IRF IRGB4059DPBF Insulated gate bipolar transistor with ultrafast soft recovery diodeinsulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 97072A
IRGB4059DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5µs SCSOA
Square RBSOA
100% of The Parts Tested for 4X Rated Current (ILM)
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free Package
IC = 4.0A, TC = 100°C
G
tsc > 5µs, Tjmax = 175°C
E
VCE(on) typ. = 1.75V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
• Low EMI
E
G
C
TO-220AB
G
C
E
Gate
Collector
Emitter
Absolute Maximum Ratings
Parameter
VCES
IC@ TC = 25°C
IC@ TC = 100°C
ICM
ILM
IF@TC=25°C
IF@TC=100°C
IFM
VGE
PD @ TC =25°
PD @ TC =100°
TJ
TSTG
Max.
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current c
Units
V
600
8
4
16
16
8
4
16
± 20
± 30
56
28
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current d
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
A
V
W
°C
-55 to + 175
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
1
Min.
Typ.
Junction-to-Case - IGBT e
Junction-to-Case - Diode e
Case-toSink, flat, greased surface
Junction-to-Ambient, typical socket mount e
Weight
Max.
2.70
6.30
0.5
80
1.44
Units
°C/W
g
www.irf.com
4/14/06
IRGB4059DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
f
Collector-to-Emitter Breakdown Voltage
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.3
—
—
1.75
2.05
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.15
—
—
2.20
VGE(th)
Gate Threshold Voltage
4.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-18
—
gfe
Forward Transconductance
—
2.0
—
—
1
25
µA
VGE = 0V,VCE = 600V
ICES
VFM
IGES
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
VGE = 0V,Ic =100 µA
V(BR)CES
o
V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C )
IC = 4A, VGE = 15V, TJ = 25°C
5,6,7,9,
IC = 4A, VGE = 15V, TJ = 175°C
10 ,11
V
VCE = VGE, IC = 100 µA
280
—
µA
VGE = 0v, VCE = 600V, TJ =175°C
1.60
2.30
V
IF = 4A
—
1.30
—
nA
VGE = ± 20 V
±100
9,10,11,12
o
mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C )
S VCE = 50V, IC = 4A, PW =80µs
—
—
CT6
IC = 4A, VGE = 15V, TJ = 150°C
—
—
f
V
—
6.5
Ref.Fig
8
IF = 4A, TJ = 175°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Total Gate Charge (turn-on)
—
9
13
Qge
Gate-to-Emitter Charge (turn-on)
—
2
3
Qgc
Gate-to-Collector Charge (turn-on)
—
4
6
VGE = 15V
Eon
Turn-On Switching Loss
—
35
77
IC = 4A, VCC = 400V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
75
118
Etotal
Total Switching Loss
—
110
196
td(on)
Turn-On delay time
—
25
33
tr
Rise time
—
10
14
td(off)
Turn-Off delay time
—
65
75
tf
Fall time
—
15
20
Eon
Turn-On Switching Loss
—
90
—
Eoff
Turn-Off Switching Loss
—
120
—
Etotal
Total Switching Loss
—
210
—
td(on)
Turn-On delay time
—
20
—
tr
Rise time
—
15
—
td(off)
Turn-Off delay time
—
85
—
tf
Fall time
—
35
—
Cies
Input Capacitance
—
240
—
Coes
Output Capacitance
—
25
—
Cres
Reverse Transfer Capacitance
—
10
—
IC = 4A
nC
µJ
24
VCC = 400V
Reverse Bias Safe Operating Area
CT1
RG = 100Ω, L=1mH, LS= 150nH, TJ = 25°C
CT4
Energy losses include tail and diode reverse recovery
IC = 4A, VCC = 400V
ns
RG = 100Ω, L=1mH, LS= 150nH
CT4
TJ = 25°C
IC = 4A, VCC = 400V, VGE = 15V
µJ
13,15
RG = 100Ω, L=1mH, LS= 150nH, TJ = 175°C
Energy losses include tail and diode reverse recovery
IC = 4A, VCC = 400V
ns
RG = 100Ω, L=1mH, LS= 150nH
TJ = 175°C
VGE = 0V
pF
CT4
WF1,WF2
14,16
CT4
WF1,WF2
22
VCC = 30V
f = 1Mhz
TJ = 175°C, IC = 16A
RBSOA
Ref.Fig
FULL SQUARE
VCC = 480V, Vp =600V
4
CT2
Rg = 100Ω, VGE = +15V to 0V
5
µs
VCC = 400V, Vp =600V
22, CT3
SCSOA
Short Circuir Safe Operating Area
Erec
Reverse recovery energy of the diode
145
µJ
TJ = 175 C
trr
Diode Reverse recovery time
55
ns
VCC = 400V, IF = 4A
20,21
Irr
Peak Reverse Recovery Current
11
A
VGE = 15V, Rg = 100Ω, L=1mH, LS=150nH
WF3
RG = 100Ω, VGE = +15V to 0V
o
WF4
17,18,19
Notes:
VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 100 Ω.
‚ Pulse width limited by max. junction temperature.
