ADPOW APT25GP90BDF1 Power mos 7 igbt Datasheet

APT25GP90BDF1
TYPICAL PERFORMANCE CURVES
APT25GP90BDF1
900V
POWER MOS 7 IGBT
®
TO-247
®
The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 600V, 21A
• Low Gate Charge
• 50 kHz operation @ 600V, 33A
• Ultrafast Tail Current shutoff
• SSOA Rated
MAXIMUM RATINGS
Symbol
G
C
E
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT25GP90BDF1
VCES
Collector-Emitter Voltage
900
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @ TC = 25°C
72
IC2
Continuous Collector Current @ TC = 110°C
36
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
C
1
UNIT
Volts
Amps
110
@ TC = 150°C
110A @ 900V
Switching Safe Operating Area @ TJ = 150°C
417
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
900
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C)
3.2
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C)
2.7
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
7-2004
MIN
Rev C
Characteristic / Test Conditions
050-7478
Symbol
APT25GP90BDF1
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
2100
VGE = 0V, VCE = 25V
220
Reverse Transfer Capacitance
f = 1 MHz
40
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
110
VCE = 450V
16
47
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 25A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
110
A
15V, L = 100µH,VCE = 900V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
13
VGE = 15V
95
16
I C = 25A
Current Fall Time
55
ns
95
R G = 5Ω
44
Turn-on Switching Energy (Diode)
µJ
370
Inductive Switching (125°C)
VCC = 600V
Turn-off Delay Time
Turn-off Switching Energy
740
6
Current Rise Time
Turn-on Switching Energy
TBD
TJ = +25°C
5
ns
55
R G = 5Ω
4
Turn-on Switching Energy (Diode)
Eon1
55
16
I C = 25A
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
13
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 600V
TBD
TJ = +125°C
1120
66
µJ
750
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.30
RΘJC
Junction to Case (DIODE)
1.18
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7478
Rev C
7-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC = -50°C
40
TC = 25°C
20
FIGURE 1, Output Characteristics(VGE = 15V)
120
60
TJ = -55°C
40
TJ = 25°C
TJ = 125°C
20
0
6
IC = 25A
5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 50A
3
IC = 12.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.10
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
IC = 25A
TJ = 25°C
14
VCE = 180V
12
VCE = 450V
10
8
VCE = 720V
6
4
2
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TC = 25°C
20
FIGURE 2, Output Characteristics (VGE = 10V)
16
0
20
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
4
3.5
IC = 50A
3
IC = 25A
2.5
2
IC = 12.5A
1.5
1
0.5
0
25
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
100
TC = 125°C
TC = -50°C
40
0
0
1
2
3
4
5
6
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
60
80
60
40
7-2004
TC = 125°C
80
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C
60
APT25GP90BDF1
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7478
IC, COLLECTOR CURRENT (A)
80
0
100
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
100
16
VGE = 15V
14
12
10
8
6
4
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
2
0
30
20
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
TJ = 25 or 125°C,VGE = 15V
20
0
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 600V
VGE = +15V
RG = 5 Ω
2500
TJ = 125°C,VGE =15V
2000
1500
1000
500
TJ = 25°C,VGE =15V
0
Eon2, 50A
3000
2500
Eoff, 50A
2000
Eon2, 25A
1500
1000
Eon2, 12.5A
Eoff, 25A
500
Eoff, 12.5A
0
TJ = 125°C, VGE = 15V
1500
1000
500
TJ = 25°C, VGE = 15V
3000
VCE = 600V
VGE = +15V
TJ = 125°C
3500
2000
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
4000
VCE = 600V
VGE = +15V
RG = 5 Ω
0
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
RG = 5Ω, L = 100µH, VCE = 600V
100
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VCE = 600V
RG = 5Ω
L = 100 µH
120
RG = 5Ω, L = 100µH, VCE = 600V
3000
EON2, TURN ON ENERGY LOSS (µJ)
20
50
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
40
0
0
7-2004
60
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
10
Rev C
VGE =15V,TJ=125°C
80
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
