Freescale MK51DX256CLK10 K51 sub-family Datasheet

Freescale Semiconductor
Data Sheet: Advance Information
K51 Sub-Family
Document Number: K51P81M100SF2V2
Rev. 1, 6/2012
K51P81M100SF2V2
Supports the following:
MK51DX256CLK10
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 85°C
• Performance
– Up to 100 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 512 KB program flash memory on nonFlexMemory devices
– Up to 256 KB program flash memory on
FlexMemory devices
– Up to 256 KB FlexNVM on FlexMemory devices
– 4 KB FlexRAM on FlexMemory devices
– Up to 128 KB RAM
– Serial programming interface (EzPort)
• Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– Multiple low-power modes to provide power
optimization based on application requirements
– Memory protection unit with multi-master
protection
– 16-channel DMA controller, supporting up to 63
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Human-machine interface
– Segment LCD controller supporting up to 40
frontplanes and 8 backplanes, or 44 frontplanes and
4 backplanes, depending on the package size
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– Two 16-bit SAR ADCs
– Programmable gain amplifier (PGA) (up to x64)
integrated into each ADC
– Two 12-bit DACs
– Two operational amplifiers
– Two transimpedance amplifiers
– Three analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
– Voltage reference
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timer
– Two 2-channel quadrature decoder/general purpose
timers
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
• Communication interfaces
– USB full-/low-speed On-the-Go controller with onchip transceiver
– Two SPI modules
– Two I2C modules
– Four UART modules
– I2S module
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– 128-bit unique identification (ID) number per chip
This document contains information on a new product. Specifications and
information herein are subject to change without notice.
© 2012 Freescale Semiconductor, Inc.
Preliminary
General Business Information
Table of Contents
1 Ordering parts...........................................................................4
6 Peripheral operating requirements and behaviors....................22
1.1 Determining valid orderable parts......................................4
6.1 Core modules....................................................................22
2 Part identification......................................................................4
6.1.1
Debug trace timing specifications.........................22
2.1 Description.........................................................................4
6.1.2
JTAG electricals....................................................23
2.2 Format...............................................................................4
6.2 System modules................................................................26
2.3 Fields.................................................................................4
6.3 Clock modules...................................................................26
2.4 Example............................................................................5
6.3.1
MCG specifications...............................................26
3 Terminology and guidelines......................................................5
6.3.2
Oscillator electrical specifications.........................28
3.1 Definition: Operating requirement......................................5
6.3.3
32 kHz Oscillator Electrical Characteristics...........31
3.2 Definition: Operating behavior...........................................6
6.4 Memories and memory interfaces.....................................31
3.3 Definition: Attribute............................................................6
6.4.1
Flash electrical specifications................................31
3.4 Definition: Rating...............................................................7
6.4.2
EzPort Switching Specifications............................36
3.5 Result of exceeding a rating..............................................7
6.5 Security and integrity modules..........................................37
3.6 Relationship between ratings and operating
6.6 Analog...............................................................................37
requirements......................................................................7
6.6.1
ADC electrical specifications.................................37
3.7 Guidelines for ratings and operating requirements............8
6.6.2
CMP and 6-bit DAC electrical specifications.........44
3.8 Definition: Typical value.....................................................8
6.6.3
12-bit DAC electrical characteristics.....................47
3.9 Typical value conditions....................................................9
6.6.4
Op-amp electrical specifications...........................50
4 Ratings......................................................................................10
6.6.5
Transimpedance amplifier electrical
4.1 Thermal handling ratings...................................................10
4.2 Moisture handling ratings..................................................10
specifications — full range....................................51
6.6.6
4.3 ESD handling ratings.........................................................10
4.4 Voltage and current operating ratings...............................10
Transimpedance amplifier electrical
specifications — limited range..............................52
6.6.7
Voltage reference electrical specifications............53
5 General.....................................................................................11
6.7 Timers................................................................................54
5.1 AC electrical characteristics..............................................11
6.8 Communication interfaces.................................................54
5.2 Nonswitching electrical specifications...............................11
6.8.1
USB electrical specifications.................................54
5.2.1
Voltage and current operating requirements.........12
6.8.2
USB DCD electrical specifications........................55
5.2.2
LVD and POR operating requirements.................13
6.8.3
USB VREG electrical specifications......................55
5.2.3
Voltage and current operating behaviors..............13
6.8.4
DSPI switching specifications (limited voltage
5.2.4
Power mode transition operating behaviors..........14
5.2.5
Power consumption operating behaviors..............15
6.8.5
DSPI switching specifications (full voltage range).57
5.2.6
EMC radiated emissions operating behaviors.......18
6.8.6
I2C switching specifications..................................59
5.2.7
Designing with radiated emissions in mind...........19
6.8.7
UART switching specifications..............................59
5.2.8
Capacitance attributes..........................................19
6.8.8
I2S/SAI Switching Specifications..........................59
5.3 Switching specifications.....................................................19
range)....................................................................56
6.9 Human-machine interfaces (HMI)......................................66
5.3.1
Device clock specifications...................................19
6.9.1
TSI electrical specifications...................................66
5.3.2
General switching specifications...........................20
6.9.2
LCD electrical characteristics................................67
5.4 Thermal specifications.......................................................21
7 Dimensions...............................................................................68
5.4.1
Thermal operating requirements...........................21
7.1 Obtaining package dimensions.........................................68
5.4.2
Thermal attributes.................................................21
8 Pinout........................................................................................69
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
2
Preliminary
General Business Information
Freescale Semiconductor, Inc.
8.1 K51 Signal Multiplexing and Pin Assignments..................69
8.2 K51 Pinouts.......................................................................72
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
3
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK51 and MK51.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K51
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
4
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Terminology and guidelines
Field
Description
Values
FFF
Program flash memory size
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
ML = 104 MAPBGA (8 mm x 8 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
2.4 Example
This is an example part number:
MK51DN512ZVMD10
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
5
Terminology and guidelines
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
VDD
Description
Min.
1.0 V core supply
voltage
0.9
Max.
1.1
Unit
V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
6
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Terminology and guidelines
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
3.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
7
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
e
Op
ing
rat
r
(
ng
ati
in.
t (m
)
n.
mi
rat
e
Op
ing
)
t (m
e
ir
qu
re
n
me
ing
rat
e
Op
ax
.)
e
ir
qu
re
n
me
ing
rat
e
Op
ng
ati
ax
(m
.)
r
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
g
lin
nd
Ha
in
rat
n.)
mi
g(
nd
Ha
g
lin
ing
rat
ax
(m
.)
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
8
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Terminology and guidelines
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
9
Ratings
4 Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
VDD
Description
Min.
Max.
Unit
Digital supply voltage
–0.3
3.8
V
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
10
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
Symbol
IDD
Description
Digital supply current
Min.
Max.
Unit
—
185
mA
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
–0.3
5.5
V
VAIO
Analog1, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Maximum current single pin limit (applies to all port pins)
–25
25
mA
ID
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VBAT
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
• have CL=30pF loads,
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
• are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
• have their passive filter disabled (PORTx_PCRn[PFE]=0)
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
11
General
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-5
—
mA
VBAT
VIH
VIL
RTC battery supply voltage
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICDIO
Digital pin negative DC injection current — single pin
• VIN < VSS-0.3V
IICAIO
IICcont
3
mA
• VIN < VSS-0.3V (Negative current injection)
-5
—
• VIN > VDD+0.3V (Positive current injection)
—
+5
-25
—
—
+25
1.2
—
V
VPOR_VBAT
—
V
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Positive current injection
VRFVBAT
1
Analog2, EXTAL, and XTAL pin DC injection current —
single pin
• Negative current injection
VRAM
Notes
VDD voltage required to retain RAM
VBAT voltage required to retain the VBAT register file
mA
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection
to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at
the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current
limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
12
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
±80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
±60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
13
General
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range except TRI0_DM, TRI0_DP, TRI1_DM,
TRI1_DP
—
1
μA
1
IIN
Input leakage current (per pin) at 25°C except
TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP
—
0.025
μA
1
Input leakage current (per pin) for TRI0_DM, TRI0_DP,
TRI1_DM, TRI1_DP
—
5
nA
1
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
2
RPD
Internal pulldown resistors
20
50
kΩ
3
VOH
Description
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
IILKG_A
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 100 MHz
• Bus clock = 50 MHz
• Flash clock = 25 MHz
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
14
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• VLLS1 → RUN
• VLLS2 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
Min.
