total Harmonic THD Distortion Output Noise HCPL-4562 2.5 HCNW4562 0.75 VO(noise) 950 % 3, 7 8 3, 7 9 4 10 IFdc = 7 to 13 mA Phase at 1, 11 TA = -10°C Differential 7 fREF = 0.1 MHz TA = 25°C -dB 7 12 IFdc = 7 to 13 mA VIN = 1 VP-P, f = 3.58 MHz, GV = 2 µV rms 10 Hz to 10 MHz 1 Voltage Isolation Mode IMRR Rejection Ratio HCPL-4562 122 HCNW4562 119 dB f = 120 Hz, GV = 2 14 11 Package Characteristics All Typicals at TA = 25°C Parameter Sym. Device Min. Typ. Max. Units Input-Output VISO HCPL-4562 3750 V rms Momentary HCNW4562 5000 Withstand HCPL-4562 5000 Voltage* (Option 020) Input-Output RI-O HCPL-4562 1012 Ω 12 Resistance HCNW4562 10 1013 1011 Input-Output CI-O HCPL-4562 0.6 pF Capacitance HCNW4562 0.5 0.6 Test Conditions Fig. Note RH ≤50%, t = 1 min., TA = 25°C 5, 12 5, 13 5, 13 VI-O = 500 Vdc TA = 25°C TA = 100°C f = 1 MHz 5 5 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E. Notes: 1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-4562), IFQ = 10 mA (HCNW4562). 2. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (HCPL-4562). 3. Maximum variation from the best fit line of IPB vs. IF expressed as a percentage of the peak-to-peak full scale output. 4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%. 5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. 6. Flat-band, small-signal voltage gain. 7. The frequency at which the gain is 3 dB below the flat-band gain. 8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD of the isolated video circuit is measured using a 2.6 kΩ load in series with the 50 Ω input impedance of the spectrum analyzer. 11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler’s ability to reject signals or noise that may exist between input and output terminals, is defined by 20 log10 [(VOUT/VIN)/(VOUT /VIM)], where VIM is the isolation mode voltage signal. 12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 V rms for 1 second (leakage detection current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable. 13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥6000 V rms for 1 second (leakage detection current limit, II-O ≤5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics Table, if applicable. 10 162 Ω (HCPL-4562) 90.9 Ω (HCNW4562) Figure 1. Gain and bandwidth test circuit 162 Ω (HCPL-4562) 90.9 Ω (HCNW4562) Figure 2. Base photo current test circuit Figure 3. Base photo current frequency response test circuit Figure 4. Recommended isolated video interface circuit 11 IF – INPUT FORWARD VOLTAGE – mA HCNW4562 HCPL-4562 100 IF + VF – 10 TA = 70 °C 1.0 TA = 25 °C TA = -10 °C 0.1 0.01 1.0 1.1 1.2 1.3 1.4 1.5 VF – FORWARD VOLTAGE – V Figure 5. Input current vs. forward voltage HCPL-4562 fig 5a IPB – BASE PHOTO CURRENT – µA HCNW4562 HCPL-4562 80 70 60 50 40 TA = 25 °C VPB > 5 V 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 IF – INPUT CURRENT – mA Figure 6. Base photo current vs. input current HCPL-4562 fig 6a HCPL-4562 HCNW4562 SMALL-SIGNAL GAIN 1 1 PHASE 0 0.98 0.96 NORMALIZED IF = 