APA2060 2.4W Stereo Fully Differential Audio Power Amplifier With Stereo Class AB Cap-Free Headphone Driver and LDO Features General Description • • The APA2060 is a stereo fully differential audio power amplifier with stereo Class-AB cap-free headphone driver • • • • • • • • • • • Meeting VISTATM Requirement Fully Differential Power Amplifier with and LDO available in a TQFN5X5-32 pins package. The built-in gain setting at power amplifier can minimize Excellent RF Rectification Immunity No Output Capacitor Required for Head the external component counts. For the flexible application, the gain can be set to 4-steps, 6, 10, 15.6, and 21.6dB by Phone Driver Integrated LDO (Low Dropout Regulator) for Audio Codec (4.75V) gain control pins (GAIN0 and GAIN1). The power amplifier’s fully differential architecture provides high PSRR, in- Adjustable Gain Setting for Power Amplifier creased immunity to noise and RF rectification. AV=-1.5V/V Fixed Gain Setting for Headphone The APA2060 power amplifiers are capable of driving Driver 2.4W at VDD=5V into 4Ω speaker, the cap-free headphone drivers can provide 180mW at HV DD =3.3V into16Ω Fast Start-up Time headphones, and the LDO has a maximum 120mA (4.75V) driver current for audio codec. The APA2060 pro- Integrated De-Pop Circuitry High PSRR (Power Supply Rejection Ratio) vides thermal and over-current protections. The cap-free headphone driver eliminates the DC block- Thermal and Over-Current Protections Less External Components Required ing capacitors at outputs, save the PCB space. The integration of fully differential power amplifier, cap-free head- Space Saving Package – TQFN5x5-32 phone driver, and LDO is the best solution for VISTATM requirement and it can lower the total BOM costs. Lead Free and Green Devices Available (RoHS Compliant) +0 • • • Common Mode Rejection Ratio (dB) Applications LCD Monitor Notebook Portable DVD Simplified Application Circuit -20 AV=10dB Vin=0.2V PP -30 Ci=0.47µF Input Short -40 AMP Mode -50 -60 -70 -80 -90 -100 Audio Codec Stereo Speakers VDD=5.0V -10 R =4Ω L 20 100 1k Frequency (Hz) 10k 20k Stereo Headphone LDO (Low Drop -Out Regulator) ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 1 www.anpec.com.tw APA2060 Ordering and Marking Information Package Code QB : TQFN5x5-32 Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA2060 Assembly Material Handling Code Temperature Range Package Code APA2060 QB : APA2060 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). LDO_EN 25 RIN_H 26 LIN_H 27 GND 28 LDOUT 29 VDD 30 GAIN0 31 GAIN1 32 17 HVDD 18 PVDD 21 PGND 20 ROUTP 19 ROUTN 22 HP_EN 24 BIAS 23 AMP_EN Pin Configuration 16 HP_LO 15 HP_RO 14 HVSS 13 CVSS 12 CPN 11 CGND 10 CPP 9 NC PVDD 8 LOUTN 7 PGND 5 LOUTP 6 LINP_A 3 LINN_A 4 RINN_A 1 RINP_A 2 TQFN5x5-32 (Top View) =Thermal-Pad (connected the Thermal-Pad to GND plane for better heat dissipation) Absolute Maximum Ratings Symbol VDD HVDD VSS (Note 1) Parameter Rating Supply Voltage (VDD to GND, PVDD to PGND) -0.3 to 6 Supply Voltage (HVDD to GND) -0.3 to 6 Supply Voltage (HVSS, CVSS to GND) -6 to +0.3 Unit V Input Voltage (RINN_A, RINP_A, LINN_A, LINP_A to GND) Input Voltage (RIN_H, LIN_H to GND) VSS-0.3 to HVDD+0.3 Input Voltage (GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN to GND) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 -0.3 to VDD+0.3 2 -0.3 to VDD+0.3 www.anpec.com.tw APA2060 Absolute Maximum Ratings (Cont.) (Note 1) Parameter Symbol Input Voltage (PGND, CGND to GND) TJ Maximum Junction Temperature Unit -0.3 to +0.3 V 150 TSTG Storage Temperature Range TSDR Maximum Lead Soldering Temperature, 10 Seconds PD Rating ο -65 to +150 C 260 Power Dissipation Internally Limited W Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics Symbol θJA θJC Parameter Thermal Resistance -Junction to Ambient Typical Value Unit (Note 2) TQFN5X5-32 Thermal Resistance -Junction to Case (Note 3) TQFN5X5-32 40 ο C /W 8 Note 2: Please refer to “ Layout Recommendation”, the Thermal-Pad on the bottom of the IC should soldered directly to the PCB’s Thermal-Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 3: The case temperature is measured at the center of the Thermal-Pad on the underside of the TQFN5X5-32 package. Recommended Operating Conditions Symbol Parameter Range VDD Supply Voltage 4.5 ~ 5.5 HVDD Supply Voltage 3.0 ~ 5.5 VIH High Level Input Voltage GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN 2 ~ VDD VIL Low Level Input Voltage GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN 0 ~ 0.5 VIC Common Mode Input Voltage Unit V ILDOUT For Power Amplifier 0.5 ~ VDD-0.5 For Headphone