Max.
Unit
Notes
—
300
μs
1
—
112
μs
—
74
μs
—
73
μs
—
5.9
μs
—
5.8
μs
—
4.2
μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
• @ 3.0V
IDD_RUN
Min.
2
—
32
TBD
mA
—
34
TBD
mA
Run mode current — all peripheral clocks
enabled, code executing from flash
• @ 1.8V
• @ 3.0V
• @ 25°C
3, 4
—
46
TBD
mA
—
48
TBD
mA
—
TBD
TBD
mA
• @ 125°C
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
20
—
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V —
all peripheral clocks disabled
—
9
—
mA
5
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
1.12
—
mA
6
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
1.71
—
mA
7
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
15
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
IDD_VLPW
Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
IDD_STOP
Stop mode current at 3.0 V
IDD_VLPS
IDD_LLS
IDD_VLLS3
IDD_VLLS2
IDD_VLLS1
IDD_VBAT
Min.
Typ.
Max.
Unit
Notes
—
0.77
—
mA
8
• @ –40 to 25°C
—
0.74
TBD
• @ 70°C
—
2.45
TBD
• @ 105°C
—
6.61
TBD
• @ –40 to 25°C
—
83
TBD
μA
• @ 70°C
—
425
TBD
μA
• @ 105°C
—
1280
TBD
μA
mA
mA
mA
Very-low-power stop mode current at 3.0 V
Low leakage stop mode current at 3.0 V
9
• @ –40 to 25°C
—
4.58
TBD
μA
• @ 70°C
—
30.6
TBD
μA
• @ 105°C
—
137
TBD
μA
Very low-leakage stop mode 3 current at 3.0 V
9
• @ –40 to 25°C
—
3.0
TBD
μA
• @ 70°C
—
18.6
TBD
μA
• @ 105°C
—
84.9
TBD
μA
• @ –40 to 25°C
—
2.2
TBD
μA
• @ 70°C
—
9.3
TBD
μA
• @ 105°C
—
41.4
TBD
μA
• @ –40 to 25°C
—
2.1
TBD
μA
• @ 70°C
—
7.6
TBD
μA
• @ 105°C
—
33.5
TBD
μA
—
0.19
0.22
μA
—
0.49
0.64
μA
—
2.2
3.2
μA
Very low-leakage stop mode 2 current at 3.0 V
Very low-leakage stop mode 1 current at 3.0 V
Average current with RTC and 32kHz disabled at
3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
16
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_VBAT
Average current when CPU is not accessing RTC
registers
Typ.
Max.
Unit
Notes
10
• @ 1.8V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
—
0.57
0.67
μA
—
0.90
1.2
μA
—
2.4
3.5
μA
—
0.67
0.94
μA
—
1.0
1.4
μA
—
2.7
3.9
μA
• @ 3.0V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral
clocks disabled.
3. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral
clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
6. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
Code executing from flash.
7. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled
but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.
10. Includes 32kHz oscillator current and RTC operation.
5.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater
than 50 MHz frequencies.
• USB regulator disabled
• No GPIOs toggled
• Code execution from flash with cache enabled
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
17
General
Figure 2. Run mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 144LQFP
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
1,2
VRE1
Radiated emissions voltage, band 1
0.15–50
23
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
27
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
28
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
14
dBμV
IEC level
0.15–1000
K
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
18
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol
Description
Min.
Max.
Unit
System and core clock
—
100
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
Bus clock
—
50
MHz
fFLASH
Flash clock
—
25
MHz
fLPTMR
LPTMR clock
—
25
MHz
Notes
Normal run mode
fSYS
fSYS_USB
fBUS
VLPR mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
fFLASH
Flash clock
—
1
MHz
fERCLK
External reference clock
—
16
MHz
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
19
General
Table 9. Device clock specifications (continued)
Symbol
Description
Min.
Max.
Unit
fLPTMR_pin
LPTMR clock
—
25
MHz
LPTMR external reference clock
—
16
MHz
—
8
MHz
fLPTMR_ERCLK
fFlexCAN_ERCLK FlexCAN external reference clock
fI2S_MCLK
I2S master clock
—
12.5
MHz
fI2S_BCLK
I2S bit clock
—
4
MHz
Notes
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CMT, and I2C signals.
Table 10. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16
—
ns
3
External reset pulse width (digital glitch filter disabled)
100
—
ns
3
2
—
Bus clock
cycles
Mode select (EZP_CS) hold time after reset
deassertion
Port rise and fall time (high drive strength)
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
• 2.7 ≤ VDD ≤ 3.6V
—
12
ns
ns
6
• Slew enabled
• 1.71 ≤ VDD ≤ 2.7V
—
• 2.7 ≤ VDD ≤ 3.6V
—
ns
36
ns
24
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
20
Preliminary
General Business Information
Freescale Semiconductor, Inc.
General
Table 10. General switching specifications (continued)
Symbol
Description
Min.
Max.
Unit
Port rise and fall time (low drive strength)
Notes
5
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75pF load
5. 15pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
85
°C
5.4.2 Thermal attributes
Board type
Symbol
Description
Single-layer (1s)
RθJA
Four-layer (2s2p)
RθJA
80 LQFP
Unit
Notes
Thermal
50
resistance, junction
to ambient (natural
convection)
°C/W
1
Thermal
35
resistance, junction
to ambient (natural
convection)
°C/W
1
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
21
Peripheral operating requirements and behaviors
Board type
Symbol
Description
Unit
Notes
Single-layer (1s)
RθJMA
Thermal
39
resistance, junction
to ambient (200 ft./
min. air speed)
°C/W
1
Four-layer (2s2p)
RθJMA
Thermal
29
resistance, junction
to ambient (200 ft./
min. air speed)
°C/W
1
—
RθJB
Thermal
19
resistance, junction
to board
°C/W
2
—
RθJC
Thermal
8
resistance, junction
to case
°C/W
3
—
ΨJT
Thermal
2
characterization
parameter, junction
to package top
outside center
(natural
convection)
°C/W
4
1.
2.
3.
4.
80 LQFP
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 Debug trace timing specifications
Table 12. Debug trace operating behaviors
Symbol
Description
Tcyc
Clock period
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Clock and data rise time
—
3
ns
Tr
Min.
Max.
Unit
Frequency dependent
MHz
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
22
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 12. Debug trace operating behaviors (continued)
Symbol
Description
Min.
Max.
Unit
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
3
—
ns
Th
Data hold
2
—
ns
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Th
Ts
Th
TRACE_D[3:0]
Figure 4. Trace data specifications
6.1.2 JTAG electricals
Table 13. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
23
Peripheral operating requirements and behaviors
Table 13. JTAG limited voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
17
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Table 14. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.4
—
ns
J11
TCLK low to TDO data valid
—
22.1
ns
J12
TCLK low to TDO high-Z
—
22.1
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
24
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
J2
J3
J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
25
Peripheral operating requirements and behaviors
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
TCLK
J14
J13
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
26
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.1 MCG specifications
Table 15. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
—
32.768
—
kHz
31.25
—
39.0625
kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
—
± 0.2
± 0.5
%fdco
1
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Notes
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
TBD
%fdco
1
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
2, 3
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX32 DCO output
frequency
Low range (DRS=00)
4, 5
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
27
Peripheral operating requirements and behaviors
Table 15. MCG specifications (continued)
Symbol
Jcyc_fll
Description
FLL period jitter
• fVCO = 48 MHz
• fVCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
Min.