6 mA f = 3.58 MHz TA = 25 °C SEE FIG. 3 0.94 0.92 0 2 4 6 GAIN -1 -2 -3 8 10 12 14 16 18 20 IF – INPUT CURRENT – mA Figure 7. Small-signal response vs. input current 12 HCPL-4562 fig 7a SMALL-SIGNAL PHASE – DEGREES 2 1.02 NORMALIZED CURRENT TRANSFER RATIO HCNW4562 HCPL-4562 1.04 1.02 1.00 0.98 NORMALIZED TA = 25 °C IF = 6.0 mA VCE = 1.25 V VPB > 5 V 0.96 0.94 0.92 0.90 0.88 0.86 -10 0 10 20 30 40 50 60 70 T – TEMPERATURE – °C Figure 8. Current transfer ratio vs. temperature CTR – NORMALIZED CURRENT TRANSFER RATIO HCPL-4562 fig 8a HCNW4562 HCPL-4562 1.10 1.00 VCE = 5.0 V 0.90 VCE = 1.25 V 0.80 NORMALIZED TA = 25 °C IF = 6 mA VCE = 1.25 V VPB > 5 V 0.70 0.60 0.50 0 2 4 6 VCE = 0.4 V 8 10 12 14 16 18 20 IF – INPUT CURRENT – mA Figure 9. Current transfer ratio vs. input current ∆iPB – BASE PHOTO CURRENT VARIATION – dB HCPL-4562 fig 9a HCNW4562 HCPL-4562 -0.9 -1.1 FREQUENCY = 6 MHz -1.3 -1.5 -1.7 FREQUENCY = 10 MHz -1.9 -2.1 TA = 25 °C FREF = 0.1 MHz -2.3 -2.5 -2.7 1 2 3 4 5 6 7 8 9 10 11 12 IFQ – QUIESCENT INPUT CURRENT – mA Figure 10. Base photo current variation vs. bias conditions 13 HCPL-4562 fig 10a HCPL-4562 NORMALIZED VOLTAGE GAIN – dB 3 HCNW4562 2 TA = -10 °C 1 0 TA = 25 °C -1 TA = 70 °C -2 -3 NORMALIZED TA = 25 °C f = 0.1 MHz -4 -5 -6 -7 0.01 0.1 1.0 10 100 1000 10,000 100,000 f – FREQUENCY – KHz Figure 11. Normalized voltage gain vs. frequency NORMALIZED BASE PHOTO CURRENT – dB HCPL-4562 fig 11a HCPL-4562 0.5 HCNW4562 0 -0.5 -1.0 NORMALIZED TA = 25 °C f = 0.1 MHz -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 0.01 0.1 1.0 10 100 1000 10,000 100,000 f – FREQUENCY – KHz Figure 12. Normalized base photo current vs. frequency HCPL-4562 fig 12a HCPL-4562 0 IPB PHASE SEE FIGURE 3 ∅ – PHASE – DEGREES -25 -50 -75 TA = 25 °C -100 -125 VIDEO INTERFACE CIRCUIT PHASE SEE FIGURE 4 -150 -175 -200 -225 -250 0 2 4 6 8 10 12 14 16 18 20 f – FREQUENCY – MHz Figure 13. Phase vs. frequency HCPL-4562 fig 13a 14 HCNW4562 IMRR – ISOLATION MODE REJECTION RATIO – dB HCNW4562 HCPL-4562 150 TA = 25 °C 120 -20 dB/DECADE SLOPE 90 60 IMRR = 20 LOG10 30 0 0.01 0.1 1.0 Gv vOUT/vIM 10 100 1000 10,000 f – FREQUENCY – KHz Figure 14. Isolation mode rejection ratio vs. frequency HCPL-4562 fig 14a HCPL-4562 VO – DC OUTPUT VOLTAGE – V 6.0 HCNW4562 5.5 5.0 4.5 4.0 3.5 3.0 50 100 150 200 250 300 350 400 450 hFE – TRANSISTOR CURRENT GAIN Figure 15. DC output voltage vs. transistor current gain VCC ICQ4 = 2 mA R9 ADDITIONAL BUFFER STAGE Q4 Q3 Q5 R11 R10 VOUT R12 LOW IMPEDANCE LOAD OUTPUT POWER – PS, INPUT CURRENT – IS HCPL-4562 fig 15a HCNW4562 1000 PS (mW) 900 IS (mA) 800 700 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 TS – CASE TEMPERATURE – °C Figure 16. Output buffer stage for low impedance loads 15 HCPL-4562 fig 16 Figure 17. Thermal derating curve, dependence of safety limiting value with casefig temperature per IEC/ HCPL-4562 17b EN/DIN EN 60747-5-2 Conversion from HCPL‑4562 to HCNW4562 In order to obtain similar circuit performance when converting from