APT25GP90BDF1 TYPICAL PERFORMANCE CURVES APT25GP90BDF1 900V POWER MOS 7 IGBT ® TO-247 ® The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 600V, 21A • Low Gate Charge • 50 kHz operation @ 600V, 33A • Ultrafast Tail Current shutoff • SSOA Rated MAXIMUM RATINGS Symbol G C E G E All Ratings: TC = 25°C unless otherwise specified. Parameter APT25GP90BDF1 VCES Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±20 VGEM Gate-Emitter Voltage Transient ±30 IC1 Continuous Collector Current @ TC = 25°C 72 IC2 Continuous Collector Current @ TC = 110°C 36 ICM Pulsed Collector Current SSOA PD TJ,TSTG TL C 1 UNIT Volts Amps 110 @ TC = 150°C 110A @ 900V Switching Safe Operating Area @ TJ = 150°C 417 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range °C 300 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 25A, Tj = 125°C) 2.7 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C) 500 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 3000 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 7-2004 MIN Rev C Characteristic / Test Conditions 050-7478 Symbol APT25GP90BDF1 DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions 2100 VGE = 0V, VCE = 25V 220 Reverse Transfer Capacitance f = 1 MHz 40 Gate-to-Emitter Plateau Voltage Gate Charge VGE = 15V 7.5 110 VCE = 450V 16 47 Input Capacitance Coes Output Capacitance Cres VGEP Qge TYP Capacitance Cies Qg MIN Total Gate Charge 3 Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge I C = 25A SSOA Switching Safe Operating Area TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 110 A 15V, L = 100µH,VCE = 900V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff 13 VGE = 15V 95 16 I C = 25A Current Fall Time 55 ns 95 R G = 5Ω 44 Turn-on Switching Energy (Diode) µJ 370 Inductive Switching (125°C) VCC = 600V Turn-off Delay Time Turn-off Switching Energy 740 6 Current Rise Time Turn-on Switching Energy TBD TJ = +25°C 5 ns 55 R G = 5Ω 4 Turn-on Switching Energy (Diode) Eon1 55 16 I C = 25A Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 13 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC = 600V TBD TJ = +125°C 1120 66 µJ 750 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RΘJC Junction to Case (IGBT) .30 RΘJC Junction to Case (DIODE) 1.18 Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7478 Rev C 7-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TC = -50°C 40 TC = 25°C 20 FIGURE 1, Output Characteristics(VGE = 15V) 120 60 TJ = -55°C 40 TJ = 25°C TJ = 125°C 20 0 6 IC = 25A 5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 IC = 50A 3 IC = 12.5A 2 1 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 6 1.10 1.05 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC = 25A TJ = 25°C 14 VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) 80 TC = 25°C 20 FIGURE 2, Output Characteristics (VGE = 10V) 16 0 20 40 60 80 100 GATE CHARGE (nC) FIGURE 4, Gate Charge 120 4 3.5 IC = 50A 3 IC = 25A 2.5 2 IC = 12.5A 1.5 1 0.5 0 25 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 100 TC = 125°C TC = -50°C 40 0 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE 60 80 60 40 7-2004 TC = 125°C 80 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature Rev C 60 APT25GP90BDF1 VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7478 IC, COLLECTOR CURRENT (A) 80 0 100 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 100 16 VGE = 15V 14 12 10 8 6 4 VCE = 600V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 2 0 30 20 TJ = 125°C, VGE = 15V 80 60 TJ = 25°C, VGE = 15V 40 TJ = 25 or 125°C,VGE = 15V 20 0 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2500 EOFF, TURN OFF ENERGY LOSS (µJ) VCE = 600V VGE = +15V RG = 5 Ω 2500 TJ = 125°C,VGE =15V 2000 1500 1000 500 TJ = 25°C,VGE =15V 0 Eon2, 50A 3000 2500 Eoff, 50A 2000 Eon2, 25A 1500 1000 Eon2, 12.5A Eoff, 25A 500 Eoff, 12.5A 0 TJ = 125°C, VGE = 15V 1500 1000 500 TJ = 25°C, VGE = 15V 3000 VCE = 600V VGE = +15V TJ = 125°C 3500 2000 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 4000 VCE = 600V VGE = +15V RG = 5 Ω 0 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 RG = 5Ω, L = 100µH, VCE = 600V 100 tf, FALL TIME (ns) tr, RISE TIME (ns) VCE = 600V RG = 5Ω L = 100 µH 120 RG = 5Ω, L = 100µH, VCE = 600V 3000 EON2, TURN ON ENERGY LOSS (µJ) 20 50 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 40 0 0 7-2004 60 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 10 Rev C VGE =15V,TJ=125°C 80 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 40 050-7478 APT25GP90BDF1 100 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 18 VCE = 600V VGE = +15V RG = 5 Ω 2500 Eon2,50A 2000 Eoff, 50A 1500 Eon2,25A 1000 500 Eoff,25A 0 Eon2,12.5A Eoff, 12.