Typ.
Max.
Unit
—
180
—
—
150
—
—
—
1
ms
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
Notes
ps
6
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
7
7
8
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
PLL accumulated jitter over 1µs (RMS)
8
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
150 × 10-6
+ 1075(1/
fpll_ref)
s
9
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
28
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1
Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
29
Peripheral operating requirements and behaviors
Table 16. Oscillator DC electrical specifications (continued)
Symbol
Vpp5
1.
2.
3.
4.
5.
Description
Min.
Typ.
Max.
Unit
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Notes
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx,Cy can be provided by using either the integrated capacitors or by using external components.
When low power mode is selected, RF is integrated and must not be attached externally.
The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it
remains within the limits of the DCO input clock frequency.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
30
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.3.3 32 kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1
32 kHz oscillator DC electrical specifications
Table 18. 32kHz oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VBAT
Supply voltage
1.71
—
3.6
V
Internal feedback resistor
—
100
—
MΩ
Cpara
Parasitical capacitance of EXTAL32 and XTAL32
—
5
7
pF
Vpp1
Peak-to-peak amplitude of oscillation
—
0.6
—
V
RF
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
6.3.3.2
Symbol
fosc_lo
tstart
fec_extal32
32kHz oscillator frequency specifications
Table 19. 32kHz oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32.768
—
kHz
Crystal start-up time
—
1000
—
ms
1
Externally provided input clock frequency
—
32.768
—
kHz
2
700
—
VBAT
mV
2, 3
vec_extal32 Externally provided input clock amplitude
Notes
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The
oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied
clock must be within the range of VSS to VBAT.
6.4 Memories and memory interfaces
6.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
31
Peripheral operating requirements and behaviors
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
thversscr
Longword Program high-voltage time
—
7.5
18
μs
Sector Erase high-voltage time
—
13
113
ms
1
—
104
904
ms
1
Notes
thversblk256k Erase Block high-voltage time for 256 KB
Notes
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Symbol
Flash timing specifications — commands
Table 21. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
—
—
1.7
ms
Read 1s Block execution time
trd1blk256k
• 256 KB program/data flash
trd1sec2k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
Erase Flash Block execution time
tersblk256k
tersscr
• 256 KB program/data flash
Erase Flash Sector execution time
2
—
122
985
ms
—
14
114
ms
2
Program Section execution time
tpgmsec512
• 512 B flash
—
2.4
—
ms
tpgmsec1k
• 1 KB flash
—
4.7
—
ms
tpgmsec2k
• 2 KB flash
—
9.3
—
ms
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
25
μs
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
250
2000
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
1
Swap Control execution time
tswapx01
• control code 0x01
—
200
—
μs
tswapx02
• control code 0x02
—
70
150
μs
tswapx04
• control code 0x04
—
70
150
μs
tswapx08
• control code 0x08
—
—
30
μs
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
32
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 21. Flash command timing specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Program Partition for EEPROM execution time
tpgmpart64k
• 64 KB FlexNVM
—
138
—
ms
tpgmpart256k
• 256 KB FlexNVM
—
145
—
ms
• Control Code 0xFF
—
70
—
μs
tsetram32k
• 32 KB EEPROM backup
—
0.8
1.2
ms
tsetram64k
• 64 KB EEPROM backup
—
1.3
1.9
ms
tsetram256k
• 256 KB EEPROM backup
—
4.5
5.5
ms
Set FlexRAM Function execution time:
tsetramff
Byte-write to FlexRAM for EEPROM operation
teewr8bers
Byte-write to erased FlexRAM location execution
time
—
175
260
μs
3
Byte-write to FlexRAM execution time:
teewr8b32k
• 32 KB EEPROM backup
—
385
1800
μs
teewr8b64k
• 64 KB EEPROM backup
—
475
2000
μs
teewr8b128k
• 128 KB EEPROM backup
—
650
2400
μs
teewr8b256k
• 256 KB EEPROM backup
—
1000
3200
μs
Word-write to FlexRAM for EEPROM operation
teewr16bers Word-write to erased FlexRAM location
execution time
—
175
260
μs
Word-write to FlexRAM execution time:
teewr16b32k
• 32 KB EEPROM backup
—
385
1800
μs
teewr16b64k
• 64 KB EEPROM backup
—
475
2000
μs
teewr16b128k
• 128 KB EEPROM backup
—
650
2400
μs
teewr16b256k
• 256 KB EEPROM backup
—
1000
3200
μs
Longword-write to FlexRAM for EEPROM operation
teewr32bers Longword-write to erased FlexRAM location
execution time
—
360
540
μs
Longword-write to FlexRAM execution time:
teewr32b32k
• 32 KB EEPROM backup
—
630
2050
μs
teewr32b64k
• 64 KB EEPROM backup
—
810
2250
μs
teewr32b128k
• 128 KB EEPROM backup
—
1200
2675
μs
teewr32b256k
• 256 KB EEPROM backup
—
1900
3500
μs
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
33
Peripheral operating requirements and behaviors
6.4.1.3
Flash high voltage current behaviors
Table 22. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
6.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 23. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretd1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycd
Cycling endurance
10 K
50 K
—
cycles
2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
50
—
years
tnvmretee10 Data retention up to 10% of write endurance
20
100
—
years
Write endurance
3
nnvmwree16
• EEPROM backup to FlexRAM ratio = 16
35 K
175 K
—
writes
nnvmwree128
• EEPROM backup to FlexRAM ratio = 128
315 K
1.6 M
—
writes
nnvmwree512
• EEPROM backup to FlexRAM ratio = 512
1.27 M
6.4 M
—
writes
nnvmwree4k
• EEPROM backup to FlexRAM ratio = 4096
10 M
50 M
—
writes
nnvmwree32k
• EEPROM backup to FlexRAM ratio =
32,768
80 M
400 M
—
writes
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and
typical values assume all byte-writes to FlexRAM.
6.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
34
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
The bytes not assigned to data flash via the FlexNVM partition code are used by the flash
memory module to obtain an effective endurance increase for the EEPROM data. The
built-in EEPROM record management system raises the number of program/erase cycles
that can be attained prior to device wear-out by cycling the EEPROM data through a
larger EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout the
entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem =
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE
× Write_efficiency × nnvmcycd
where
• Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;
entered with the Program Partition command
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
• nnvmcycd — data flash cycling endurance (the following graph assumes 10,000
cycles)
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
35
Peripheral operating requirements and behaviors
Figure 9. EEPROM backup writes to FlexRAM
6.4.2 EzPort Switching Specifications
Table 24. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid
—
16
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
36
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 10. EzPort Timing Diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and
ADCx_DM3.
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are
not direct device pins. Accuracy specifications for these pins are defined in Table 27 and
Table 28.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
37
Peripheral operating requirements and behaviors
6.6.1.1
16-bit ADC operating conditions
Table 25. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD-VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS-VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
Reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input capacitance
• 16 bit modes
—
8
10
pF
• 8/10/12 bit modes
—
4
5
—
2
5
RADIN
RAS
fADCK
fADCK
Crate
Input resistance
Analog source
resistance
13/12 bit modes
ADC conversion
clock frequency
≤ 13 bit modes
ADC conversion
clock frequency
16 bit modes
ADC conversion
rate
≤ 13 bit modes
fADCK < 4MHz
Notes
kΩ
3
—
—
5
kΩ
4
1.0
—
18.0
MHz
4
2.0
No ADC hardware averaging
—
12.0
MHz
5
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion
rate
16 bit modes
5
No ADC hardware averaging
37.037
—
461.467
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/
CAS time constant should be kept to <1ns.
