NSC LM348 Quad 741 op amps lm149 wide band decompensated (av min = 5) Datasheet

LM148/LM248/LM348
Quad 741 Op Amps
General Description
Features
The LM148 series is a true quad 741. It consists of four
independent, high gain, internally compensated, low power
operational amplifiers which have been designed to provide
functional characteristics identical to those of the familiar
741 operational amplifier. In addition the total supply current
for all four amplifiers is comparable to the supply current of a
single 741 type op amp. Other features include input offset
currents and input bias current which are much less than
those of a standard 741. Also, excellent isolation between
amplifiers has been achieved by independently biasing each
amplifier and using layout techniques which minimize thermal coupling.
n
n
n
n
n
n
n
n
n
n
n
741 op amp operating characteristics
Class AB output stage — no crossover distortion
Pin compatible with the LM124
Overload protection for inputs and outputs
Low supply current drain:
0.6 mA/Amplifier
Low input offset voltage:
1 mV
Low input offset current:
4 nA
Low input bias current
30 nA
High degree of isolation between amplifiers:
120 dB
Gain bandwidth product
LM148 (unity gain):
1.0 MHz
The LM148 can be used anywhere multiple 741 or 1558 type
amplifiers are being used and in applications where amplifier
matching or high packing density is required. For lower
power refer to LF444.
Schematic Diagram
00778601
* 1 pF in the LM149
© 2003 National Semiconductor Corporation
DS007786
www.national.com
LM148/LM248/LM348 Series Quad 741 Op Amp
November 2003
LM148/LM248/LM348
Distributors for availability and specifications.
Absolute Maximum Ratings (Note 4)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
LM148
LM248
LM348
± 22V
± 44V
± 18V
± 36V
± 18V
± 36V
Continuous
Continuous
Continuous
Molded DIP (N) Pd
—
—
750 mW
θjA
—
—
100˚C/W
Cavity DIP (J) Pd
1100 mW
800 mW
700 mW
θJA
110˚C/W
110˚C/W
110˚C/W
150˚C
110˚C
100˚C
−55˚C ≤ TA ≤ +125˚C
−25˚C ≤ TA ≤ +85˚C
0˚C ≤ TA ≤ +70˚C
−65˚C to +150˚C
−65˚C to +150˚C
−65˚C to +150˚C
300˚C
300˚C
300˚C
Supply Voltage
Differential Input Voltage
Output Short Circuit Duration (Note 1)
Power Dissipation (Pd at 25˚C) and
Thermal Resistance (θjA), (Note 2)
Maximum Junction Temperature (TjMAX)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.) Ceramic
Lead Temperature (Soldering, 10 sec.) Plastic
260˚C
Soldering Information
Dual-In-Line Package
Soldering (10 seconds)
260˚C
260˚C
260˚C
Vapor Phase (60 seconds)
215˚C
215˚C
215˚C
Infrared (15 seconds)
220˚C
220˚C
220˚C
Small Outline Package
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface
mount
devices.
ESD tolerance (Note 5)
500V
500V
500V
Electrical Characteristics
(Note 3)
Parameter
Conditions
LM148
LM248
LM348
Units
Min Typ Max Min Typ Max Min Typ Max
Input Offset Voltage
TA = 25˚C, RS ≤ 10 kΩ
1.0
5.0
1.0
6.0
1.0
6.0
mV
Input Offset Current
TA = 25˚C
4
25
4
50
4
50
nA
Input Bias Current
TA = 25˚C
30
100
30
200
30
200
nA
Input Resistance
TA = 25˚C
Supply Current All Amplifiers
TA = 25˚C, VS = ± 15V
Large Signal Voltage Gain
TA = 25˚C, VS = ± 15V
0.8
2.5
2.4
50
0.8
3.6
160
2.5
2.4
25
0.8
4.5
160
2.5
2.4
25
MΩ
4.5
mA
160
V/mV
VOUT = ± 10V, RL ≥ 2 kΩ
Amplifier to Amplifier
Coupling
TA = 25˚C, f = 1 Hz to 20 kHz
(Input Referred) See Crosstalk
−120
−120
−120
dB
1.0
1.0
1.0
MHz
Test Circuit
Small Signal Bandwidth
TA = 25˚C,
LM148 Series
Phase Margin
TA = 25˚C,
LM148 Series (AV = 1)
60
60
60
degrees
Slew Rate
TA = 25˚C,
LM148 Series (AV = 1)
0.5
0.5
0.5
V/µs
Output Short Circuit Current
TA = 25˚C
Input Offset Voltage
RS ≤ 10 kΩ
25
Input Offset Current
www.national.com
2
25
25
mA
6.0
7.5
7.5
mV
75
125
100
nA
(Continued)
(Note 3)
Parameter
Conditions
LM148
LM248
LM348
Units
Min Typ Max Min Typ Max Min Typ Max
Input Bias Current
325
Large Signal Voltage Gain
VS = ± 15V, VOUT = ± 10V,
Output Voltage Swing
VS = ± 15V, RL = 10 kΩ
25
500
15
400
15
nA
V/mV
RL > 2 kΩ
± 12 ± 13
± 10 ± 12
± 12
RL = 2 kΩ
± 12 ± 13
± 10 ± 12
± 12
± 12 ± 13
± 10 ± 12
± 12
V
V
Input Voltage Range
VS = ± 15V
Common-Mode Rejection
RS ≤ 10 kΩ
70
90
70
90
70
90
dB
RS ≤ 10 kΩ, ± 5V ≤ VS ≤ ± 15V
77
96
77
96
77
96
dB
V
Ratio
Supply Voltage Rejection
Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction
temperature will be exceeded.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by TJMAX, θJA, and the ambient temperature,
TA. The maximum available power dissipation at any temperature is Pd = (TJMAX − TA)/θJA or the 25˚C PDMAX, whichever is less.
