EUP8057 怎 Advanced 1A Linear Charge Management Controllers DESCRIPTION FEATURES The EUP8057 is a highly advanced Lithium-Ion (Li-Ion) and Lithium–Polymer (Li-Pol) linear charge management controller for use in cost sensitive and portable applications. It combines high accuracy constant-current and constant-voltage regulation, cell preconditioning, temperature monitoring, automatic charge termination, charge-status indication, in a space-saving MSOP-8, TSSOP-8 package. The EUP8057 applies a constant current up to 1A to the battery and the charge current can be programmed externally with a sense-resistor. The EUP8057 automatically terminates the charge cycle when the charge current drops to the charge termination threshold (ITERM) after the charge-regulation voltage is reached. When the input supply is removed, the EUP8057 automatically enters a low-power sleep mode. A battery charge state output pin is provided to indicate battery charge status through a display LED. The battery charge status output is a serial interface which may also be read by a system microcontroller. z 4.5V-15V Wide Input Voltage Range z Ideal for Single Cell (4.1V or 4.2V) and Dual-Cell (8.2V or 8.4V) Li-Ion or Li-Pol Batteries z z z z z Preset Charge Voltage with ±1% Accuracy Programmable Charge Current up to 1A Constant-Current/Constant Voltage Operation Preconditioning of Low Voltage Cells Optional Cell-Temperature Monitoring Before and During Charge Charge Status Output for Single of Dual Led or Host Processor Interface Automatic Battery Recharge Charge Termination by Minimum Current Automatic Low-Power Sleep Mode When Input Power is Removed Available in TSSOP-8, MSOP-8 and SOP-8 Package RoHS Compliant and 100% Lead (Pb)-Free z z z z z z APPLICATIONS z z DS8057 Ver 1.8 Nov. 2006 1 Cellular Phones / PDAs/ MP3 Players/DSC Handheld Instruments EUP8057 Typical Application Circuit DS8057 Ver 1.8 Nov. 2006 2 EUP8057 Pin Configurations Part Number Pin Configurations EUP8057 TSSOP-8 EUP8057 MSOP-8 EUP8057 SOP-8 Pin Description PIN TSSOP-8 MSOP-8 SOP-8 I/O SNS 1 7 7 I Current Sense Input BAT 2 8 8 I Battery Voltage Input VCC 3 1 1 I Supply Voltage Input TS 4 2 2 I Temperature Sense Input STAT 5 3 3 O Charge Status Output VSS 6 4 4 CC 7 5 5 O FB/CE 8 6 6 I DS8057 Ver 1.8 Nov. 2006 DESCRIPTION Ground Charge Control Output External Feedback input or Charge Enable Function. Input from controller or finely adjust the battery regulated voltage with external voltage divider 3 EUP8057 Ordering Information Order Number Package Type EUP8057-41QIR1 TSSOP-8 EUP8057-42QIR1 TSSOP-8 EUP8057-82QIR1 TSSOP-8 EUP8057-83QIR1 TSSOP-8 EUP8057-84QIR1 TSSOP-8 EUP8057-41MIR1 MSOP-8 EUP8057-42MIR1 MSOP-8 EUP8057-82MIR1 MSOP-8 EUP8057-83MIR1 MSOP-8 EUP8057-84MIR1 MSOP-8 EUP8057-42DIR1 SOP-8 Marking xxxx 8057 xxxx 8057C xxxx 8057T xxxx 8057Q xxxx 8057W xxxx 8057 xxxx 8057C xxxx 8057T xxxx 8057Q xxxx 8057W xxxx 8057C EUP8057- □ □ □ □ □ □ Lead Free Code 1: Lead Free 0: Lead Packing R: Tape & Reel Operating temperature range I: Industry Standard Package Type Q: TSSOP M: MSOP D: SOP Output Voltage 41: 4.1V 42: 4.2V 82: 8.2V 83: 8.32V 84: 8.4V DS8057 Ver 1.8 Nov. 2006 4 Operating Temperature range -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C -20 °C to 70°C EUP8057 Absolute Maximum Ratings Supply voltage, (Vcc with respect to GND) -------------------------------------------------- -- -0.3 to +18V Input voltage, SNS, BAT, TS, CE (all with respect to GND)-------------------------- -0.3V to VCC +0.3V Sink current (STAT pin) not to exceed PD -------------------------------------------------------------- 20mA Source current (STAT pin) not to exceed PD ---------------------------------------------------------- 10mA Output current (CC pin) not to exceed PD -------------------------------------------------------------- 