Amplifier HVSS ~ HVDD Output Current (LDOUT) 0 ~ 200 TA Ambient Temperature Range -40 ~ 85 TJ Junction Temperature Range -40 ~ 125 mA ο C COUT LDO Output Capacitor (MLCC Type) 1 ~ 100 RL Speaker Resistance 4~ RL Headphone Resistance 16 ~ Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 3 µF Ω www.anpec.com.tw APA2060 Electrical Characteristics o Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted) Symbol IDD(HVDD) Parameter V AMP_EN =0V, Supply Current IDD(VDD) IAMP(HVDD) Power Amplifier Supply Current VHP_EN=VLDO_EN=5V V AMP_EN =VHP_EN=VLDO_EN=0V IAMP(VDD) IHP(HVDD) V AMP_EN =VHP_EN=5V, Headphone Driver Supply Current IHP(VDD) ILDO(HVDD) VLDO_EN=0V V AMP_EN =VLDO_EN=5V, LDO Supply Current ILDO(VDD) VHP_EN=0V ISD(HVDD) V AMP EN =5V, Shutdown Current ISD(VDD) II Min. Typ. Max. HVDD - 2.5 5 VDD - 9 18 HVDD - 0.1 0.2 VDD - 4.5 11 HVDD - 2.5 5 VDD - 6 12 HVDD - 0.1 0.2 VDD - 0.4 0.65 HVDD - - 2 VDD - - 5 GAIN0, GAIN1, LDO_EN, AMP_EN, HP_EN - - 1 CB=0.47µF - 25 - AV=6dB - 60 - AV=10dB - 76 - AV=15.6dB - 40 - AV=21.6dB 17 20 - VGAIN0=VGAIN1=0V. 5.5 6 6.5 VGAIN0=0V, VGAIN1=VDD. 9.5 10 10.5 VGAIN0=VDD, VGAIN1=0V. 15.1 15.6 16.1 VGAIN0=VGAIN1=VDD. 21.1 21.6 22.1 - 5 20 1.9 1.3 - 1 - 2.4 1.5 - - 0.07 0.05 - - -110 -110 - VHP_EN=VLDO_EN=0V Input Current APA2060 Test Conditions Unit mA µA SPEAKER MODE, AV =10dB TSTART-UP Ri AV VOS PO THD+N Crosstalk Start-Up Time from Shutdown Input Resistor Closed-Loop Gain Output Offset Voltage Output Power Total Harmonic Distortion Plus Noise Channel Separation RL = 8Ω THD+N=1%, fin=1kHz RL=4Ω RL=8Ω THD+N=10%, fin=1kHz RL=4Ω RL=8Ω fin=1kHz RL=4Ω ,PO=1.4W RL=8Ω, PO=0.9W fin=1kHz RL=4Ω, Po=200mW RL=8Ω, Po=130mW Power Supply Rejection Ratio fin=217Hz, Vrr=0.2Vrms,RL=8Ω - -75 - CMRR Common Mode Rejection Ratio fin=1kHz, Vin=0.2Vrms.,RL=8Ω fin=20~20kHz With A-weighting Filter RL=4Ω, PO=1.4W, RL=8Ω, PO=0.9W, fin=20~20kHz,With A-weighting Filter RL=8Ω - -65 - - 100 100 - - 22 - Signal-to-Noise Ratio Vn Noise Output Voltage Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 4 kΩ dB mV W PSRR S/N ms % dB µVrms www.anpec.com.tw APA2060 Electrical Characteristics (Cont.) o Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted) Symbol Parameter APA2060 Test Conditions Unit Min. Typ. Max. - 10 - ms 17 20 - kΩ -1.45 -1.5 -1.55 V/V - 1 5 mV 140 120 - 100 180 160 - 150 2.0 2.1 - 2.45 2.6 - HEADPHONE MODE, AV = -1.5V/V, CPF=CPO=1µF(X5R Type) TSTART-UP Start-Up Time from shutdown Ri Input Resistor AV Closed-Loop Gain VOS Output Offset Voltage PO Output Power VO THD+N Crosstalk PSRR Output Swing Voltage Total Harmonic Distortion Plus Noise Channel Separation Power Supply Rejection Ratio S/N Signal-to-Noise Ratio Vn Noise Output Voltage CB=0.47µF RL = 32Ω THD+N=1%, fin=1kHz RL=16Ω RL=32Ω THD+N=10%, fin=1kHz RL=16Ω RL=32Ω THD+N=1%, fin=1kHz RL=320Ω, RL=10kΩ, THD+N=10%, fin=1kHz RL=320Ω, RL=10kΩ, fin=1kHz RL=16Ω , PO=125mW RL=32Ω, PO=88mW RL=320Ω, VO=1.5V RL=10kΩ, VO=1.6V fin=1kHz RL=16Ω , PO=16mW RL=32Ω, PO=12mW RL=320Ω, VO=0.22V RL=10kΩ, VO=0.22V fin=217Hz,Vrr=0.2Vrms RL=32Ω, fin=20~20kHz, With A-weighting Filter RL=16Ω , PO=125mW RL=32Ω, PO=88mW RL=320Ω, VO=1.5V RL= 10kΩ, VO=1.6V fin=20~20kHz, With A-weighting Filter RL=32Ω 1.8 - - - - - 0. 03 0. 02 0. 005 0. 004 -82 -82 -77 -77 -80 99 100 100 100 mW V - % dB - - dB - 15 - µVrms LDO (LOW DROP-OUT REGULATOR) VDD Supply Voltage 4.9 5.0 5.5 V IO Output Current - - 120 mA VO Output Voltage IO=1mA 4.65 4.75 4.85 V Line Regulation IO=1mA, VDD=5.0V to 5.5V - 3 10 mV Load Regulation IO=1mA to 120mA - 0.06 0.2 mV/mA VDROP Dropout Voltage IO=120mA 80 100 mV PSRR Power Supply Rejection Ratio IO=1mA,fin=120Hz,Vrr=0.2Vrms - -50 - dB - 50 - kΩ RDIS Discharge Resistor Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 5 www.anpec.com.tw APA2060 Electrical Characteristics (Cont.) o Refer to the typical application circuits. VDD=5V, HVDD=3.3V, Gnd=0V, TA=25 C (unless otherwise noted) Symbol Parameter APA2060 Test Conditions Unit Min. Typ. Max. CHARGE PUMP, CPF=CPO=1µF(X5R TYPE) FOSC Oscillator Frequency - 450 - kHz REQ Equivalent Resistance - 10 - Ω CVss Negative Output Voltage -5.1 -5 -4.9 V RDIS Discharge Resistor - 5 - kΩ Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 No load 6 www.anpec.com.tw APA2060 Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) THD+N vs. Frequency THD+N vs. Output Power 1 PO=0.14W PO=0.7W 0.1 THD+N (%) THD+N (%) 10 R =4Ω L fin=1kHz Ci=0.47µF AV=10dB BW<22kHz 1 AMP Mode VDD=4.5V 0.1 0.01 VDD=5.0V RL=4Ω Ci=0.47µF AV=10dB BW<22kHz AMP Mode 0.001 20 100 VDD=5.0V VDD=5.5V 0.01 10m 100m 5 1 PO=1.4W Output Power (W) Common Mode Rejection Ratio (dB) Crosstalk (dB) +0 -60 -80 Right to Left -100 Left to Right -120 20 100 1k VDD=5.0V RL=4Ω AV=10dB Vin=0.2VPP Ci=0.47µF Input Short AMP Mode -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 20 10k 20k 100 Frequency (Hz) THD+N vs. Frequency RL=8Ω fin=1kHz Ci=0.1µF AV=10dB BW<22kHz AMP Mode PO=0.09W 0.1 VDD=4.5V 0.1 0.01 VDD=5.0V VDD=5.5V 0.01 10m 10k 20k 1 THD+N (%) THD+N (%) 1 1k Frequency (Hz) THD+N vs. Output Power 10 10k 20k CMRR vs. Frequency Crosstalk vs. Frequency +0 TT TTTTT VDD=5.0V RL=4Ω -20 A =10dB V Ci=0.47µF -40 PO=200mW AMP Mode -140 1k Frequency (Hz) 100m 1 0.001 5 Output Power (W) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 PO=0.45W PO=0.9W VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF BW<22kHz AMP Mode 20 100 1k 10k 20k Frequency (Hz) 7 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) CMRR vs. Frequency +0 Common Mode Rejection Ratio (dB) -60 -80 Right to Left -100 Left to Right -120 -140 -20 -30 -40 -50 -60 -70 -80 -90 -100 20 100 1k VDD=5.0V RL=8Ω AV=10dB Vin=0.2VPP Ci=0.47µF Input Short AMP Mode -10 10k 20k 20 100 Frequency Response +22 +200 +21 +180 Phase VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF AMP Mode +7 10 100 1k 10k 200k Gain (dB) Gain (dB) +9 +220 Phase (deg) Gain +8 +220 +20 +180 Phase +160 +19 +140 +18 VDD=5.0V RL=8Ω AV=21.6dB Ci=0.47µF AMP Mode 10 100 Output Noise Voltage vs. Frequency -20 Left channel -40 Crosstalk (dB) Output Noise Voltage (Vrms) Right channel 10k 200k +140 VDD=5.0V HVDD=3.3V RL=4Ω(AMP) RL=10kΩ(HP) PO=200mW(AMP) AMP(active) mode HP mode -60 -80 Left(AMP) to Right(HP) -100 Right(AMP) to Right(HP) -120 -140 100 1k Crosstalk vs. Frequency +0 VDD=5.0V RL=8Ω AV=10dB Cin=0.47µF A-Wighting AMP Mode 20 +160 Frequency (Hz) 10µ 1µ +200 Gain Frequency (Hz) 50µ 10k 20k Frequency Response +11 +10 1k Frequency (Hz) Frequency (Hz) Phase (deg) Crosstalk (dB) Crosstalk vs. Frequency +0 TTTTTTT VDD=5.0V R =8Ω -20 A L=10dB V Ci=0.47µF -40 PO=130mW AMP Mode 1k 10k 20k 20 100 Right(AMP) to Left(HP) 1k 10k 20k Frequency (Hz) Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 Left(AMP) to Left(HP) 8 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) THD+N vs. Output Voltage 10 10 VDD=5.0V HVDD=3.3V fin=1kHz Ci=1µF BW<22kHz In Phase HP Mode 0.1 RL=16Ω RL=32Ω 0.01 VDD=5.0V HVDD=3.3V RL=16Ω fin=1kHz Ci=1µF BW<22kHz HP Mode 1 THD+N (%) 1 THD+N (%) THD+N vs. Output Power In Phase 0.1 Mono RL=320Ω RL=10KΩ 0.001 0 500m 1 1.5 2 2.5 0.01 3 10m 100m THD+N vs. Frequency Crosstalk vs. Frequency +0 0.1 -20 PO=13mW -40 Crosstalk (dB) THD+N (%) 1 VDD=5.0V HVDD=3.3V RL=16Ω Ci=1µF BW<22kHz HP Mode PO=63mW PO=125mW 0.01 500m Output Power (W) Output Voltage (Vrms) VDD=5.0V HVDD=3.3V RL=16Ω PO=16mW Ci=1µF HP Mode -60 Right to Left -80 Left to Right -100 -120 0.001 -140 20 100 1k 10k 20k 20 100 1 VDD=5.0V HVDD=3.3V RL=32Ω fin=1kHz Ci=1µF BW<22kHz HP Mode 0.1 In Phase THD+N (%) THD+N (%) 1 10k 20k THD+N vs. Frequency THD+N vs. Output Power 10 1k Frequency (Hz) Frequency (Hz) Mono 0.1 VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF BW<22kHz HP Mode PO=9mW PO=88mW 0.01 PO=44mW 0.01 10m 100m 0.001 300m Output Power (mW) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 20 100 1k 10k 20k Frequency (Hz) 9 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) Output Noise Voltage vs. Frequency Crosstalk vs. Frequency 50µ VDD=5.0V HVDD=3.3V -20 RL=32Ω PO=12mW -40 Ci=1µF HP Mode Output Noise Voltage (Vrms) Crosstalk (dB) +0 Right channel 10µ -60 Right to Left -80 Left to Right -100 -120 -140 Left channel 20 100 1k VDD=5.0V HDD=3.3V RL=32Ω Ci=1µF A-Weighting HP Mode 1µ 10k 20k 20 100 Frequency (Hz) +220 Gain +0 T +2 +180 Phase VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF HP Mode +0 10 100 -40 Crosstalk (dB) +200 Phase (deg) Gain (dB) -20 +3 +1 -60 200k Left(HP) to Right(AMP) -80 Right(HP) to Left(AMP) -120 10k T =5.0V VDD HVDD=3.3V RL=8Ω(AMP) RL=16Ω(HP) PO=16mW(HP) AMP Mode HP(active) Mode -100 +160 1k -140 +140 Right(HP) to Right(AMP) Left(HP) to Left(AMP) 20 100 Frequency (Hz) THD+N vs. Frequency 10k 20k Crosstalk vs. Frequency +0 VDD=5.0V HVDD=3.3V RL=320Ω Ci=1µF BW<22kHz HP Mode Crosstalk (dB) THD+N (%) 1k Frequency (Hz) 1 0.1 10k 20k Crosstalk vs. Frequency Frequency Response +4 1k Frequency (Hz) VO=0.15V 0.01 VDD=5.0V HVDD=3.3V -20 R =320Ω L VO=0.22Vrms -40 Ci=1µF HP Mode -60 Right to Left -80 Left to Right -100 VO=0.75V -120 VO=1.5V 0.001 20 100 -140 1k 10k 20k Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 20 100 1k 10k 20k Frequency (Hz) Frequency (Hz) 10 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) THD+N vs. Frequency THD+N (%) 0.1 Crosstalk