the HCPL-4562 to the HCNW4562, it is recommended to increase the Quiescent Input Current, IFQ, from 6 mA to 10 mA. If the application circuit in Figure 4 is used, then potentiometer R4 should be adjusted appropriately. Design Considerations of the Application Circuit The appÏication circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562/HCNW4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology, and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance. To use the circuit, first select R1 to set VE for the desired LED quiescent current by: IFQ = VE G V VE R 10 �≈ R4 ( � I PB /� I F ) R 7 R 9 ( 1) For a constant value V INp-p , the circuit topology ≈� VIN /R 4 ( 2) i F p-p p-p (adjusting gainV with R4) preserves linearity by VE the G V E R 10 IiF Q = the �≈ modulation ( 1) keeping factor (MF) dependent only F p-p p-p p-p R i PB p-p ( � I=PB /�VINp-p I Fp-p ) R 7R 9 ( 3) on VE. � ≈4 I F Q V I PB Q G VVE R V E 10 ≈ Ii F Q =≈� VE �/R (( 1) 2) F p-p R 4IN 4( � I PB /� I F ) R 7 R 9 p-p i F (( p-p) V INp-p p-p p-p) VE ) : G R FIactor (( 4) GV V VEE= R 10 i p-p= V( MF E i PB 10 V ��≈ 1) p-p p-p2 I VVINp-p p-p 2 ≈ Ii FFFQQp-p =≈� R 1) F Q E ≈ � = ((( 3) ( � I /� I ) R R V G V R V /R 2) 4 PB F 7 9 E4INI 4( � I PBV/� V EF ) R 107 R 9 FIp-p R I p-p I F QF Q= �≈ ( 1) PB Q E R4 ( � I PB /� I F ) R 7 R 9 i PB VRINp-p p-p p-p p-p p-p≈ 9 p-p �� �V /R 2) iiiFFp-p ≈IN 4 i –= 3) VBINp-p p-p V = V – V [V (((5) ≈ V /R 2) F ( p-p) OF p-p CC B E E p-p X - ( I PB Q - I B XQ ) R 7 ] IN 4 ( p-p) Modulation p-p 4 I I V R FQ ≈ PB Q Fiactor ( MF ) : ( 4) 10E= � V /R ( 2) F p-p IN 4 2 I p-p 2 V i PB p-p VINp-p ii F p-p FQ E p-p p-p p-p F p-p p-p = VINp-p p-p p-p � ≈ i PB p-p (( 3) � ≈ iI 3) i =p-p)VINp-p V p-p V iIIFFp-p Q PBp-p Q F (( p-p) p-p INp-p p-p VEE= F Q �(≈ PB Q = F actor MFIPB ) :p-p ( 4) 3) VEQR210I F QRV9 E 2 VE I F=Q V G–VI PB VIOPB V – [ V ( I I ) R ] ( 5) ( 6) BE BE X PB Q B XQ 7 Q �≈CC R 10 VINp-p p-p p-p) R 7 R ii94FF (((( p-p) p-p) p-p p-p) = VINp-p FFFor actor ( MF ) : ( a given G , V , and V , DC output voltage will vary actor ( MF ) : V 2 = CC ( 4) 4) i Ep-p) V F QR 9 V2 E 2F (II( p-p) 2INp-p Vp-p F Q E only with h . FV actor ( MF ) : = 4) VB E – [ V B E X - ( I PB Q - I B XQ) R 7 ] ((5) O = VCC –FEX 24 I F QR 10 2 VE VGCC V- 2R VB E ≈ ( 7) I BPBXQ � –V V E –10 R 6) 9 QV V = (( 5) RR67BRhE9F4–E X R 9 [[ V B E X -- (( II PB Q -- II B XQ )) R 7 ]] VOO = VCC V R 5) CC – V BE4 B E X PB Q B XQ 7 R R10 9 VO = VCCG– VVB ER– R 10 [ V B E X - ( I PB Q - I B XQ) R 7 ] ( 5) V E 4 10 R 10 I � ( 6) ≈ PB Q Where: VRO R 4.25 V 7� 9 I CQ4 � � 9.0 mA ( 8) Q4 ≈ VCC - 2 VB E 470 I B XQ ≈� GRV11VE R 10 ( 7) G VR 6VEhRF E10X II PB Q ��≈ (( 6) 6) PB Q ≈ G RV R R9 10 VR 7 E R I PB Q �≈ VCC 7- 29 VB E ( 6) R 7R 9 1 I BRXQ � 7) 9 ≈ (( 9) V * VRO6 hF E4.25 and, X 1 IRCQ4 � � � 9.0 mA ( 8) ≈ 10 Q4 1VR+ s- R2 9V C + 470 B ECQ 3 11 2� R �1 1 f T44 CC - 2 VB E II B XQ ≈ �≈� VCC (( 7) 7) B XQ R h VCC 2 V 6 F E X B E V 4.25 V RO6 hF E X IIBCQ4 ≈ � ( 8) 7) XQ � � � 9.0 