40mA Maximum Junction Temperature, TJ ------------------------------------------------------------------- 150°C Storage temperature range, Tstg ------------------------------------------------------------- -65°C to 150°C Lead temperature (soldering, 10s) -----------------------------------------------------------------300°C Package Thermal Resistance, θJA- MSOP8 ---------------------------------------------------------- 80°C/W θJA- TSSOP8 --------------------------------------------------------- 70°C/W θJA- SOP8 ------------------------------------------------------------- 67.9°C/W ESD Rating -------------------------------------------------------------------------------------------Note 1 Note 1: IC devices are inherently ESD sensitive; handling precautions required. Recommended Operating Conditions Min. Max. Unit Supply voltage, VCC 4.5 15 V Operating free-air temperature range, TA -20 70 °C Electrical Characteristics over Recommended Operating Free-Air Temperature Range EUP8057 Symbol Parameter Conditions Min. Typ. Max. I(VCC) I(VCCS) VCC current VCC Sleep current VCC=9V >VCC(min), Excluding external loads For EUP8057-4.1, EUP8057-4.2 V(BAT) ≥ V(min), V(BAT)-VCC ≥ 0.8V 0.7 1.2 2 4 Unit mA µA For EUP8057-8.2, EUP8057-8.3, EUP8057-8.4 ,V(BAT) ≥ V(min), V(BAT)-VCC ≥ 0.8V 8 IIB(BAT) Input bias current on BAT pin V(BAT)=V(REG) 1 µA IIB(SNS) Input bias current on SNS pin V(SNS)=5V 1 µA IIB(TS) Input bias current on TS pin V(TS)=5V 1 µA IIB(CE) Input bias current on CE pin V(PI)=5V 1 µA Battery Voltage Regulation VO(REG) Output voltage DS8057 Ver 1.8 Nov. 2006 EUP8057-4.1 4.059 4.10 4.141 EUP8057-4.2 4.158 4.20 4.242 EUP8057-8.2 8.119 8.20 8.282 EUP8057-8.3 8.237 8.32 8.403 EUP8057-8.4 8.317 8.40 8.484 5 V EUP8057 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range Symbol V(SNS) Parameter Conditions Current regulation threshold Voltage at pin SNS, relative to VCC EUP8057 Unit Min. Typ. Max. 180 200 220 mV 5 15 25 mV 29 30 31 58 60 62 EUP8057-4.1 2.94 3 3.06 EUP8057-4.2 3.14 3.2 3.26 EUP8057-8.2 5.98 6.1 6.22 EUP8057-8.3 6.13 6.25 6.37 EUP8057-8.4 6.18 6.3 6.43 Charge Termination Detection I(TERM) Charge termination current Voltage at pin SNS, relative to VCC detect threshold 0°C ≤ TA ≤ 50°C Temperature Comparator V(TS1) Lower temperature threshold V(TS2) Upper temperature threshold TS pin voltage %VCC Precharge Comparator V(min) Precharge threshold V Precharge Current Regulation I(PRECHG) Precharge current regulation Voltage at pin SNS, relative to VCC 0°C ≤ TA ≤ 50°C Voltage at pin SNS, relative to VCC 0°C ≤ TA ≤ 50°C , VCC=9V 18 5 mV 33 mV VRCH comparator(Battery Recharge Threshold) Recharge threshold VO(REG)102mV VO(REG)EUP8057-8.2 ,EUP8057-8.3 and EUP8057-8.4 204mV VOL(STAT) Output(low)voltage IOL=10mA VOH(STAT) Output(high)voltage IOH=5mA VOL(CC) Output low voltage IO(CC)=5mA(sink) IO(CC) Sink current EUP8057-4.1 and EUP8057-4.2 V(RCH) VO(REG)- VO(REG)100mV 98mV VO(REG)- VO(REG)200mV 196mV V STAT Pin 0.7 VCC-0.8 V CC Pin DS8057 Ver 1.8 Nov. 2006 Not to exceed power rating specification(PD) 6 5 2 V 40 mA EUP8057 Typical Operating Characteristics DS8057 Ver 1.8 Nov. 2006 7 EUP8057 Application Information Functional Description The EUP8057 is an advanced 1A linear charge controller for single or two-cell Li-Ion of Li-Pol applications. Refer to Blocking Diagram (Figure3) and Operation Flow Chart (Figure4) in this section. DS8057 Ver 1.8 Nov. 2006 8 EUP8057 Power On Reset VCC Applied NO Sleep Mode YES Temperature Fault NO Temperature Test TS>VTS1 TS<VTS2 YES Preconditioning Test VMIN > VBAT YES Low Current Conditioning Charge (Trickle Charge) NO Current Phase Test VREG>VBAT YES Constant Current Charging Mode NO Voltage Phase Test IBAT>ITERM YES Constant Voltage Charging Mode NO Charge Termination NO YES Recharge Test VRCH>VBAT Figure4. Operation Flow Chart