vs. Frequency +0 VDD=5.0V HVDD=3.3V RL=10kΩ Ci=1µF BW<22kHz HP Mode Crosstalk (dB) 1 VO=0.16V 0.01 -60 Right to Left -80 Left to Right -100 VO=1.6V 0.001 VDD=5.0V HVDD=3.3V -20 R =10kΩ L VO=0.22Vrms -40 Ci=1µF HP Mode -120 VO=0.8V 20 100 1k -140 10k 20k 20 100 1k 10k 20k Frequency (Hz) Frequency (Hz) Output Noise Voltage vs. Frequency Frequency Response +4 50µ +220 Output Noise Voltage (Vrms) Gain +3 +200 VDD=5.0V HDD=3.3V RL=10kΩ Ci=1µF A-Weighting HP Mode 20 +2 +180 Phase VDD=5.0V HVDD=3.3V RL=10kΩ Ci=0.47µF HP Mode +1 +0 100 1k 10k 20k 10 100 Phase (deg) Right channel 10µ 1µ Gain (dB) Left channel +160 1k +140 200k 10k Frequency (Hz) Frequency (Hz) AMP Attenuation vs. Frequency HP Attenuation vs. Frequency +0 -20 AMP Attenuation (dB) -30 -40 -50 VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF VO=2Vrms (AMP enable) AMP Mode (disable) -10 -20 HP Attenuation (dB) -10 -60 -70 -80 Left channel -90 Right channel -30 -40 -50 VDD=5.0V HVDD=3.3V RL=32Ω Ci=1µF VO=1Vrms (HP enable) HP Mode (disable) -60 -70 -80 -90 -100 Right channel -110 -110 Left channel -120 -120 -100 20 100 1k 10k 20k Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 20 100 1k 10k 20k Frequency (Hz) Frequency (Hz) 11 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) HP Attenuation vs. Frequency PSRR vs. Frequency -20 TT +0 AMP Attenuation (dB) -20 -30 -40 -50 VDD=5.0V HVDD=3.3V RL=10kΩ Ci=1µF VO=1Vrms (HP enable) HP Mode (disable) -60 Right channel -70 -80 Left channel -90 -40 -50 VDD=5.0V RL=8Ω AV=10dB Ci=0.47µF Vrr=0.2Vrms AMP Mode -60 -70 -80 -90 -100 -100 -110 -110 -120 -30 Power Supply Rejection Ratio (dB) -10 T 20 100 1k -120 10k 20k Vrr:Ripple Voltage on VDD 20 100 Frequency (Hz) -70 -80 -90 -100 -20 TTT TT TT VDD=5.0V -30 HV =3.3V DD RL=10kΩ -40 Ci=1µF -50 Vrr=0.2Vrms HP Mode -60 -70 -80 -90 -100 -110 -110 Vrr:Ripple Voltage on HVDD 20 100 1k -120 10k 20k Vrr:Ripple Voltage on HVDD 20 100 4.80 4.79 Output Voltage (Volt) Power Supply Rejection Ratio (dB) LDO Mode VDD=5.0V IO=10mA Vrr=0.2Vrms LDO Mode -30 -40 -50 -60 4.78 4.76 IO=10mA 4.75 4.74 IO=60mA IO=120mA 4.73 4.71 -70 -80 10k 20k LDO Output Voltage vs. Supply Voltage PSRR vs. Frequency +0 -20 1k Frequency (Hz) Frequency (Hz) -10 10k 20k PSRR vs. Frequency Power Supply Rejection Ratio (dB) Power Supply Rejection Ratio (dB) PSRR vs. Frequency -20TTTTT TT T VDD=5.0V -30 HVDD=3.3V R =32Ω -40 CL=1µF i -50 Vrr=0.2Vrms HP Mode -60 -120 1k Frequency (Hz) Vrr:Ripple Voltage on VDD 20 100 1k 4.70 5 10k 20k Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 5.1 5.2 5.3 5.4 5.5 Supply Voltage (Volt) Frequency (Hz) 12 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) Power Dissipation vs. Output Power 0.9 1.6 0.8 1.4 VDD=5.5V 1.2 VDD=5.0V 1.0 VDD=4.5V 0.8 0.6 RL=4Ω fin=1kHz Mono AMP Mode 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Power Dissipation vs. Output Power 1.0 1.8 Power Dissipation (W) Power Dissipation (W) 2.0 0.7 0.6 VDD=5.5V 0.5 VDD=5.0V 0.4 VDD=4.5V 0.3 0.1 0.0 0.0 3.0 0.5 Output Power vs. Supply Voltage Power Dissipation vs. Output Power 3.0 300 RL=4Ω AV=10dB fin=1kHz Mono AMP Mode 2.8 2.6 RL=16Ω Output Power (W) Power Dissipation (mW) 250 200 150 RL=32Ω 100 50 0 25 50 75 100 125 VDD=5.0V HVDD=3.3V fin=1kHz Mono HP Mode 150 175 200 2.4 THD+N=10% 2.2 2.0 1.8 THD+N=1% 1.6 1.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 Output Power (mW) Supply Voltage (V) Supply Current vs. Output Power Output Power vs. Supply Voltage Output Power (W) 1.8 0.8 RL=8Ω AV=10dB fin=1kHz Mono AMP Mode 1.6 THD+N=10% 1.4 1.2 THD+N=1% VDD=5.0V VDD=4.5V 0.6 0.5 0.4 0.3 RL=4Ω AV=10dB fin=1kHz Mono AMP Mode 0.2 1.0 0.8 4.5 4.6 4.7 VDD=5.5V 0.7 Supply Current (A) 2.0 1.0 Output Power (W) Output Power (W) 0 RL=8Ω fin=1kHz Mono AMP Mode 1.5 2.0 0.2 0.1 4.8 4.9 5.0 5.1 5.2 0.0 0.0 5.3 5.4 5.5 Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 0.5 1.0 1.5 2.0 2.5 3.0 Output Power (W) Supply Voltage (V) 13 www.anpec.com.tw APA2060 Typical Operating Characteristics (Cont.) (TA = +25°C, unless otherwise noted.) Output Power vs. Load Resistance Supply Current vs. Output Power 2.6 0.50 VDD=5.5V 2.2 VDD=5.0V 0.35 Output Power (W) Supply Current (A) 0.40 VDD=4.5V 0.30 0.25 0.20 0.15 RL=8Ω AV=10dB fin=1kHz Mono AMP Mode 0.10 0.05 0.00 0.0 0.5 1.0 Output Power (W) 1.5 2.0 1.8 1.6 250 1.2 1.0 0.8 THD+N=1% 0.6 0.4 2.0 4 8 12 16 20 24 28 32 Load Resistance (Ω) 11 VDD=5.0V HVDD=3.3V fin=1kHz Mono HP Mode 10 Supply Current (mA) 200 THD+N=10% 1.4 Output Power vs. Load Resistance Output Power (W) VDD=5.0V AV=10dB fin=1kHz Mono AMP Mode 2.4 0.45 150 THD+N=10% 100 THD+N=1% Supply Current (IVDD) vs. Supply Voltage (VDD) HVDD=3.3V No Load 9 8 AMP,HP enable (IHVDD=2.2mA) 7 6 50 AMP enable (IHVDD=0.1mA) HP enable (IHVDD=2.2mA) 5 0 10 100 4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 1000 Load Resistance (Ω) 3.0 Supply Current (mA) 2.5 Supply Voltage(V) Supply Current (IHVDD) vs. Supply Voltage (HVDD) VDD=5.0V No Load 2.0 1.5 AMP,HP enable (IVDD=9.3mA) HP enable (IVDD=5.0mA) 1.0 0.5 0.0 3.3 AMP enable (IVDD=4.9mA) 3.4 3.5 3.6 Supply Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 14 www.anpec.com.tw APA2060 Operating Waveforms Power On Power Off VDD VDD 1 1 2 2 VROUT VROUT 3 3 VHP_RO VHP_RO CH1: VDD, 2V/Div, DC CH2: VROUT, 20mV/Div, DC CH3: VHP_RO, 20mV/Div, DC CH1: VDD, 2V/Div, DC TIME: 5ms/Div TIME: 20ms/Div CH2: VROUT, 20mV/Div, DC CH3: VHP_RO, 20mV/Div, DC Speaker Enable Speaker Disable VAMP_EN VAMP_EN 1 1 VOUTP VOUTP 2 2 CH1: VAMP_EN, 2V/Div, DC CH1: VAMP_EN, 2V/Div, DC CH2: VOUTP, 1V/Div, AC CH2: VOUTP, 1V/Div, AC TIME: 5ms/Div TIME: 1ms/Div Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 15 www.anpec.com.tw APA2060 Operating Waveforms (Cont.) Headphone Disable Headphone Enable VHP_EN VHP_EN 1 1 VHP_RO VHP_RO 2 2 CH1: VHP_EN, 2V/Div, DC CH1: VHP_EN, 2V/Div, DC CH2: VHP_LO, 1V/Div, AC CH2: VHP_LO, 1V/Div, AC TIME: 5ms/Div TIME: 1ms/Div LDO Power On LDO Power Off VDD V DD 1 1 VLDOUT VLDOUT 2 2 IO=120mA IO=120mA CH1: VDD, 2V/Div, DC CH1: VDD, 2V/Div, DC CH2: VLDOUT, 2V/Div, DC CH2: VLDOUT, 2V/Div, DC TIME: 10ms/Div TIME: 20ms/Div Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 16 www.anpec.com.tw APA2060 Operating Waveforms (Cont.) LDO Enable LDO Disable VLDO_EN VLDO_EN 1 1 VLDOUT VLDOUT 2 2 IO=120mA CH1: VLDO_EN, 2V/Div, DC CH1: VLDO_EN, 2V/Div, DC CH2: VLDOUT, 2V/Div, DC CH2: VLDOUT, 2V/Div, DC TIME: 200µs/Div TIME: 1ms/Div IO=120mA LDO Line Transient LDO Load Transient ILDOUT V DD 1 1 2 2 V LDOUT VLDOUT CH1: ILDOUT, 50mA/Div, DC CH2: VLDOUT, 5mV/Div, DC VLDOUT Offset = 4.75V TIME: 200µs/Div CH1: VDD, 200mV/Div, DC VDD Offset = 5.0V CH2: VLDOUT, 5mV/Div, DC VLDOUT Offset = 4.75V TIME: 200µs/Div Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 17 www.anpec.com.tw APA2060 Operating Waveforms (Cont.) GSM Power Supply Rejection vs. Frequency GSM Power Supply Rejection vs. Time 1 AMP Output Voltage (dBV) -50 VROUT 2 VHP_RO 3 CH1: V DD, 500mV/Div, DC VDD Offset = 5.0V CH2: V ROUT , 20mV / Div, DC -100 -150 +0 Supply Voltage (dBV) +0 VDD -50 -100 -150 0 400 800 1.2k 1.6k 2k Frequency (Hz) CH3: VHP_RO , 20mV / Div, DC TIME: 2ms/Div +0 -50 HP Output Voltage (dBV) -100 -150 +0 Supply Voltage (dBV) GSM Power Supply Rejection vs. Frequency -50 -100 -150 0 400 800 1.2k 1.6k 2k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 18 www.anpec.com.tw APA2060 Pin Description PIN I/O/P FUNCTION NO. NAME 1 RINN_A I The inverting input pin of right channel power amplifier. 2 RINP_A I The non-inverting input pin of right channel power amplifier. 3 LINP_A I The non-inverting input pin of left channel power amplifier. 4 LINN_A I The inverting input pin of left channel power amplifier. 5,21 PGND P Power amplifier’s ground. 6 LOUTP O The positive output pin of left channel power amplifier. 7 LOUTN O The negative output pin of left channel power amplifier. 8,18 PVDD P Power amplifier’s supply voltage pin, connect this pin to VDD. 9 NC - No Connection. 10 CPP I/O 11 CGND P 12 CPN I/O Charge pump flying capacitor negative connection. 13 CVSS O Charge pump output pin, connect this pin to the HVSS. 14 HVSS P Headphone driver’s negative supply voltage pin, connect this pin to CVSS. 15 HP_RO O The output pin of right channel headphone driver. 16 HP_LO O The output pin of left channel headphone driver. 17 HVDD P Headphone driver’s positive supply voltage pin. 19 ROUTN O The negative output pin of right channel power amplifier. 20 ROUTP O The positive output pin of right channel power amplifier. 22 HP_EN I Headphone drivers enable input pin; High=Enable. 23 AMP_EN I Power amplifiers enable input pin; Low=Enable. 24 BIAS P Bias voltage for power amplifiers. 25 LDO_EN I LDO (Low Drop-Out Regulator) enables input pin; High=Enable. 26 RIN_H I The input pin of right channel headphone driver. 27 LIN_H I The input pin of left channel headphone driver. 28 GND P Control block’s ground, connect this pin to CGND and PGND. 29 LDOUT O LDO (Low Drop-Out Regulator)’s output pin. 30 VDD P Control block and LDO supply voltage pin, connect this pin to PVDD. 31 GAIN0 I Control pin for internal gain setting, MSB, Bit 1. 32 GAIN1 I Control pin for internal gain setting, LSB, Bit 0. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 Charge pump flying capacitor positive connection. Charge pump’s ground. 