mA ( ≈ X RQ4 1 RR116 hF E470 9 ( 9) * VOUT � I PB R 7 R 9 V V R 1 O s�≈R 4.25 10 ≈ V 4.25 V 1 + C � ( 10) + O IG � � � 9.0 mA (( 8) CQ VQ4 ≈ I CQ4 � IN � �94.25 8) 2� RmA �1 1 f T44 I F RV3 4 R� 109.0 CQ4 470 Q4 ≈ VR V11 O R 470 R 1 11 � 9 � I CQ4 � 9.0 mA ( 9) 8) ( Q4 *≈ 16R 10 R 11 470 1 � I 1 + s R C PB 3 + where typically9 CQ = 2� 0.0032 R �1 1 f T44 R R 99 * VOUT � I PB� I F R1 17 R 9 (( 9) 9) ≈ ≈ * GR10 � � ( 10) R 1 V R 9 1 + s R C 1+ 1 9 1) VIOF Q= =VCC –�≈VB E – [V - (I - I ) R ] ((5) R4 ( �4I PB R /� 10 I F ) RB7ERX 9 PB Q B XQ 7 R9 VO = VCC – VB E – [ V B E X - ( I PB Q - I B XQ) R 7 ] ( 5) 4 R 10 ≈� VIN /R 4 ( 2) i F p-p p-p G V VE R 10 IiPB ( 6) i PB p-p VINp-p Q �≈ F p-p p-p p-p p-p � ≈ R 7R 9 = ( 3) I F Q G I PBVQR VE I PB Q �≈ V E 10 ( 6) Figure 15 Rshows the dependency of the DC output 7R 9 VINp-p voltage on VCChFEX - 2.i FV(( p-p) p-p p-p) BE FIactor � ( MF ): = ( 4) 7) B XQ ≈ R h 2 I 2 V 6 F E X F Q E value of R such that For 9 V < VCC < 12 V, select the 11 V - 2 VB E I B XQ ≈� CC ( 7) R h X VO6 F E4.25 R9V VOI CQ4 =Q4 V≈ [ V� B E9.0 ( I PB Q - I B XQ) R 7 ] ((5) �CC – VB�E – 8) X - mA R 10 R 11 4 470 VO 4.25 V I CQ4 � � gain of� the 9.0 mA ≈ Q4 voltage The second stage (Q 3 )( 8)is R 11 470 R 1 9 approximately ( 9) * G V Requal to: 1 IRPB10Q �≈ 1 +V sE R 10 C ( 6) + 9 CQ 3 R 7R 9 R9 1 2� R �1 1 f T44 ( 9) * R 10 1 + s R C 1 9 CQ 3 + 2� R �1 1 f T44 V 2 V CC B E I B XQ≈≈� VOUT ≈ � I PB R 7 R 9 ( 7) GV � ( 10) R � hF E X11 includes the parallel combination Increasing of VINR′611 (R′ � I F R 4 R 10 R11 andVthe load impedance) or reducing R (keeping �I R 7R 9 9 ≈ OUT �≈ PB R9G /RV10� ratio constant) will improve the bandwidth. ( 10) � I PB V � I R R V 4.25 V INO F 4 =100.0032 where I CQ4 ≈ � typically � � 9.0 mA ( 8) � Ito F drive a low impedance load, R 11 470 If itQ4is necessary I PB be preserved by adding an bandwidth may � also where typically = 0.0032 � F additional emitter I following the buffer stage (Q5 in R9 1 Figure to * 16), in which case R11 can be increased( 9) R 1 s R 9 C CQ 3 + set 10 ICQ4 ≅12+mA. 2� R �1 1 f T44 Finally, adjust R4 to achieve the desired voltage gain. GV ≈ � VOUT � I PB R 7 R 9 �≈ VIN � I F R 4 R 10 where typically � I PB � IF ( 10) = 0.0032 Definition: GV = Voltage Gain IFQ = Quiescent LED forward current iFp-p = Peak-to-peak small signal LED forward current VINp-p = Peak-to-peak small signal input voltage iPBp-p = Peak-to-peak small signal base photo current IPBQ = Quiescent base photo current VBEX = Base-Emitter voltage of HCPL-4562/ HCNW4562 transistor IBXQ = Quiescent base current of HCPL-4562/ HCNW4562 transistor hFEX = Current Gain (IC/IB) of HCPL-4562/ HCNW4562 transistor VE = Voltage across emitter degeneration resistor R4 fT4 = Unity gain frequency of Q5 CCQ3 = Effective capacitance from collector of Q3 to ground For product information and a complete list of distributors, please go to our website: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0571EN AV02-1361EN - June 23, 2008