Note 3: These specifications apply for VS = ± 15V and over the absolute maximum operating temperature range (TL ≤ TA ≤ TH) unless otherwise noted.
Note 4: Refer to RETS 148X for LM148 military specifications.
Note 5: Human body model, 1.5 kΩ in series with 100 pF.
Cross Talk Test Circuit
VS = ± 15V
00778606
00778607
00778643
3
www.national.com
LM148/LM248/LM348
Electrical Characteristics
LM148/LM248/LM348
Typical Performance Characteristics
Supply Current
Input Bias Current
00778623
00778624
Voltage Swing
Positive Current Limit
00778625
00778626
Negative Current Limit
Output Impedance
00778628
00778627
www.national.com
4
LM148/LM248/LM348
Typical Performance Characteristics
(Continued)
Common-Mode Rejection Ratio
Open Loop Frequency Response
00778629
00778630
Bode Plot LM148
Large Signal Pulse Response (LM148)
00778633
00778631
Small Signal Pulse Response (LM148)
Undistorted Output Voltage Swing
00778635
00778637
5
www.national.com
LM148/LM248/LM348
Typical Performance Characteristics
(Continued)
Gain Bandwidth
Slew Rate
00778638
00778639
Inverting Large Signal Pulse Response (LM148)
Input Noise Voltage and Noise Current
00778641
00778642
Positive Common-Mode Input Voltage Limit
Negative Common-Mode Input Voltage Limit
00778605
00778643
www.national.com
6
The LM148 series are quad low power 741 op amps. In the
proliferation of quad op amps, these are the first to offer the
convenience of familiar, easy to use operating characteristics of the 741 op amp. In those applications where 741 op
amps have been employed, the LM148 series op amps can
be employed directly with no change in circuit performance.
The package pin-outs are such that the inverting input of
each amplifier is adjacent to its output. In addition, the
amplifier outputs are located in the corners of the package
which simplifies PC board layout and minimizes package
related capacitive coupling between amplifiers.
The input characteristics of these amplifiers allow differential
input voltages which can exceed the supply voltages. In
addition, if either of the input voltages is within the operating
common-mode range, the phase of the output remains correct. If the negative limit of the operating common-mode
range is exceeded at both inputs, the output voltage will be
positive. For input voltages which greatly exceed the maximum supply voltages, either differentially or common-mode,
resistors should be placed in series with the inputs to limit
the current.
Like the LM741, these amplifiers can easily drive a 100 pF
capacitive load throughout the entire dynamic output voltage
and current range. However, if very large capacitive loads
must be driven by a non-inverting unity gain amplifier, a
resistor should be placed between the output (and feedback
connection) and the capacitance to reduce the phase shift
resulting from the capacitive loading.
A feedback pole is created when the feedback around any
amplifier is resistive. The parallel resistance and capacitance
from the input of the device (usually the inverting input) to AC
ground set the frequency of the pole. In many instances the
frequency of this pole is much greater than the expected 3
dB frequency of the closed loop gain and consequently there
is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected
3 dB frequency a lead capacitor should be placed from the
output to the input of the op amp. The value of the added
capacitor should be such that the RC time constant of this
capacitor and the resistance it parallels is greater than or
equal to the original feedback pole time constant.