19 www.anpec.com.tw APA2060 Block Diagram 120/240kΩ LOUTP LINN_A LINP_A LOUTN GAIN1 PVDD Gain Control GAIN0 PGND ROUTN RINP_A RINN_A ROUTP 30kΩ 20kΩ - LIN_H HP_LO + HVDD GND HVSS + HP_RO RIN_H VDD PVDD LDO Charge Pump AMP_EN CPP HP_EN Control LDO_EN CPN BIAS Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 VDD LDOUT 20 CVSS CGND www.anpec.com.tw APA2060 Typical Application Circuit Differential input mode VDD Regulator Output CO2 CO1 CS3 Ci5* 1µF Gnd 1µF Gain Control (Amplifier) Ci1 RINN_A 0.47µF Ci2 RINP_A 0.47µF Ci3 LINP_A 0.47µF Ci4 LINN_A 0.47µF Right Channel Input Signal (Amplifier) Left Channel Input Signal (Amplifier) 25 LDO_EN 26 RIN_H 27 LIN_H 29 LDOUT 28 GND 1 CB 24 BIAS 2 23 AMP_EN 3 22 HP_EN 4 21 PGND APA2060 Gnd 20 ROUTP LOUTP 6 19 ROUTN LOUTN 7 18 PVDD PVDD 8 17 HVDD VDD Gnd Power Amplifier Enable Headphone Driver Enable 0.47µF PGND 5 Gnd 30 VDD 31 GAIN0 32 GAIN1 0.1µF 2.2µF Headphone Driver Input Signals Regulator Enable Ci6* 1µF VDD HVDD 1µF HP_LO 16 HVSS 14 CPO VSS Gnd Tip Sleeve Single-ended input mode CS5 0.1µF 2.2µF Gnd Headphone Jack 1µF HP_RO 15 CPN 12 CPF CVSS 13 0.1µF 10µF CGND 11 CS1 CS2 CPP 10 NC 9 CS4 Ring VDD Regulator Output CO2 CO1 Ci5* 1µF Gnd 1µF Gain Control (Amplifier) Ci1 Right Channel GndC Input Signal i2 (Amplifier) Ci3 Left Channel Ci4 Input Signal (Amplifier) Gnd Gnd 26 RIN_H 27 LIN_H 28 GND 29 LDOUT 30 VDD 31 GAIN0 32 GAIN1 0.1µF 2.2µF 25 LDO_EN CS3 RINN_A 1 Headphone Driver Input Signals Regulator Enable Ci6* 1µF 24 BIAS 0.47µF CB Gnd Power Amplifier Enable Headphone Driver Enable 0.47µF RINP_A 2 23 AMP_EN 0.47µF LINP_A 3 22 HP_EN 0.47µF LINN_A 4 21 PGND APA2060 0.47µF PGND 5 LOUTP 6 19 ROUTN LOUTN 7 18 PVDD PVDD 8 17 HVDD VDD Gnd 20 ROUTP VDD HVDD CPO 1µF HP_LO 16 HP_RO 15 HVSS 14 VSS Gnd Note *:If using MLCC type capacitor for low frequency performance, 3.3µF is recommended. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 Tip Sleeve 21 CS5 0.1µF 2.2µF Gnd Headphone Jack 1µF CPN 12 CPF CVSS 13 0.1µF 10µF CGND 11 CS1 CPP 10 CS2 NC 9 CS4 Ring www.anpec.com.tw APA2060 Function Description Fully Differential Amplifier The Cap-free headphone drivers use a charge pump to invert the positive power supply (VDD) to negative power The APA2060’s power amplifier is a fully differential amplifier with differential inputs and outputs. The fully differ- supply (VSS) (see Figure 1). The headphone amplifiers operate at this bipolar power supply, and the outputs ref- ential amplifier has some advantages versus traditional amplifier. Firstly, don’t need the input coupling capacitors erence refers to the ground. This feature eliminates the output capacitor that using in conventional single-ended because the common-mode feedback will compensate the input bias. The inputs can be biased from 0.5V to VDD- headphone amplifiers. In addition, the power supply rail for Cap-free headphone drivers has almost 1.5X com- 0.5V, and the outputs are still biased at mid-supply voltage of the power amplifier. If the inputs are biased out of pare to the single power supply rail headphone drivers. the input range, the coupling capacitors are required. Secondly, the fully differential amplifier has outstanding Thermal Protection The thermal protection circuit limits the junction tempera- immunity against supply voltage ripple (217Hz) caused by GSM RF transmitters signal, which is better than the ture of the APA2060. When the junction temperature exceeds TJ = +150oC, a thermal sensor turns off the amplifier, typical audio amplifier. allowing the devices to cool. The thermal sensor allows the amplifier to start-up after the junction temperature Gain Setting Function down about 125 oC. The thermal protection is designed with a 25 o C hysteresis to lower the average TJ during For the convenient uses, the APA2060’s power amplifiers provide four gain setting options by GAIN0 and GAIN1 pins. GAIN0 GAIN1 AV (dB) Ri (kΩ) Rf (kΩ) 0 0 6 60 120 0 1 10 76 240 1 0 15.6 40 240 1 1 21.6 20 240 continuous thermal overload conditions, increasing lifetime of the ICs. Over-Current Protection (OCP) • The power amplifier monitors the output buffers’current. When the over current occurs, the output buffers’current will be reduced and limited to a fold-back current level. The power amplifier will go back to normal operation until the over-current current situation has been removed. In Headphone Mode Operation addition, if the over-current period is long enough and the IC’s junction temperature reaches the thermal protection HVDD VOUT Conventional Headphone Driver HVDD/2 threshold, the IC enters thermal protection