DS8057 Ver 1.8 Nov. 2006 9 EUP8057 Qualification and Precharge When power is applied, the EUP8057 starts a charge-cycle if a battery is already present or when a battery is inserted. Charge qualification is based on battery temperature and voltage. The EUP8057 suspends charge if the battery temperature is outside the V(TS1) to V(TS2) range and suspends charge until the battery temperature is within the allowed range. The EUP8057 also checks the battery voltage. If the battery voltage is below the precharge threshold V(min), the EUP8057 uses precharge to condition the battery. The conditioning charge rate I(PRECHG) is set at approximately 10% of the regulation current. The conditioning current also minimizes heat dissipation in the external pass-element during the initial stage of charge. See Figure5 for a typical charge-profile. Voltage Regulation Phase The voltage regulation feedback is through the BAT pin. This input is tied directly to the positive side of the battery pack. The EUP8057 monitors the battery-pack voltage between the BAT and VSS pins. The EUP8057 is offered in five fixed-voltage versions:4.1V, 4.2V ,8.2V, 8.3V and 8.4V. FB/CE Pin Function This pin has two functions, one is to enable/disable the charge function, and the other is to finely adjust battery regulation voltage. Connect this pin to VDD to enable EUP8057, and connect to ground to disable it (Figure7). If this pin is connected to a voltage divider as shown in Figure8, it can be a 4.3V reference voltage to adjust the output regulation voltage as desired. Current Regulation Phase The EUP8057 regulates current while the battery-pack voltage is less than the regulation voltage, VO(REG). The EUP8057 monitors charge current at the SNS input by the voltage drop across a sense-resistor, RSNS, in series with the battery pack. In current sensing configuration (Figure6), RSNS is between the VCC and SNS pins, charge-current feedback, applied through pin SNS, maintains a voltage of V(SNS) across the current sense resistor. The following formula calculates the value of the sense resistor: R SNS = V (SNS) I ---------------------------- (1) O(REG) Where IO(REG) is the desired charging current. DS8057 Ver 1.8 Nov. 2006 10 EUP8057 R R VO(REG) = 4.3 × (1 + R FB1 )V R FB2 Battery Temperature Monitoring The EUP8057 continuously monitors temperature by measuring the voltage between the TS and VSS pins. A negative-or a positive-temperature coefficient thermistor (NTC, PTC) and an external voltage divider typically develop this voltage (See Figure9). The EUP8057 compares this voltage against its internal V(TS1) and V(TS2) thresholds to determine if charging is allowed. (See Figure10). The temperature sensing circuit is immune to any fluctuation in VCC, since both the external voltage divider and the internal thresholds (V(TS1) and V(TS2)) are referenced to VCC. The resistor values of R(T1) and R(T2) are calculated by the following equations: For NTC Thermistors R T1 T2 = = 5× R 3 × (R TH TC ×R -R TC TH ) ----------------------- (3) 5× R ×R TH TC --------------- (4) [(2 × (R ) - (7 × R )] TH TC For PTC Thermaistors DS8057 Ver 1.8 Nov. 2006 T2 = 5× R 3 × (R TH TH 5× R ×R -R TC TC ) ---------------------- (5) ×R TH TC [(2 × (R ) - (7 × R )] TH TC ------------- (6) Where R(TC) is the cold temperature resistance and R(TH) is the hot temperature resistance of thermistor, as specified by the thermistor manufacturer. RT1 or RT2 can be omitted if only one temperature (hot or cold) setting is required. Applying a voltage between the V(TS1) and V(TS2) thresholds to pin TS disables the temperature-sensing feature. Charge Termination and Recharge The EUP8057 monitors the charging current during the voltage-regulation phase. The EUP8057 declares a done condition and terminates charge when the current drops to the charge