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
38
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 11. ADC input impedance equivalency diagram
6.6.1.2
16-bit ADC electrical characteristics
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
fADACK
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
EFS
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC=1, ADHSC=0
1.2
2.4
3.9
MHz
• ADLPC=1, ADHSC=1
3.0
4.0
7.3
MHz
tADACK = 1/
fADACK
• ADLPC=0, ADHSC=0
2.4
5.2
6.1
MHz
• ADLPC=0, ADHSC=1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA
See Reference Manual chapter for sample times
Total unadjusted
error
• 12 bit modes
—
±4
±6.8
• <12 bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12 bit modes
—
±0.7
-1.1 to +1.9
Integral nonlinearity
Full-scale error
-0.3 to 0.5
• <12 bit modes
—
±0.2
• 12 bit modes
—
±1.0
-2.7 to +1.9
-0.7 to +0.5
• <12 bit modes
—
±0.5
• 12 bit modes
—
-4
-5.4
• <12 bit modes
—
-1.4
-1.8
5
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
39
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Description
EQ
Quantization
error
ENOB
Conditions1
Min.
Typ.2
Max.
Unit
• 16 bit modes
—
-1 to 0
—
LSB4
• ≤13 bit modes
—
—
±0.5
Effective number 16 bit differential mode
of bits
• Avg=32
• Avg=4
Notes
6
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
16 bit single-ended mode
• Avg=32
• Avg=4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16 bit differential mode
6.02 × ENOB + 1.76
• Avg=32
16 bit single-ended mode
• Avg=32
SFDR
Spurious free
dynamic range
7
—
–94
—
dB
—
-85
—
dB
16 bit differential mode
• Avg=32
16 bit single-ended mode
• Avg=32
EIL
dB
7
82
95
—
dB
78
90
—
dB
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and current
operating
ratings)
VTEMP25
Temp sensor
slope
–40°C to 105°C
—
1.715
—
mV/°C
Temp sensor
voltage
25°C
—
719
—
mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
40
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.
Figure 12. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
41
Peripheral operating requirements and behaviors
6.6.1.3
16-bit ADC with PGA operating conditions
Table 27. 16-bit ADC with PGA operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
VREFPGA
PGA ref voltage
VADIN
VCM
RPGAD
VREF_OU VREF_OU VREF_OU
T
T
T
V
Notes
2, 3
Input voltage
VSSA
—
VDDA
V
Input Common
Mode range
VSSA
—
VDDA
V
Gain = 1, 2, 4, 8
—
128
—
kΩ
IN+ to IN-4
Gain = 16, 32
—
64
—
Gain = 64
—
32
—
Differential input
impedance
RAS
Analog source
resistance
—
100
—
Ω
5
TS
ADC sampling
time
1.25
—
—
µs
6
18.484
—
450
Ksps
7
37.037
—
250
Ksps
8
Crate
ADC conversion
rate
≤ 13 bit modes
No ADC hardware
averaging
Continuous conversions
enabled
Peripheral clock = 50
MHz
16 bit modes
No ADC hardware
averaging
Continuous conversions
enabled
Peripheral clock = 50
MHz
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREF_OUT)
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other
than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is RPGAD/2
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock.
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
42
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.1.4
16-bit ADC with PGA characteristics with Chop enabled
(ADC_PGA[PGACHPb] =0)
Table 28. 16-bit ADC with PGA characteristics
Symbol
Description
Conditions
IDDA_PGA
Supply current
Low power
(ADC_PGA[PGALPb]=0)
IDC_PGA
Input DC current
G
BW
Gain4
Input signal
bandwidth
PSRR
Power supply
rejection ratio
CMRR
Common mode
rejection ratio
Min.
Typ.1
Max.
Unit
Notes
—
420
644
μA
2
A
3
Gain =1, VREFPGA=1.2V,
VCM=0.5V
—
1.54
—
μA
Gain =64, VREFPGA=1.2V,
VCM=0.1V
—
0.57
—
μA
• PGAG=0
0.95
1
1.05
• PGAG=1
1.9
2
2.1
• PGAG=2
3.8
4
4.2
• PGAG=3
7.6
8
8.4
• PGAG=4
15.2
16
16.6
• PGAG=5
30.0
31.6
33.2
• PGAG=6
58.8
63.3
67.8
—
—
4
kHz
—
—
40
kHz
—
-84
—
dB
VDDA= 3V
±100mV,
fVDDA= 50Hz,
60Hz
• Gain=1
—
-84
—
dB
• Gain=64
—
-85
—
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
• 16-bit modes
• < 16-bit modes
Gain=1
RAS < 100Ω
VOFS
Input offset
voltage
—
0.2
—
mV
Output offset =
VOFS*(Gain+1)
TGSW
Gain switching
settling time
—
—
10
µs
5
dG/dT
Gain drift over full
temperature range
• Gain=1
• Gain=64
—
6
10
ppm/°C
—
31
42
ppm/°C
• Gain=1
• Gain=64
—
0.07
0.21
%/V
—
0.14
0.31
%/V
dG/dVDDA Gain drift over
supply voltage
EIL
Input leakage
error
All modes
IIn × RAS
mV
VDDA from 1.71
to 3.6V
IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
43
Peripheral operating requirements and behaviors
Table 28. 16-bit ADC with PGA characteristics (continued)
Symbol
Description
VPP,DIFF
Maximum
differential input
signal swing
SNR
THD
SFDR
ENOB
SINAD
Conditions
Min.
Typ.1
Max.
Unit
Notes
V
6
16-bit
differential
mode,
Average=32
where VX = VREFPGA × 0.583
Signal-to-noise
ratio
• Gain=1
80
90
—
dB
• Gain=64
52
66
—
dB
Total harmonic
distortion
• Gain=1
85
100
—
dB
• Gain=64
49
95
—
dB
Spurious free
dynamic range
• Gain=1
85
105
—
dB
• Gain=64
53
88
—
dB
Effective number
of bits
• Gain=1, Average=4
11.6
13.4
—
bits
• Gain=1, Average=8
8.0
13.6
—
bits
• Gain=64, Average=4
7.2
9.6
—
bits
• Gain=64, Average=8
6.3
9.6
—
bits
• Gain=1, Average=32
12.8
14.5
—
bits
• Gain=2, Average=32
11.0
14.3
—
bits
• Gain=4, Average=32
7.9
13.8
—
bits
• Gain=8, Average=32
7.3
13.1
—
bits
• Gain=16, Average=32
6.8
12.5
—
bits
• Gain=32, Average=32
6.8
11.5
—
bits
• Gain=64, Average=32
7.5
10.6
—
bits
Signal-to-noise
plus distortion
ratio
See ENOB
6.02 × ENOB + 1.76
16-bit
differential
mode,
Average=32,
fin=100Hz
16-bit
differential
mode,
Average=32,
fin=100Hz
16-bit
differential
mode,fin=100Hz
dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. This current is a PGA module adder, in addition to ADC conversion currents.
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong
function of input common mode voltage (VCM) and the PGA gain.