40
050-7478
APT25GP90BDF1
100
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
VCE = 600V
VGE = +15V
RG = 5 Ω
2500
Eon2,50A
2000
Eoff, 50A
1500
Eon2,25A
1000
500 Eoff,25A
0
Eon2,12.5A
Eoff, 12.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
P
IC, COLLECTOR CURRENT (A)
Cies
C, CAPACITANCE ( F)
APT25GP90BDF1
120
5,000
1,000
500
Coes
100
50
Cres
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200
400
600
800
1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
0.3
0.10
t1
t2
SINGLE PULSE
0.1
Peak TJ = PDM x ZθJC + TC
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
RC MODEL
270
0.00852F
Power
(watts)
0.168
0.154F
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
Junction
temp (°C)
0.131
1.0
100
Fmax = min(f max1 , f max 2 )
50
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 600V
RG = 5 Ω
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
5
15
25
35
45
55
65
75
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
7-2004
0
Duty Factor D = t1/t2
Rev C
0.05
050-7478
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
APT25GP90BDF1
Gate Voltage
APT15DF100
10%
TJ = 125°C
td(on)
Drain Current
tr
V CE
IC
V CC
90%
5%
5%
10%
DrainVoltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125°C
A
td(off)
V CE
DrainVoltage
90%
IC
100uH
tf
10%
V CLAMP
0
Drain Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
A
DRIVER*
Figure 24, EON1 Test Circuit
Rev C
7-2004
Fmax = min(f max1 , f max 2 )
050-7478
B
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
D.U.T.
TYPICAL PERFORMANCE CURVES
APT25GP90BDF1
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
APT25GP90BDF1
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 86°C, Duty Cycle = 0.5)
15
RMS Forward Current (Square wave, 50% duty)
21
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
80
UNIT
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
Forward Voltage
VF
MIN
TYP
IF = 25A
3.6
IF = 50A
4.6
IF = 25A, TJ = 125°C
2.7
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
33
trr
Reverse Recovery Time
-
65
Qrr
Reverse Recovery Charge
-
60
IRRM
Maximum Reverse Recovery Current
-
2
-
260
ns
-
600
nC
-
5
-
110
ns
-
900
nC
-
15
Amps
IF = 15A, diF/dt = -200A/µs
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
VR = 667V, TC = 25°C
IF = 15A, diF/dt = -200A/µs
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
VR = 667V, TC = 125°C
IF = 15A, diF/dt = -1000A/µs
VR = 667V, TC = 125°C
ns
nC
-
-
Amps
Amps
1.20
0.7
0.80
0.60
0.5
Note:
t2
0.1
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
7-2004
0
10-5
t1
Junction
temp (°C)
0.676 °C/W
0.00147 J/°C
0.504 °C/W
0.0440 J/°C
Power
(watts)
Case temperature (°C)
FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev C
0.20
0.3
050-7478
0.40
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.9
1.00
50
300
TJ = 150°C
40
TJ = 125°C
30
20
TJ = 25°C
10
0
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
1200
1000
15A
800
600
7.5A
400
200
1.0
0.8
I RRM
0.6
Qrr
0.4
12
10
8
15A
6
7.5A
4
2
Duty cycle = 0.5
TJ = 150°C
15
10
5
0
70
CJ, JUNCTION CAPACITANCE
(pF)
30A
14
20
80
7-2004
TJ = 125°C
VR = 667V
t rr
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
Rev C
16
25
Qrr
0.2
050-7478
100
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
t rr
7.5A
150
0
0
1.2
60
50
40
30
20
10
0
15A
200
0
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
200
400
600
800
1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
0.0
250
18
30A
30A
0
1
2
3
4
5
6
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
TJ = 125°C
VR = 667V
APT25GP90BDF1
TJ = 125°C
VR = 667V
50
TJ = -55°C
1400
0
trr, REVERSE RECOVERY TIME
(ns)
350
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
60
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT25GP90BDF1
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 33. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 34, Diode Reverse Recovery Waveform and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
2.21 (.087)
2.59 (.102)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
7-2004
19.81 (.780)
20.32 (.800)
Rev C
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
050-7478
4.50 (.177) Max.
Similar pages