Typical Applications—LM148
One Decade Low Distortion Sinewave Generator
00778608
fMAX = 5 kHz, THD ≤ 0.03%
R1 = 100k pot. C1 = 0.0047 µF, C2 = 0.01 µF, C3 = 0.1 µF, R2 = R6 = R7 = 1M,
R3 = 5.1k, R4 = 12Ω, R5 = 240Ω, Q = NS5102, D1 = 1N914, D2 = 3.6V avalanche
diode (ex. LM103), VS = ± 15V
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back
zeners in the feedback loop of A3.
7
www.national.com
LM148/LM248/LM348
The output current of each amplifier in the package is limited.
Short circuits from an output to either ground or the power
supplies will not destroy the unit. However, if multiple output
shorts occur simultaneously, the time duration should be
short to prevent the unit from being destroyed as a result of
excessive power dissipation in the IC chip.
As with most amplifiers, care should be taken lead dress,
component placement and supply decoupling in order to
ensure stability. For example, resistors from the output to an
input should be placed with the body close to the input to
minimize “pickup” and maximize the frequency of the feedback pole which capacitance from the input to ground creates.
Application Hints
LM148/LM248/LM348
Typical Applications—LM148
(Continued)
Low Cost Instrumentation Amplifier
00778609
VS = ± 15V
R = R2, trim R2 to boost CMRR
Low Drift Peak Detector with Bias Current Compensation
00778610
Adjust R for minimum drift
D3 low leakage diode
D1 added to improve speed
VS = ± 15V
www.national.com
8
LM148/LM248/LM348
Typical Applications—LM148
(Continued)
Universal State-Variable Filter
00778611
Tune Q through R0,
For predictable results: fO Q ≤ 4 x 104
Use Band Pass output to tune for Q
9
www.national.com
LM148/LM248/LM348
Typical Applications—LM148
(Continued)
A 1 kHz 4 Pole Butterworth
00778612
Use general equations, and tune each section separately
Q1stSECTION = 0.541, Q2ndSECTION = 1.306
The response should have 0 dB peaking
A 3 Amplifier Bi-Quad Notch Filter
00778613
Ex: fNOTCH = 3 kHz, Q = 5, R1 = 270k, R2 = R3 = 20k, R4 = 27k, R5 = 20k, R6 = R8 = 10k, R7 = 100k, C1 = C2 = 0.001 µF
Better noise performance than the state-space approach.
www.national.com
10
LM148/LM248/LM348
Typical Applications—LM148
(Continued)
A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros)
00778614
R1C1 = R2C2 = t
R'1C'1 = R'2C'2 = t'
fC = 1 kHz, fS = 2 kHz, fp = 0.543, fZ = 2.14, Q = 0.841, f' P = 0.987, f' Z = 4.92, Q' = 4.403, normalized to ripple BW
Use the BP outputs to tune Q, Q', tune the 2 sections separately
R1 = R2 = 92.6k, R3 = R4 = R5 = 100k, R6 = 10k, R0 = 107.8k, RL = 100k, RH = 155.1k,
R'1 = R'2 = 50.9k, R'4 = R'5 = 100k, R'6 = 10k, R'0 = 5.78k, R'L = 100k, R'H = 248.12k, R'f = 100k. All capacitors are 0.001 µF.
Lowpass Response
00778615
11
www.national.com
LM148/LM248/LM348
Typical Simulation
LM148, LM741 Macromodel for Computer Simulation
00778621
For more details, see IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974
Note 6: o1 = 112IS = 8 x 10−16
Note 7: o2 = 144*C2 = 6 pF for LM149
00778622
www.national.com
12
LM148/LM248/LM348
Connection Diagram
00778602
Top View
Order Number LM148J, LM148J/883, LM248J, LM348M, or LM348N
See NS Package Number J14A, M14A or N14A
LM148J is available per JM38510/11001
13
www.national.com
LM148/LM248/LM348
Physical Dimensions
inches (millimeters)
unless otherwise noted
Ceramic Dual-In-Line Package (J)
Order Number LM148J, LM148J/883, LM248J
NS Package Number J14A
S.O. Package (M)
Order Number LM348M or LM348MX
NS Package Number M14A
www.national.com
14
LM148/LM248/LM348 Series Quad 741 Op Amp
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Molded Dual-In-Line Package (N)
Order Number LM348N
NS Package Number N14A
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification
(CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.
National Semiconductor
Americas Customer
Support Center
Email: [email protected]
Tel: 1-800-272-9959
www.national.com
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: [email protected]
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: [email protected]
Tel: 81-3-5639-7560
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
Similar pages