ƒRθ is measured at TJ approximately 90°C
„Refer to AN-1086 for guide lines for measuring V(BR)CES safely
2
www.irf.com
IRGB4059DPbF
9
60
8
50
7
6
Ptot (W)
40
IC (A)
5
4
3
30
20
2
10
1
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
TC (°C)
60
80 100 120 140 160 180
TC (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
IC A)
IC (A)
10 µs
100 µs
1
10
1ms
DC
1
0.1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VCE = 15V
Fig. 3 - Forward SOA,
TC = 25°C; TJ ≤ 175°C
16
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
8
4
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
8
4
0
0
2
4
6
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
VGE = 18V
12
ICE (A)
ICE (A)
16
VGE = 18V
12
1000
0
0
2
4
6
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGB4059DPbF
16
80
VGE = 18V
60
50
IF (A)
ICE (A)
12
-40°C
25°C
175°C
70
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
8
40
30
4
20
10
0
0
0
2
4
6
8
0.0
1.0
2.0
VCE (V)
20
20
18
18
6.0
7.0
16
ICE = 2.0A
14
12
ICE = 8.0A
10
ICE = 2.0A
14
ICE = 4.0A
VCE (V)
VCE (V)
5.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
16
8
ICE = 4.0A
12
ICE = 8.0A
10
8
6
6
4
4
2
2
0
0
5
10
15
5
20
10
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
18
18
16
16
12
ICE = 4.0A
ICE (A)
ICE = 8.0A
10
TJ = 25°C
TJ = 175°C
14
ICE = 2.0A
12
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
14
15
VGE (V)
VGE (V)
VCE (V)
4.0
VF (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
8
10
8
6
6
4
4
2
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
3.0
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGB4059DPbF
250
1000
Swiching Time (ns)
Energy (µJ)
200
150
EOFF
100
EON
tdOFF
100
tF
tdON
10
tR
50
0
0
5
1
10
0
5
I C (A)
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 100Ω; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 100Ω; VGE = 15V.
140
1000
EOFF
120
Swiching Time (ns)
100
Energy (µJ)
10
EON
80
60
40
tdOFF
100
tF
tdON
tR
10
20
0
0
25
50
75
100
1
125
0
25
50
RG (Ω)
125
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 4A; VGE= 15V
18
18
16
16
RG =10 Ω
14
14
RG =22 Ω
10
12
IRR (A)
12
IRR (A)
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 4A; VGE = 15V
RG =47 Ω
8
6
10
8
6
RG = 100 Ω
4
4
2
2
0
0
0
5
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
www.irf.com
75
10
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 4.0A
5
IRGB4059DPbF
800
20
22Ω
700
QRR (nC)
IRR (A)
10
8.0A
47 Ω
600
15
10Ω
100Ω
4.0A
500
400
2.0A
300
200
5
100
0
0
500
0
1000
1000
1500
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 4A; TJ = 175°C
250
25
25
200
20
20
150
15
15
10
10
50
5
5
0
0
Time (µs)
Energy (µJ)
500
10 Ω
22 Ω
100
47 Ω
Current (A)
0
100 Ω
0
5
0
8
10
10
12
14
16
18
VGE (V)
IF (A)
Fig. 22- Typ. VGE vs Short Circuit Time
VCC=400V, TC =25°C
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
1000
16
Cies
14
300V
400V
100
VGE (V)
Capacitance (pF)
12
Coes
10
8
6
10
Cres
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
100
0
2
4
6
8
10
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 4A, L=600µH
www.irf.com
IRGB4059DPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
τJ
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ2
τ3
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
τι (sec)
0.932018 0.000205
1.112118 0.00129
0.657365 0.010446
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.01
0.02
0.01
R1
R1
J
SINGLE PULSE
( THERMAL RESPONSE )
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ1
τ2
Ci= τi/Ri
Ci= τi/Ri
τ2
τ3
τ3
τ
τι (sec)
1.628158 0.000205
3.159113 0.00129
1.512729 0.010446
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB4059DPbF
L
L
DUT
0
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
8
VCC
80 V
+
-
DUT
Rg
480V
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
IRGB4059DPbF
500
10
500
25
400
8
400
20
tr
6
tf
200
4
90% ICE
5% VCE
100
300
VCE (V)
15
90% test
t
TEST
CURRE
10% test current
200
2
100
5
5% ICE
5% VCE
0
0
0
0
EOFF Loss
-100
-0.40
EON Loss
-2
0.60
1.60
-100
11.90
-5
12.30
12.10
Time (µs)
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
10
QRR
5
500
50
400
40
VCE
tRR
300
30
ICE
Peak
IRR
10%
Peak
IRR
-10
-15
WF.3- Typ.
Reverse0.15
Recovery0.25
-0.05
0.05
@ TJ = 150°C using CT.4
time (µS)
WF.3- Typ. Reverse Recovery Waveform
@ TJ = 175°C using CT.4
www.irf.com
VCE (V)
IRR (A)
0
-5
10
200
20
100
10
0
ICE (A)
VCE (V)
300
0
-100
-4.00
-10
1.00
6.00
time (µS)
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGB4059DPbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN THE ASS EMBLY LINE "C"
Note: "P" in as s embly line pos ition
indicates "Lead - Free"
PART NUMBER
INT ERNATIONAL
RECTIFIER
LOGO
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
AS S EMBLY
LOT CODE
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/06
10
www.irf.com
Similar pages