4. Gain = 2PGAG
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
44
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.2 CMP and 6-bit DAC electrical specifications
Table 29. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator
hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
80
250
600
ns
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
45
Peripheral operating requirements and behaviors
0.08
0.07
0.06
HYSTCTR
Setting
CM P Hystereris (V)
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
46
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP
P Hystereris (V)
0.12
HYSTCTR
Setting
0.1
00
01
0
08
0.08
10
11
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 30. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1
2
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
47
Peripheral operating requirements and behaviors
6.6.3.2
Symbol
12-bit DAC operating behaviors
Table 31. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
TBD
μA
—
—
TBD
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
—
0.7
1
μs
1
—
—
100
mV
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)
— low-power mode and high-speed mode
Vdacoutl
DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA > = 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance load = 3 kΩ
—
—
250
SR
Slew rate -80h→ F7Fh→ 80h
VOFFSET Offset error
EG
PSRR
1.
2.
3.
4.
5.
6.
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
—
—
-80
CT
Channel to channel cross talk
3dB bandwidth
Ω
V/μs
• High power (SPHP)
BW
6
dB
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0+100mV to VDACR−100 mV
The DNL is measured for 0+100 mV to VDACR−100 mV
The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V
Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV
VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set
to 0x800, Temp range from -40C to 105C
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
48
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 16. Typical INL error vs. digital code
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
49
Peripheral operating requirements and behaviors
Figure 17. Offset at half scale vs. temperature
6.6.4 Op-amp electrical specifications
Table 32. Op-amp electrical specifications
Symbol
VDD
Description
Min.
Typ.
Max.
Unit
Operating voltage
1.71
—
3.6
V
ISUPPLY
Supply current (IOUT=0mA, CL=0), low-power mode
—
TBD
TBD
μA
ISUPPLY
Supply current (IOUT=0mA, CL=0), high-speed mode
—
TBD
TBD
μA
VOS
Input offset voltage
—
±3
±10
mV
αVOS
Input offset voltage temperature coefficient
—
10
—
μV/C
IOS
Typical input offset current across the following temp
range (0–50°C)
—
±500
—
pA
IOS
Typical input offset current across the following temp
range (-40–105°C)
—
4
—
nA
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
50
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 32. Op-amp electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
IBIAS
Typical input bias current across the following temp
range (0–50°C)
—
±500
—
pA
IBIAS
Typical input bias current across the following temp
range (-40–105°C)
—
±4
—
nA
VCML
Input common mode voltage low
0
—
—
V
VCMH
Input common mode voltage high
—
—
VDD
V
RIN
Input resistance
—
500
—
MΩ
CIN
Input capacitance
—
171
—
pF
|XIN|
AC input impedance (fIN=100kHz)
—
50
—
MΩ
CMRR
Input common mode rejection ratio
60
—
—
dB
PSRR
Power supply rejection ratio
60
—
—
dB
SR
Slew rate (ΔVIN=500mV), low-power mode
0.1
—
—
V/μs
SR
Slew rate (ΔVIN=500mV), high-speed mode
1.5
4
—
V/μs
GBW
Unity gain bandwidth, low-power mode
0.15
—
—
MHz
GBW
Unity gain bandwidth, high-speed mode
1
—
—
MHz
DC open-loop voltage gain
80
90
—
dB
Load capacitance driving capability
—
100
—
pF
ROUT
Output resistance @ 100 kHz, high speed mode
—
1500
—
Ω
VOUT
Output voltage range
0.12
—
VDD - 0.12
V
IOUT
Output load current
—
±0.5
—
mA
GM
Gain margin
—
20
—
dB
PM
Phase margin
45
56
—
deg
Tsettle
Settling time2 (Buffer mode, low-power mode)
(To<0.1%, Vin=1.65V)
—
5.7
—
μs
Tsettle
Settling time2 (Buffer mode, high-speed mode)
(To<0.1%, Vin=1.65V)
—
3.0
—
μs
Vn
Voltage noise density (noise floor) 1kHz
—
350
—
nV/√Hz
Vn
Voltage noise density (noise floor) 10kHz
—
90
—
nV/√Hz
AV
CL(max)
1. The input capacitance is dependant on the package type used.
2. Settling time is measured from the time the Op-amp is enabled until the output settles to within 0.1% of final value. This
time includes Op-amp startup time, output slew, and settle time.
6.6.5 Transimpedance amplifier electrical specifications — full range
Table 33. TRIAMP full range operating requirements
Symbol
Description
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VIN
Input voltage range
-0.1
VDDA-1.4
V
CL
Output load capacitance
—
100
pf
Notes
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
51
Peripheral operating requirements and behaviors
Table 34. TRIAMP full range operating behaviors
Symbol
Description
Min.
ISUPPLY
Supply current (IOUT=0mA, CL=0) — Low-power
mode
ISUPPLY
—
Typ.
Max.
Unit
60
80
μA
Supply current (IOUT=0mA, CL=0) — High-speed —
mode
280
450
μA
VOS
Input offset voltage
—
TBD
TBD
mV
αVOS
Input offset voltage temperature coefficient
—
4.8
—
μV/C
IOS
Input offset current
—
±0.3
±5
nA
IBIAS
Input bias current
—
±0.3
±5
nA
RIN
Input resistance
500
—
—
MΩ
CIN
Input capacitance
—
17
—
pF
ROUT
Output AC impedance
—
—
1500
Ω
|XIN|
AC input impedance (fIN=100kHz)
—
159
—
kΩ
CMRR
Input common mode rejection ratio
60
—
—
dB
PSRR
Power supply rejection ratio
60
—
—
dB
SR
Slew rate (ΔVIN=100mV) — Low-power mode
0.1
—
—
V/μs
SR
Slew rate (ΔVIN=100mV) — High speed mode
1
—
—
V/μs
GBW
Unity gain bandwidth — Low-power mode 50pF
0.15
—
—
MHz
GBW
Unity gain bandwidth — High speed mode 50pF
1
—
—
MHz
AV
DC open-loop voltage gain
80
—
—
dB
VOUT
Output voltage range
0.15
—
VDD-0.15
V
IOUT
Output load current
—
±0.5
—
mA
GM
Gain margin
—
20
—
dB
PM
Phase margin
50
60
—
deg
Vn
Voltage noise density (noise floor) 1kHz
—
280
—
nV/√Hz
Vn
Voltage noise density (noise floor) 10kHz
—
100
—
nV/√Hz
Notes
@ 100kHz,
High speed
mode
6.6.6 Transimpedance amplifier electrical specifications — limited
range
Table 35. TRIAMP limited range operating requirements
Symbol
Description
Min.
Max.
Unit
VDDA
Supply voltage
2.4
3.3
V
VIN
Input voltage range
0.1
VDDA-1.4
V
TA
Temperature
0
50
C
Notes
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
52
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 35. TRIAMP limited range operating requirements (continued)
Symbol
CL
Description
Min.
Output load capacitance
Max.