termination threshold, I(TERM). A new charge cycle begins when the battery voltage falls below the V(RCH) threshold. R T1 = 11 EUP8057 Charge Inhibit Function The TS pin can be used as charge-inhibit input. The user can inhibit charge by connecting the TS pin to VCC or VSS (or any level outside the V(TS1) to V(TS2) thresholds). Applying a voltage between the V(TS1) and V(TS2) thresholds to pin TS returns the charger to normal operation. Charge Status Indication The EUP8057 reports the status of the charger on the 3-state STAT pin. The following table summarized the operation of the STAT pin. Condition Battery conditioning and charging Charge complete(done) Temperature fault or sleep mode STAT pin High Low Hi-Z The STAT pin can be used to drive a single LED (Figure1), dual-chip LEDs (Figure2) or for interface to a host or system processor (Figure11). When interfacing the EUP8057 to a processor, the user can use an output port, to recognize the high-Z state of the STAT pin. In this configuration, the user needs to read the input pin, toggle the output port and read the STAT pin again. In a high-Z condition, the input port always matches the signal level on the output port. Selecting Input Capacitor In most applications, all that is needed is high-frequency decoupling capacitor. A 0.1µF ceramic, placed in proximity to VCC and VSS pins, works well. The EUP8057 works with both regulated and unregulated external dc supplies. If a non-regulated supply is chosen, the supply unit should have enough capacitance to hold up the supply voltage to the minimum required input voltage at maximum load. If not, more capacitance must be added to the input of the charger. Selecting Output Capacitor The EUP8057 does not require any output capacitor for loop stability. In order to maintain good AC stability in the Constant Voltage mode, a minimum capacitance of 10µF is recommenced to bypass the VBAT pin to VSS. This capacitance provides compensation when there is no battery load. In addition, the battery and interconnections appear inductive at high frequencies. These elements are in the control feedback loop during Constant Voltage mode. Therefore, the bypass capacitance may be necessary to compensate for the inductive nature of the battery pack. Virtually any good quality output filter capacitor can be used, independent of the capacitor’s minimum ESR (Effective Series Resistance) value. The actual value of the capacitor and its associated ESR depends on the forward transconductance (gm) and capacitance of the external pass transistor. A 10µF tantalum or aluminum electrolytic capacitor at the output is usually sufficient to ensure stability for up to a 1A output current. Selecting An External Pass-Device (PMOS or PNP) The EUP8057 is designed to work with both P-channel MOSFET or PNP transistor. The device should be chosen to handle the required power dissipation, given the circuit parameters, PCB layout and heat sink configuration. The following examples illustrate the design process for PMOS device: Low-Power Sleep Mode When the input supply is disconnected, the charger automatically enters power-saving sleep mode. This feature prevents draining the battery pack during the absence of VCC. DS8057 Ver 1.8 Nov. 2006 12 EUP8057 P-Channel MOSFET Selection steps for a P-channel MOSFET: We will use the following conditions: VI=5V (with 10% supply tolerance); I(REG)=1A, 4.2-V single-cell Li-Ion (EUP8057-4.2). VI is the input voltage to the charger and I(REG) is the desired charge current. (See Figure2) 1. Determine the maximum power dissipation, PD , in the transistor. The worst case power dissipation happens when the cell voltage, V(constant), is at its lowest (typically 3.1V at the beginning of current regulation phase) and VI is at its maximum. Where VD is the forward voltage drop across the reverse-blocking diode (if one is used), and VCS is the voltage drop across the current sense resistor. PD=(VI(MAX)-VD-VCS-VBAT)×IREG --------- (7) PD=(5.5-0.4-0.2-3.1)×1A PD=1.8W 2. Determine the package size needed in order to keep the junction temperature below the manufacturer’s recommended value, TJMAX. Calculate the total theta, θ(°C/W), needed. θ θ JA JA = = (T -T ) max(J) A(max) P D (150 - 40) 1.8 --------------(8) θJA = 61°C/W It is recommended to choose a package with a lower θJA than the number calculated above. 