PD - 97072A IRGB4059DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for 4X Rated Current (ILM) Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package IC = 4.0A, TC = 100°C G tsc > 5µs, Tjmax = 175°C E VCE(on) typ. = 1.75V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E G C TO-220AB G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Units V 600 8 4 16 16 8 4 16 ± 20 ± 30 56 28 Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds A V W °C -55 to + 175 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Min. Typ. Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-toSink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight Max. 2.70 6.30 0.5 80 1.44 Units °C/W g www.irf.com 4/14/06 IRGB4059DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions f Collector-to-Emitter Breakdown Voltage 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.3 — — 1.75 2.05 VCE(on) Collector-to-Emitter Saturation Voltage — 2.15 — — 2.20 VGE(th) Gate Threshold Voltage 4.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -18 — gfe Forward Transconductance — 2.0 — — 1 25 µA VGE = 0V,VCE = 600V ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V VGE = 0V,Ic =100 µA V(BR)CES o V/°C VGE = 0V, Ic = 250 µA ( 25 -175 C ) IC = 4A, VGE = 15V, TJ = 25°C 5,6,7,9, IC = 4A, VGE = 15V, TJ = 175°C 10 ,11 V VCE = VGE, IC = 100 µA 280 — µA VGE = 0v, VCE = 600V, TJ =175°C 1.60 2.30 V IF = 4A — 1.30 — nA VGE = ± 20 V ±100 9,10,11,12 o mV/°C VCE = VGE, IC = 250 µA ( 25 -175 C ) S VCE = 50V, IC = 4A, PW =80µs — — CT6 IC = 4A, VGE = 15V, TJ = 150°C — — f V — 6.5 Ref.Fig 8 IF = 4A, TJ = 175°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Qg Total Gate Charge (turn-on) — 9 13 Qge Gate-to-Emitter Charge (turn-on) — 2 3 Qgc Gate-to-Collector Charge (turn-on) — 4 6 VGE = 15V Eon Turn-On Switching Loss — 35 77 IC = 4A, VCC = 400V, VGE = 15V Eoff Turn-Off Switching Loss — 75 118 Etotal Total Switching Loss — 110 196 td(on) Turn-On delay time — 25 33 tr Rise time — 10 14 td(off) Turn-Off delay time — 65 75 tf Fall time — 15 20 Eon Turn-On Switching Loss — 90 — Eoff Turn-Off Switching Loss — 120 — Etotal Total Switching Loss — 210 — td(on) Turn-On delay time — 20 — tr Rise time — 15 — td(off) Turn-Off delay time — 85 — tf Fall time — 35 — Cies Input Capacitance — 240 — Coes Output Capacitance — 25 — Cres Reverse Transfer Capacitance — 10 — IC = 4A nC µJ 24 VCC = 400V Reverse Bias Safe Operating Area CT1 RG = 100Ω, L=1mH, LS= 150nH, TJ = 25°C CT4 Energy losses include tail and diode reverse recovery IC = 4A, VCC = 400V ns RG = 100Ω, L=1mH, LS= 150nH CT4 TJ = 25°C IC = 4A, VCC = 400V, VGE = 15V µJ 13,15 RG = 100Ω, L=1mH, LS= 150nH, TJ = 175°C Energy losses include tail and diode reverse recovery IC = 4A, VCC = 400V ns RG = 100Ω, L=1mH, LS= 150nH TJ = 175°C VGE = 0V pF CT4 WF1,WF2 14,16 CT4 WF1,WF2 22 VCC = 30V f = 1Mhz TJ = 175°C, IC = 16A RBSOA Ref.Fig FULL SQUARE VCC = 480V, Vp =600V 4 CT2 Rg = 100Ω, VGE = +15V to 0V 5 µs VCC = 400V, Vp =600V 22, CT3 SCSOA Short Circuir Safe Operating Area Erec Reverse recovery energy of the diode 145 µJ TJ = 175 C trr Diode Reverse recovery time 55 ns VCC = 400V, IF = 4A 20,21 Irr Peak Reverse Recovery Current 11 A VGE = 15V, Rg = 100Ω, L=1mH, LS=150nH WF3 RG = 100Ω, VGE = +15V to 0V o WF4 17,18,19 Notes: VCC = 80% (VCES), VGE = 15V, L = 100 µH, RG = 100 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guide lines for measuring V(BR)CES safely 2 www.irf.com IRGB4059DPbF 9 60 8 50 7 6 Ptot (W) 40 IC (A) 5 4 3 30 20 2 10 1 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 TC (°C) 60 80 100 120 140 160 180 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 IC A) IC (A) 10 µs 100 µs 1 10 1ms DC 1 0.1 1 10 100 10 1000 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C 16 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 8 4 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 8 4 0 0 2 4 6 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com VGE = 18V 12 ICE (A) ICE (A) 16 VGE = 18V 12 1000 0 0 2 4 6 8 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGB4059DPbF 16 80 VGE = 18V 60 50 IF (A) ICE (A) 12 -40°C 25°C 175°C 70 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 8 40 30 4 20 10 0 0 0 2 4 6 8 0.0 1.0 2.0 VCE (V) 20 20 18 18 6.0 7.0 16 ICE = 2.0A 14 12 ICE = 8.0A 10 ICE = 2.0A 14 ICE = 4.0A VCE (V) VCE (V) 5.