—
100
Unit
Notes
pf
Table 36. TRIAMP limited range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
VOS
Input offset voltage
—
±3
±5
mV
αVOS
Input offset voltage temperature coefficient
—
4.8
—
μV/C
IOS
Input offset current
—
±300
±600
pA
IBIAS
Input bias current
—
±300
±600
pA
ROUT
Output AC impedance
—
—
1500
Ω
|XIN|
AC input impedance (fIN=100kHz)
—
159
—
kΩ
CMRR
Input common mode rejection ratio
—
70
—
dB
PSRR
Power supply rejection ratio
—
70
—
dB
SR
Slew rate (ΔVIN=500mV) — Low-power mode
0.1
—
—
V/μs
SR
Slew rate (ΔVIN=500mV) — High speed mode
1.5
3.5
—
V/μs
GBW
Unity gain bandwidth — Low-power mode 50pF
0.15
—
—
MHz
GBW
Unity gain bandwidth — High speed mode 50pF
1
—
—
MHz
AV
DC open-loop voltage gain
80
—
—
dB
GM
Gain margin
—
20
—
dB
PM
Phase margin
60
69
—
deg
Notes
@ 100kHz,
High speed
mode
6.6.7 Voltage reference electrical specifications
Table 37. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
100
nF
Notes
1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of
the device.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
53
Peripheral operating requirements and behaviors
Table 38. VREF full-range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Vout
Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.1915
1.195
1.1977
V
Vout
Voltage reference output — factory trim
1.1584
—
1.2376
V
Vout
Voltage reference output — user trim
1.193
—
1.197
V
Vstep
Voltage reference trim step
—
0.5
—
mV
Vtdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
80
mV
Ibg
Bandgap only current
—
—
80
µA
1
Ilp
Low-power buffer current
—
—
360
uA
1
Ihp
High-power buffer current
—
—
1
mA
1
µV
1, 2
ΔVLOAD
Load regulation
• current = ± 1.0 mA
—
200
—
Tstup
Buffer startup time
—
—
100
µs
Vvdrift
Voltage drift (Vmax -Vmin across the full voltage
range)
—
2
—
mV
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 39. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
50
°C
Notes
Table 40. VREF limited-range operating behaviors
Symbol
Vout
Description
Voltage reference output with factory trim
Min.
Max.
Unit
1.173
1.225
V
Notes
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
54
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
6.8.2 USB DCD electrical specifications
Table 41. USB DCD electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC
USB_DP source voltage (up to 250 μA)
0.5
—
0.7
V
Threshold voltage for logic high
0.8
—
2.0
V
VLGC
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK
USB_DM sink current
50
100
150
μA
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
0.33
0.4
V
6.8.3 USB VREG electrical specifications
Table 42. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
120
186
μA
IDDstby
Quiescent current — Standby mode, load current
equal zero
—
1.1
1.54
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
2.1
2.8
3.6
V
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1
—
3.6
V
External output capacitor
1.76
2.2
8.16
μF
• Run mode
• Standby mode
VReg33out
COUT
Notes
2
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
55
Peripheral operating requirements and behaviors
Table 42. USB VREG electrical specifications
(continued)
Symbol
Description
Min.
Typ.1
Max.
Unit
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
Notes
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
6.8.4 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 43. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
25
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
14
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
56
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
DS6
First data
Data
Last data
Figure 18. DSPI classic SPI timing — master mode
Table 44. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 19. DSPI classic SPI timing — slave mode
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
57
Peripheral operating requirements and behaviors
6.8.5 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 45. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
4 x tBUS
—
ns
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-1.2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
19.1
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
DS1
DSPI_SCK output cycle time
DS2
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS7
(CPOL=0)
DSPI_SIN
DS8
Data
First data
Last data
DS5
DSPI_SOUT
First data
DS6
Data
Last data
Figure 20. DSPI classic SPI timing — master mode
Table 46. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
1.71
3.6
V
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
58
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 46. Slave mode DSPI timing (full voltage range) (continued)
Num
Description
Frequency of operation
Min.
Max.
Unit
—
6.25
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
—
24
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
3.2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
19
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
19
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 21. DSPI classic SPI timing — slave mode
6.8.6 I2C switching specifications
See General switching specifications.
6.8.7 UART switching specifications
See General switching specifications.
6.8.8 I2S/SAI Switching Specifications
This section provides the AC timing for the I2S/SAI module in master mode (clocks are
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
59
Peripheral operating requirements and behaviors
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the
frame sync (FS) signal shown in the following figures.
6.8.8.1
Normal Run, Wait and Stop mode performance over a limited
operating voltage range
This section provides the operating performance over a limited operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 47. I2S/SAI master mode timing in Normal Run, Wait and Stop modes
(limited voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
15
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
60
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 22. I2S/SAI timing — master modes
Table 48. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(limited voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
4.5
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
15
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
4.5
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
25
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
61
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 23. I2S/SAI timing — slave modes
6.8.8.2
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 49. I2S/SAI master mode timing in Normal Run, Wait and Stop modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
-1.0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
20.5
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
62
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 24. I2S/SAI timing — master modes
Table 50. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
5.8
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
20.6
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
5.8
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
25
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
63
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 25. I2S/SAI timing — slave modes
6.8.8.3
VLPR, VLPW, and VLPS mode performance over the full operating
voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 51. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
64
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 26. I2S/SAI timing — master modes
Table 52. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
3
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
63
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
72
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
65
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 27. I2S/SAI timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 53. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDDTSI
Operating voltage
1.71
—
3.6
V
Target electrode capacitance range
1
20
500
pF
1
fREFmax
Reference oscillator frequency
—
8
15
MHz
2, 3
fELEmax
Electrode oscillator frequency
—
1
1.8
MHz
2, 4
Internal reference capacitor
—
1
—
pF
Oscillator delta voltage
—
500
—
mV
2, 5
—
2
3
μA
2, 6
—
36
50
—
2
3
μA
2, 7
—
36
50
CELE
CREF
VDELTA
IREF
IELE
Reference oscillator current source base current
• 2 μA setting (REFCHRG = 0)
• 32 μA setting (REFCHRG = 15)
Electrode oscillator current source base current
• 2 μA setting (EXTCHRG = 0)
• 32 μA setting (EXTCHRG = 15)
Notes
Pres5
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
8
Pres20
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
9
Pres100
Electrode capacitance measurement precision
—
8.3333
38400
fF/count
10
0.008
1.46
—
fF/count
11
MaxSens Maximum sensitivity
Res
TCon20
ITSI_RUN
ITSI_LP
Resolution
—
—
16
bits
Response time @ 20 pF
8
15
25
μs
Current added in run mode
—
55
—
μA
Low power mode current adder
—
1.3
2.5
μA
12
13
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
66
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. Fixed external capacitance of 20 pF.
3. REFCHRG = 2, EXTCHRG=0.
4. REFCHRG = 0, EXTCHRG = 10.
5. VDD = 3.0 V.
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity
depends on the configuration used. The documented values are provided as examples calculated for a specific
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)
The typical value is calculated with the following configuration:
Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF
The minimum value is calculated with the following configuration:
Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be
measured by a single count.
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, EXTCHRG = 7.
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of
20 pF. Data is captured with an average of 7 periods window.
6.9.2 LCD electrical characteristics
Table 54. LCD electricals
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fFrame
LCD frame frequency
28
30
58
Hz
CLCD
LCD charge pump capacitance — nominal value
—
100
—
nF
1
CBYLCD
LCD bypass capacitance — nominal value
—
100
—
nF
1
CGlass
LCD glass capacitance
—
2000
8000
pF
2
VIREG
VIREG
3
• HREFSEL=0, RVTRIM=1111
—
1.11
—
V
• HREFSEL=0, RVTRIM=1000
—
1.01
—
V
• HREFSEL=0, RVTRIM=0000
—
0.91
—
V
—
1.84
—
V
—
1.69
—
V
—
1.54
—
V
—
—
3.0
% VIREG
• HREFSEL=1, RVTRIM=1111
• HREFSEL=1, RVTRIM=1000
• HREFSEL=1, RVTRIM=0000
ΔRTRIM
VIREG TRIM resolution
Table continues on the next page...
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
67
Dimensions
Table 54. LCD electricals (continued)
Symbol
—
Description
Min.
Typ.
Max.