3. 4. 5. Select a drain-source voltage, V(DS), rating greater than the maximum input voltage. A 12V device will be adequate in this example. Select a device that has at least 50% higher drain current (ID) rating than the desired charge current I(REG). Verify that the available drive is large enough to supply the desired charge current. V(GS)=(VD+V(CS)+VOL(CC))-VI(min) -------------- (9) V(GS)=(0.4+0.2+1) - 4.5 V(GS)=-2.9 Where V(GS) is the gate-to-source voltage, VD is the forward voltage drop across the reverse-blocking diode (if one is used), and VCS is the voltage drop across the current sense resistor, and VOL(CC) is the CC pin output low voltage specification for the EUP8057. Select a MOSFET with gate threshold voltage, V(GSth), rating less than the calculated V(GS). DS8057 Ver 1.8 Nov. 2006 13 Reverse Blocking Protection The optional reverse-blocking protection diode, depicted in Figure1&2 provides protection from a faulted or shorted input, or from a reversed-polarity input source. Without the protection diode, a faulted of shorted input would discharge the battery pack through the body diode of the external pass transistor. If a reverse-protection diode is incorporated in the design, it should be chosen to handle the fast charge current continuously at the maximum ambient temperature. In addition, the reverse-leakage current of the diode should be kept as small as possible. EUP8057 Packaging Information 8-Pin MSOP NOTE 1. Package body sizes exclude mold flash and gate burrs 2. Dimension L is measured in gage plane 3. Tolerance 0.10mm unless otherwise specified 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. SYMBOLS A A1 A2 b C D E E1 e L y θ DS8057 Ver 1.8 Nov. 2006 DIMENSIONS IN MILLIMETERS MIN. NOM. MAX. 0.81 0.95 1.10 0.05 0.09 0.15 0.76 0.86 0.97 0.28 0.30 0.38 0.13 0.15 0.23 2.90 3.00 3.10 4.70 4.90 5.10 2.90 3.00 3.10 -----0.65 ----0.40 0.53 0.66 ----------0.10 0 -----6 14 DIMENSIONS IN INCHES MIN. NOM. MAX. 0.032 0.0375 0.043 0.002 0.004 0.006 0.030 0.034 0.038 0.011 0.012 0.015 0.005 0.006 0.009 0.114 0.118 0.122 0.185 0.193 0.201 0.114 0.118 0.122 -----0.026 -----0.016 0.021 0.026 ----------0.004 0 -----6 EUP8057 8-Pin TSSOP NOTE 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance ±0.10mm unless otherwise specified 3. Coplanarity: 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Followed from JEDEC MO-153 SYMBOLS A A1 A2 b C D E E1 e L y θ DS8057 Ver 1.8 Nov. 2006 DIMENSIONS IN MILLIMETERS MIN. NOM. MAX. ----------1.20 0.05 -----0.15 0.80 1.00 1.05 0.19 -----0.30 0.09 -----0.20 2.90 3.00 3.10 6.20 6.40 6.60 4.30 4.40 4.50 -----0.65 ----0.45 0.60 0.75 ----------0.10 0 -----8 15 DIMENSIONS IN INCHES MIN. NOM. MAX. ----------0.048 0.002 -----0.006 0.031 0.039 0.041 0.007 -----0.012 0.004 -----0.008 0.114 0.118 0.122 0.244 0.252 0.260 0.169 0.173 0.177 -----0.026 -----0.018 0.024 0.030 ----------0.004 0 -----8 EUP8057 SOP-8 X Y Z Standard Solder Map Symbols A B C D E H F L1 L2 M N DS8057 Ver 1.8 Nov. 2006 Dimension in Millimeters Min. Max. 4.80 5.00 5.80 6.20 3.80 4.00 1.194 1.346 1.45 1.55 0.00 0.10 0.33 0.51 0.19 0.25 0.40 1.27 0° 8° 40° 50° 16 Dimension in Inches Min. Max. 0.189 0.197 0.228 0.244 0.150 0.157 0.047 0.053 0.057 0.061 0.000 0.004 0.013 0.020 0.007 0.010 0.016 0.050 0° 8° 40° 50°