mode. • The LDO regulator provides a current-limit circuitry, Gnd which monitors and controls P-channel MOS’s gate voltage, limiting the output current to 0.4A. For reliable operation, the device should not be operated in currentlimit for extended period. When the output voltage drops HVDD VOUT below 0.6V, which is caused by the over load or short circuit, the internal short circuit current-limit circuitry limits the output current down to 250mA. The short circuit current-limit is used to reduce the power dissipation dur- Gnd ing short circuit condition. The short circuit current-limit has a blanking time feature after the under-voltage lockCap-free Headphone Driver VSS out threshold is reached, therefore, it will avoid the output causing short circuit current-limit protection during start- Figure 1: The Cap-Free Headphone Driver’s Operation Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 up; the blanking time is about 600µs. 22 www.anpec.com.tw APA2060 Function Description (Cont.) Over-Current Protection (OCP) (Cont.) • The charge pump monitors the output voltage (VSS). In addition, it has an over-voltage protection to avoid over current occuring on headphone driver’s output. When the output voltage (VSS) is greater than -2V, the charge pump will turn off the charge pump’s output. The charge pump’s output will turn on again if the situation has been removed. Typical under-voltage protection threshold is -2V with 0.5V hysteresis. Low Drop-Out (LDO) Regulator The LDO regulator’s output provides maximum 120mA drive capacity for external audio codec. A 2.2µF decoupling capacitor with 0.1µF capacitor (filtering the high frequency noise) is recommended at LDO regulator’s output. The LDO regulator has built-in under-voltage lockout circuits to keep the output shuting off until internal circuitry is operating properly. The under-voltage lockout function initiates a soft-start process after input voltage exceeds its rising under-voltage lockout threshold during power on. The internal soft-start circuit controls the rise rate of the output voltage and limits the current surge during startup. Approximate 20µs delay time after the VDD is over the under-voltage lockout threshold; the LDO regulator’s output voltage starts the soft-start. The typical soft-start interval is about 130µs and the under-voltage lockout threshold is 2.5V with 0.15V hysteresis. Enable Mode The APA2060 provides the independent enable control functions and allows user disable any main circuit blocks when not in use, and these can save the power consumption. In addition, if either the power amplifier or the headphone driver is disabled, the released time will happen immediately when enable the power amplifier or the headphone driver. However, if both the power amplifier and the headphone driver are disabled at the same time, the released time will be the TSTART-UP Time when enable one of them. Disable all blocks (VAMP_EN =5V, VHP_EN= VLDO_EN=0V), The APA2060 enters the shutdown mode, and only consumption 5µA(Max.) at VDD supply current and 2µA(Max.) at HVDD supply current. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 23 www.anpec.com.tw APA2060 Application Information Windows VistaTM Premium Mobile Requirement Device Type Requirement Value ≥0.707Vrms ≤-65dBFS 20Hz~20kHz ≤-50dB, 20Hz~15kHz ≤-80dBFS A-weighting ≥0.707Vrms ≤-65dBFS 100Hz~20kHz ≤-50 dB 100Hz~15kHz ≤-80dBFS A-weighting ≥0.3Vrms ≤-45dBFS 100Hz~20kHz ≤-50dB 100Hz~15kHz ≤-80dBFS A-weighting Full Scale Output voltage THD+N Analog Line Output Jack (RL=10kΩ) Line output cross-talk Noise level during system activity Full Scale Output voltage Analog Headphone Output Jack (RL=320Ω) THD+N Headphone output cross-talk Noise level during system activity Full Scale Output voltage Analog Headphone Output Jack (RL=32Ω) THD+N Headphone output cross-talk Noise level during system activity -70dB 20Hz~20kHz -70dB 20Hz~20kHz -100dBFS A-weighting 2.3Vrms -78dB 100Hz~20kHz -75 dB 100Hz~15kHz -100dBFS A-weighting 2.0Vrms -68dB 100Hz~20kHz -70 dB 100Hz~15kHz -100dBFS A-weighting leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of Input Capacitor (Ci) In the typical application, an input capacitor, Ci, is required to allow the amplifier to bias the input signal to the proper the capacitors should face the amplifiers’ inputs in most applications because the DC level of the amplifiers’ in- DC level for optimum operation. In this case, Ci and the minimum input impedance Ri form a high-pass filter with puts are held at VDD/2. Please note that it is important to confirm the capacitor polarity in the application. the corner