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 16 8 ICE = 4.0A 12 ICE = 8.0A 10 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 Fig. 9 - Typical VCE vs. VGE TJ = -40°C 18 18 16 16 12 ICE = 4.0A ICE (A) ICE = 8.0A 10 TJ = 25°C TJ = 175°C 14 ICE = 2.0A 12 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 14 15 VGE (V) VGE (V) VCE (V) 4.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 8 10 8 6 6 4 4 2 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 3.0 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGB4059DPbF 250 1000 Swiching Time (ns) Energy (µJ) 200 150 EOFF 100 EON tdOFF 100 tF tdON 10 tR 50 0 0 5 1 10 0 5 I C (A) IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 100Ω; VGE = 15V. 140 1000 EOFF 120 Swiching Time (ns) 100 Energy (µJ) 10 EON 80 60 40 tdOFF 100 tF tdON tR 10 20 0 0 25 50 75 100 1 125 0 25 50 RG (Ω) 125 Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 4A; VGE= 15V 18 18 16 16 RG =10 Ω 14 14 RG =22 Ω 10 12 IRR (A) 12 IRR (A) 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 4A; VGE = 15V RG =47 Ω 8 6 10 8 6 RG = 100 Ω 4 4 2 2 0 0 0 5 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C www.irf.com 75 10 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 4.0A 5 IRGB4059DPbF 800 20 22Ω 700 QRR (nC) IRR (A) 10 8.0A 47 Ω 600 15 10Ω 100Ω 4.0A 500 400 2.0A 300 200 5 100 0 0 500 0 1000 1000 1500 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 4A; TJ = 175°C 250 25 25 200 20 20 150 15 15 10 10 50 5 5 0 0 Time (µs) Energy (µJ) 500 10 Ω 22 Ω 100 47 Ω Current (A) 0 100 Ω 0 5 0 8 10 10 12 14 16 18 VGE (V) IF (A) Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C 1000 16 Cies 14 300V 400V 100 VGE (V) Capacitance (pF) 12 Coes 10 8 6 10 Cres 4 2 0 1 0 20 40 60 80 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 100 0 2 4 6 8 10 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 4A, L=600µH www.irf.com IRGB4059DPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 τJ R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R2 R2 R3 R3 Ri (°C/W) τC τ2 τ1 τ2 τ3 τ τ3 Ci= τi/Ri Ci= τi/Ri τι (sec) 0.932018 0.000205 1.112118 0.00129 0.657365 0.010446 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.01 0.02 0.01 R1 R1 J SINGLE PULSE ( THERMAL RESPONSE ) τJ τ1 R2 R2 R3 R3 Ri (°C/W) τC τ1 τ2 Ci= τi/Ri Ci= τi/Ri τ2 τ3 τ3 τ τι (sec) 1.628158 0.000205 3.159113 0.00129 1.512729 0.010446 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4059DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGB4059DPbF 500 10 500 25 400 8 400 20 tr 6 tf 200 4 90% ICE 5% VCE 100 300 VCE (V) 15 90% test t TEST CURRE 10% test current 200 2 100 5 5% ICE 5% VCE 0 0 0 0 EOFF Loss -100 -0.40 EON Loss -2 0.60 1.60 -100 11.90 -5 12.30 12.10 Time (µs) Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 10 QRR 5 500 50 400 40 VCE tRR 300 30 ICE Peak IRR 10% Peak IRR -10 -15 WF.3- Typ. Reverse0.15 Recovery0.25 -0.05 0.05 @ TJ = 150°C using CT.4 time (µS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4 www.irf.com VCE (V) IRR (A) 0 -5 10 200 20 100 10 0 ICE (A) VCE (V) 300 0 -100 -4.00 -10 1.00 6.00 time (µS) WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGB4059DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" PART NUMBER INT ERNATIONAL RECTIFIER LOGO DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C AS S EMBLY LOT CODE TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/06 10 www.irf.com