Unit
• HREFSEL = 0
—
—
30
mV
• HREFSEL = 1
—
—
50
mV
—
1
—
µA
—
10
—
µA
—
1
—
µA
—
0.28
—
MΩ
—
2.98
—
MΩ
• HREFSEL = 0
2.0 − 5%
2.0
—
V
• HREFSEL = 1
3.3 − 5%
3.3
—
V
• HREFSEL = 0
3.0 − 5%
3.0
—
V
• HREFSEL = 1
5 − 5%
5
—
V
Notes
VIREG ripple
IVIREG
VIREG current adder — RVEN = 1
IRBIAS
RBIAS current adder
• LADJ = 10 or 11 — High load (LCD glass
capacitance ≤ 8000 pF)
4
• LADJ = 00 or 01 — Low load (LCD glass
capacitance ≤ 2000 pF)
RRBIAS
RBIAS resistor values
• LADJ = 10 or 11 — High load (LCD glass
capacitance ≤ 8000 pF)
• LADJ = 00 or 01 — Low load (LCD glass
capacitance ≤ 2000 pF)
VLL2
VLL3
VLL2 voltage
VLL3 voltage
1. The actual value used could vary with tolerance.
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter
within the device's reference manual.
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V
4. 2000 pF load LCD, 32 Hz frame frequency
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to http://www.freescale.com and perform a keyword
search for the drawing’s document number:
If you want the drawing for this package
80-pin LQFP
Then use this document number
98ASS23174W
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
68
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Pinout
8 Pinout
8.1 K51 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
80
LQFP
Pin Name
Default
ALT0
1
VDD
VDD
VDD
2
VSS
VSS
VSS
3
USB0_DP
USB0_DP
USB0_DP
4
USB0_DM
USB0_DM
USB0_DM
5
VOUT33
VOUT33
VOUT33
6
VREGIN
VREGIN
VREGIN
7
ADC0_DP1/
OP0_DP0
ADC0_DP1/
OP0_DP0
ADC0_DP1/
OP0_DP0
8
ADC0_DM1/
OP0_DM0
ADC0_DM1/
OP0_DM0
ADC0_DM1/
OP0_DM0
9
ADC1_DP1/
OP1_DP0/
OP1_DM1
ADC1_DP1/
OP1_DP0/
OP1_DM1
ADC1_DP1/
OP1_DP0/
OP1_DM1
10
ADC1_DM1/
OP1_DM0
ADC1_DM1/
OP1_DM0
ADC1_DM1/
OP1_DM0
11
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
12
PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
13
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
14
PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
15
VDDA
VDDA
VDDA
16
VREFH
VREFH
VREFH
17
VREFL
VREFL
VREFL
18
VSSA
VSSA
VSSA
19
ADC1_SE16/
OP1_OUT/
CMP2_IN2/
ADC0_SE22/
ADC1_SE16/
OP1_OUT/
CMP2_IN2/
ADC0_SE22/
ADC1_SE16/
OP1_OUT/
CMP2_IN2/
ADC0_SE22/
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
69
Pinout
80
LQFP
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
OP0_DP2/
OP1_DP2
OP0_DP2/
OP1_DP2
OP0_DP2/
OP1_DP2
20
ADC0_SE16/
OP0_OUT/
CMP1_IN2/
ADC0_SE21/
OP0_DP1/
OP1_DP1
ADC0_SE16/
OP0_OUT/
CMP1_IN2/
ADC0_SE21/
OP0_DP1/
OP1_DP1
ADC0_SE16/
OP0_OUT/
CMP1_IN2/
ADC0_SE21/
OP0_DP1/
OP1_DP1
21
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
22
TRI0_OUT/
OP1_DM2
TRI0_OUT/
OP1_DM2
TRI0_OUT/
OP1_DM2
23
TRI0_DM
TRI0_DM
TRI0_DM
24
TRI0_DP
TRI0_DP
TRI0_DP
25
TRI1_DM
TRI1_DM
TRI1_DM
26
TRI1_DP
TRI1_DP
TRI1_DP
27
TRI1_OUT/
CMP2_IN5/
ADC1_SE22
TRI1_OUT/
CMP2_IN5/
ADC1_SE22
TRI1_OUT/
CMP2_IN5/
ADC1_SE22
28
DAC0_OUT/
CMP1_IN3/
ADC0_SE23/
OP0_DP4/
OP1_DP4
DAC0_OUT/
CMP1_IN3/
ADC0_SE23/
OP0_DP4/
OP1_DP4
DAC0_OUT/
CMP1_IN3/
ADC0_SE23/
OP0_DP4/
OP1_DP4
29
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23/
OP0_DP5/
OP1_DP5
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23/
OP0_DP5/
OP1_DP5
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23/
OP0_DP5/
OP1_DP5
30
XTAL32
XTAL32
XTAL32
31
EXTAL32
EXTAL32
EXTAL32
32
VBAT
VBAT
VBAT
33
PTA0
JTAG_TCLK/
SWD_CLK/
EZP_CLK
TSI0_CH1
PTA0
UART0_CTS_ FTM0_CH5
b/
UART0_COL_b
JTAG_TCLK/
SWD_CLK
EZP_CLK
34
PTA1
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX
FTM0_CH6
JTAG_TDI
EZP_DI
35
PTA2
JTAG_TDO/
TRACE_SWO/
EZP_DO
TSI0_CH3
PTA2
UART0_TX
FTM0_CH7
JTAG_TDO/
TRACE_SWO
EZP_DO
36
PTA3
JTAG_TMS/
SWD_DIO
TSI0_CH4
PTA3
UART0_RTS_b FTM0_CH0
37
PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
TSI0_CH5
PTA4/
LLWU_P3
38
VDD
VDD
VDD
39
VSS
VSS
VSS
FTM0_CH1
ALT6
ALT7
EzPort
JTAG_TMS/
SWD_DIO
NMI_b
EZP_CS_b
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
70
Preliminary
General Business Information
Freescale Semiconductor, Inc.