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES P IC, COLLECTOR CURRENT (A) Cies C, CAPACITANCE ( F) APT25GP90BDF1 120 5,000 1,000 500 Coes 100 50 Cres 100 80 60 40 20 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.30 0.9 0.25 0.7 0.20 0.5 0.15 Note: PDM 0.3 0.10 t1 t2 SINGLE PULSE 0.1 Peak TJ = PDM x ZθJC + TC 0.05 10-5 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration RC MODEL 270 0.00852F Power (watts) 0.168 0.154F Case temperature(°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) Junction temp (°C) 0.131 1.0 100 Fmax = min(f max1 , f max 2 ) 50 10 TJ = 125°C TC = 75°C D = 50 % VCE = 600V RG = 5 Ω f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 5 15 25 35 45 55 65 75 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 7-2004 0 Duty Factor D = t1/t2 Rev C 0.05 050-7478 ZθJC, THERMAL IMPEDANCE (°C/W) 0.35 APT25GP90BDF1 Gate Voltage APT15DF100 10% TJ = 125°C td(on) Drain Current tr V CE IC V CC 90% 5% 5% 10% DrainVoltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions VTEST *DRIVER SAME TYPE AS D.U.T. 90% Gate Voltage TJ = 125°C A td(off) V CE DrainVoltage 90% IC 100uH tf 10% V CLAMP 0 Drain Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions A DRIVER* Figure 24, EON1 Test Circuit Rev C 7-2004 Fmax = min(f max1 , f max 2 ) 050-7478 B f max1 = 0.05 t d (on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC D.U.T. TYPICAL PERFORMANCE CURVES APT25GP90BDF1 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE All Ratings: TC = 25°C unless otherwise specified. MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM APT25GP90BDF1 Characteristic / Test Conditions Maximum Average Forward Current (TC = 86°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 21 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) 80 UNIT Amps STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Forward Voltage VF MIN TYP IF = 25A 3.6 IF = 50A 4.6 IF = 25A, TJ = 125°C 2.7 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 33 trr Reverse Recovery Time - 65 Qrr Reverse Recovery Charge - 60 IRRM Maximum Reverse Recovery Current - 2 - 260 ns - 600 nC - 5 - 110 ns - 900 nC - 15 Amps IF = 15A, diF/dt = -200A/µs trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current VR = 667V, TC = 25°C IF = 15A, diF/dt = -200A/µs trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Maximum Reverse Recovery Current VR = 667V, TC = 125°C IF = 15A, diF/dt = -1000A/µs VR = 667V, TC = 125°C ns nC - - Amps Amps 1.20 0.7 0.80 0.60 0.5 Note: t2 0.1 Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 25a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION RC MODEL 7-2004 0 10-5 t1 Junction temp (°C) 0.676 °C/W 0.00147 J/°C 0.504 °C/W 0.0440 J/°C Power (watts) Case temperature (°C) FIGURE 25b, TRANSIENT THERMAL IMPEDANCE MODEL Rev C 0.20 0.3 050-7478 0.40 PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.9 1.00 50 300 TJ = 150°C 40 TJ = 125°C 30 20 TJ = 25°C 10 0 0 Qrr, REVERSE RECOVERY CHARGE (nC) 1200 1000 15A 800 600 7.5A 400 200 1.0 0.8 I RRM 0.6 Qrr 0.4 12 10 8 15A 6 7.5A 4 2 Duty cycle = 0.5 TJ = 150°C 15 10 5 0 70 CJ, JUNCTION CAPACITANCE (pF) 30A 14 20 80 7-2004 TJ = 125°C VR = 667V t rr 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 6. Dynamic Parameters vs. Junction Temperature Rev C 16 25 Qrr 0.2 050-7478 100 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 5. Reverse Recovery Current vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) t rr 7.5A 150 0 0 1.2 60 50 40 30 20 10 0 15A 200 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 3. Reverse Recovery Time vs. Current Rate of Change 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 4. Reverse Recovery Charge vs. Current Rate of Change 0.0 250 18 30A 30A 0 1 2 3 4 5 6 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 2. Forward Current vs. Forward Voltage TJ = 125°C VR = 667V APT25GP90BDF1 TJ = 125°C VR = 667V 50 TJ = -55°C 1400 0 trr, REVERSE RECOVERY TIME (ns) 350 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 60 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 8. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 Case Temperature (°C) Figure 7. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT25GP90BDF1 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 33. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 34, Diode Reverse Recovery Waveform and Definitions T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 2.21 (.087) 2.59 (.102) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 7-2004 19.81 (.780) 20.32 (.800) Rev C 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 050-7478 4.50 (.177) Max.