frequency is determined in the following equation: 1 fC(highpass ) = (1) 2 πR iC i Power Supply Decoupling Capacitor, Cs The APA2060 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) to be The value of Ci must be considered carefully because it directly affects the low frequency performance of the circuit. as low as possible. Power supply decoupling also prevents the oscillations being caused by long lead length Consider the example where Ri is 20kΩ and the specification calls for a flat bass response down to 40Hz. The equation is reconfigured as below: 1 Ci = 2 π R i fc APA2060 typical performance 2.3Vrms between the amplifier and the speaker. The optimum decoupling is achieved by using two differ- (2) ent types of capacitors that target on different types of noise on the power supply leads. For higher frequency Consider the variation of input resistance (Ri), the value of Ci is 0.2µF. Therefore, a value in the range from 0.22µF transients, spikes, or digital hash on the line, a good low equivalent-series- resistance (ESR) ceramic capacitor, to 1.0µF would be chosen. A further consideration for this capacitor is the leakage path from the input source through (0.1µF typically) placed as close as possible to the device VDD lead works best. the input network (Ri + Rf, Ci) to the load. This leakage current creates a DC offset voltage at the For filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low- the audio power amplifier is recommended. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 24 www.anpec.com.tw APA2060 Application Information (Cont.) Charge Pump Flying Capacitor (CPF) 3. The input trace should be short and symmetric. 4. The power trace width should greater than 50mil. The flying capacitor affects the load transient of the charge pump. If the capacitor’s value is too small, it will degrade 5. The TQFN5x5-32 thermal pad should be soldered on PCB, and the ground plane needs solded mask (to the charge pump’s current driver capability and the performance of headphone amplifier. Increasing the flying avoid short circuit) except the thermal pad area. capacitor’s value will improve the load transient of charge pump. Recommend using the low ESR ceramic capacitors (X5R type is recommended) above 1µF. Charge Pump Output Capacitor (CPO) The output capacitor’s value affects the power ripple directly at VSS. Increasing the value of output capacitor will reduce the power ripple. The ESR of output capacitor affects the load transient of VSS. Low ESR and greater than 1µF ceramic capacitor (X5R type is recommended) is recommendation. Layout Recommendation ThermalVia diameter 0.3mm X 9 1.15mm 0.25mm 3.6mm 4.1mm 0.5mm 3.6mm Solder Mask to Prevent Short Circuit Ground plane for ThermalP AD Figure 5. TQFN5X5-32 Land Pattern Recommendation 1. All components should be placed close to the APA2060. For example, the input capacitor (Ci) should be close to APA2060’s input pins to avoid causing noise coupling to APA2060’s high impedance inputs; the decoupling capacitor (CS) should be placed by the APA2060’s power pin to decouple the power rail noise. 2. The output traces should be short, wide (>50mil), and symmetric. Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 25 www.anpec.com.tw APA2060 Package Information TQFN5x5-32 D b E A D2 A1 A3 L K E2 Pin 1 Corner e S Y M B O L TQFN5x5-32 MILLIMETERS INCHES MIN. MAX. MIN. MAX. A 0.70 0.80 0.028 0.031 A1 0.00 0.05 0.000 0.002 A3 0.20 REF 0.008 REF b 0.18 0.30 0.007 0.012 D 4.90 5.10 0.193 0.201 D2 3.10 3.50 0.122 0.138 0.201 0.138 E 4.90 5.10 0.193 E2 3.10 3.50 0.122 0.45 0.014 e 0.50 BSC L 0.35 K 0.20 Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 0.020 BSC 0.018 0.008 26 www.anpec.com.tw APA2060 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application TQFN5x5-32 A H 330.0±2.00 50 MIN. P0 P1 4.0±0.10 T1 C 12.4+2.00 13.0+0.50 -0.00 -0.20 8.0±0.10 P2 D0 2.0±0.10 1.5+0.10 -0.00 d D 1.5 MIN. 20.2 MIN. W E1 12.0±0.30 1.75±0.10 F 5.5±0.10 D1 T A0 B0 K0 1.5 MIN. 0.6+0.00 -0.40 5.30±0.20 5.30±0.20 1.30±0.20 (mm) Devices Per Unit Package Type Unit Quantity TQFN5x5-32 Tape & Reel 2500 Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 27 www.anpec.com.tw APA2060 Taping Direction Information TQFN5x5-32 USER DIRECTION OF FEED Classification Profile Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 28 www.anpec.com.tw APA2060 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3°C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 29 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA2060 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.3 - Mar., 2010 30 www.anpec.com.tw