Pinout
80
LQFP
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
40
PTA18
EXTAL0
EXTAL0
PTA18
FTM0_FLT2
FTM_CLKIN0
41
PTA19
XTAL0
XTAL0
PTA19
FTM1_FLT0
FTM_CLKIN1
42
RESET_b
RESET_b
RESET_b
43
PTB0/
LLWU_P5
LCD_P0/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
LCD_P0/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL
FTM1_CH0
FTM1_QD_
PHA
LCD_P0
44
PTB1
LCD_P1/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
LCD_P1/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_
PHB
LCD_P1
45
PTB2
LCD_P2/
ADC0_SE12/
TSI0_CH7
LCD_P2/
ADC0_SE12/
TSI0_CH7
PTB2
I2C0_SCL
UART0_RTS_b
FTM0_FLT3
LCD_P2
46
PTB3
LCD_P3/
ADC0_SE13/
TSI0_CH8
LCD_P3/
ADC0_SE13/
TSI0_CH8
PTB3
I2C0_SDA
UART0_CTS_
b/
UART0_COL_b
FTM0_FLT0
LCD_P3
47
PTB8
LCD_P8
LCD_P8
PTB8
48
PTB9
LCD_P9
LCD_P9
PTB9
49
PTB10
LCD_P10/
ADC1_SE14
LCD_P10/
ADC1_SE14
50
PTB11
LCD_P11/
ADC1_SE15
51
PTB16
52
LPTMR0_ALT1
UART3_RTS_b
LCD_P8
SPI1_PCS1
UART3_CTS_b
LCD_P9
PTB10
SPI1_PCS0
UART3_RX
FTM0_FLT1
LCD_P10
LCD_P11/
ADC1_SE15
PTB11
SPI1_SCK
UART3_TX
FTM0_FLT2
LCD_P11
LCD_P12/
TSI0_CH9
LCD_P12/
TSI0_CH9
PTB16
SPI1_SOUT
UART0_RX
EWM_IN
LCD_P12
PTB17
LCD_P13/
TSI0_CH10
LCD_P13/
TSI0_CH10
PTB17
SPI1_SIN
UART0_TX
EWM_OUT_b
LCD_P13
53
PTB18
LCD_P14/
TSI0_CH11
LCD_P14/
TSI0_CH11
PTB18
FTM2_CH0
I2S0_TX_BCLK
FTM2_QD_
PHA
LCD_P14
54
PTB19
LCD_P15/
TSI0_CH12
LCD_P15/
TSI0_CH12
PTB19
FTM2_CH1
I2S0_TX_FS
FTM2_QD_
PHB
LCD_P15
55
PTC0
LCD_P20/
ADC0_SE14/
TSI0_CH13
LCD_P20/
ADC0_SE14/
TSI0_CH13
PTC0
SPI0_PCS4
PDB0_EXTRG
I2S0_TXD1
LCD_P20
56
PTC1/
LLWU_P6
LCD_P21/
ADC0_SE15/
TSI0_CH14
LCD_P21/
ADC0_SE15/
TSI0_CH14
PTC1/
LLWU_P6
SPI0_PCS3
UART1_RTS_b FTM0_CH0
I2S0_TXD0
LCD_P21
57
PTC2
LCD_P22/
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
LCD_P22/
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
PTC2
SPI0_PCS2
UART1_CTS_b FTM0_CH1
I2S0_TX_FS
LCD_P22
58
PTC3/
LLWU_P7
LCD_P23/
CMP1_IN1
LCD_P23/
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1
UART1_RX
59
VSS
VSS
VSS
60
VLL3
VLL3
VLL3
61
VLL2
VLL2
VLL2
62
VLL1
VLL1
VLL1
63
VCAP2
VCAP2
VCAP2
FTM0_CH2
EzPort
CLKOUT
I2S0_TX_BCLK LCD_P23
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
71
Pinout
80
LQFP
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
64
VCAP1
VCAP1
VCAP1
65
PTC4/
LLWU_P8
LCD_P24
LCD_P24
PTC4/
LLWU_P8
SPI0_PCS0
UART1_TX
FTM0_CH3
CMP1_OUT
LCD_P24
66
PTC5/
LLWU_P9
LCD_P25
LCD_P25
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_ALT2 I2S0_RXD0
CMP0_OUT
LCD_P25
67
PTC6/
LLWU_P10
LCD_P26/
CMP0_IN0
LCD_P26/
CMP0_IN0
PTC6/
LLWU_P10
SPI0_SOUT
PDB0_EXTRG
I2S0_RX_BCLK
I2S0_MCLK
LCD_P26
68
PTC7
LCD_P27/
CMP0_IN1
LCD_P27/
CMP0_IN1
PTC7
SPI0_SIN
USB_SOF_
OUT
I2S0_RX_FS
LCD_P27
69
PTC8
LCD_P28/
ADC1_SE4b/
CMP0_IN2
LCD_P28/
ADC1_SE4b/
CMP0_IN2
PTC8
I2S0_MCLK
LCD_P28
70
PTC9
LCD_P29/
ADC1_SE5b/
CMP0_IN3
LCD_P29/
ADC1_SE5b/
CMP0_IN3
PTC9
I2S0_RX_BCLK
71
PTC10
LCD_P30/
ADC1_SE6b
LCD_P30/
ADC1_SE6b
PTC10
I2C1_SCL
I2S0_RX_FS
LCD_P30
72
PTC11/
LLWU_P11
LCD_P31/
ADC1_SE7b
LCD_P31/
ADC1_SE7b
PTC11/
LLWU_P11
I2C1_SDA
I2S0_RXD1
LCD_P31
73
PTD0/
LLWU_P12
LCD_P40
LCD_P40
PTD0/
LLWU_P12
SPI0_PCS0
UART2_RTS_b
LCD_P40
74
PTD1
LCD_P41/
ADC0_SE5b
LCD_P41/
ADC0_SE5b
PTD1
SPI0_SCK
UART2_CTS_b
LCD_P41
75
PTD2/
LLWU_P13
LCD_P42
LCD_P42
PTD2/
LLWU_P13
SPI0_SOUT
UART2_RX
LCD_P42
76
PTD3
LCD_P43
LCD_P43
PTD3
SPI0_SIN
UART2_TX
LCD_P43
77
PTD4/
LLWU_P14
LCD_P44
LCD_P44
PTD4/
LLWU_P14
SPI0_PCS1
UART0_RTS_b FTM0_CH4
EWM_IN
LCD_P44
78
PTD5
LCD_P45/
ADC0_SE6b
LCD_P45/
ADC0_SE6b
PTD5
SPI0_PCS2
UART0_CTS_ FTM0_CH5
b/
UART0_COL_b
EWM_OUT_b
LCD_P45
79
PTD6/
LLWU_P15
LCD_P46/
ADC0_SE7b
LCD_P46/
ADC0_SE7b
PTD6/
LLWU_P15
SPI0_PCS3
UART0_RX
FTM0_CH6
FTM0_FLT0
LCD_P46
80
PTD7
LCD_P47
LCD_P47
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
FTM0_FLT1
LCD_P47
FTM2_FLT0
EzPort
LCD_P29
8.2 K51 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
72
Preliminary
General Business Information
Freescale Semiconductor, Inc.
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
VCAP1
VCAP2
VLL1
VLL2
69
68
67
66
65
64
63
62
61
PTC10
PTC9
PTC11/LLWU_P11
72
71
PTD0/LLWU_P12
73
70
PTD2/LLWU_P13
PTD1
75
PTD3
76
74
PTD5
PTD4/LLWU_P14
78
PTD6/LLWU_P15
79
77
PTD7
80
Pinout
VDD
1
60
VSS
2
59
VSS
USB0_DP
3
58
PTC3/LLWU_P7
USB0_DM
4
57
PTC2
VOUT33
5
56
PTC1/LLWU_P6
VREGIN
6
55
PTC0
ADC0_DP1/OP0_DP0
7
54
PTB19
ADC0_DM1/OP0_DM0
8
53
PTB18
PTB17
VLL3
9
52
ADC1_DM1/OP1_DM0
10
51
PTB16
PGA0_DP/ADC0_DP0/ADC1_DP3
11
50
PTB11
ADC1_DP1/OP1_DP0/OP1_DM1
40
VSS
38
VDD
PTA18
37
PTA4/LLWU_P3
39
35
34
PTA1
36
33
PTA0
PTA2
32
VBAT
PTA3
31
PTA19
30
RESET_b
41
XTAL32
42
20
EXTAL32
ADC1_SE16/OP1_OUT/CMP2_IN2/ADC0_SE22/OP0_DP2/OP1_DP2
ADC0_SE16/OP0_OUT/CMP1_IN2/ADC0_SE21/OP0_DP1/OP1_DP1
29
PTB0/LLWU_P5
19
28
PTB1
43
DAC0_OUT/CMP1_IN3/ADC0_SE23/OP0_DP4/OP1_DP4
44
18
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23/OP0_DP5/OP1_DP5
17
VSSA
26
VREFL
27
PTB2
TRI1_DP
45
TRI1_OUT/CMP2_IN5/ADC1_SE22
16
25
PTB3
VREFH
TRI1_DM
PTB8
46
24
47
15
23
14
VDDA
TRI0_DP
PGA1_DM/ADC1_DM0/ADC0_DM3
TRI0_DM
PTB9
21
PTB10
48
22
49
13
TRI0_OUT/OP1_DM2
12
PGA1_DP/ADC1_DP0/ADC0_DP3
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
PGA0_DM/ADC0_DM0/ADC1_DM3
Figure 28. K51 80 LQFP Pinout Diagram
K51 Sub-Family Data Sheet, Rev. 1, 6/2012.
Freescale Semiconductor, Inc.
Preliminary
General Business Information
73
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Document Number: K51P81M100SF2V2
Rev. 1, 6/2012
Preliminary
General Business Information
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2012 Freescale Semiconductor, Inc.
Similar pages