Qimonda HYB18T1G160BFL 214-pin unbuffered ddr2 sdram microdimm modules low power Datasheet

May 2007
HYS64T128020EML-3S-B
HYS64T128020EML-3.7-B
HYS64T128020EML-5-B
214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules
L o w P ow er
Preliminary
Internet Data Sheet
Rev. 0.5
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
HYS64T128020EML-3S-B HYS64T128020EML-3.7-B
Revision History: 2007-05, Rev. 0.5
Page
Subjects (major changes since last revision)
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev400 / 3.2 QAG / 2006-08-07
05212007-7F24-MITO
2
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
1
Overview
This chapter gives an overview of the 214-Pin Unbuffered DDR2 SDRAM MicroDIMM Modules product family and describes
its main characteristics.
1.1
Features
List of Micro-DIMM features
• 214-Pin PC-5300,PC2-4200 and PC2-3200 DDR2
SDRAM memory modules for use as main memory when
installed in systems such as mobile personal computers.
• 128M × 64 module organisation and 64M ×16 chip
organisation
• JEDEC standard Double-Data-Rate-Two Synchronous
DRAMs (DDR2 SDRAM) with a single + 1.8 V (± 0.1 V)
power supply
• 1 GB modules built with 1 Gb DDR2 SDRMs in chipsize
packages PG-TFBGA-84.
• Programmable CAS Latencies (3, 4 and 5), Burst Length
(8 & 4)
• Burst Refresh, Distributed Refresh and Self Refresh
• All inputs and outputs SSTL_18 compatible
• OCD (Off-Chip Driver Impedance Adjustment) and ODT
(On-Die Termination)
• Serial Presence Detect with E2PROM
• Micro-DIMM Dimensions (nominal): 30 mm high, 54.0 mm
wide
• Based on JEDEC standard reference layouts Raw Card
“A”
• RoHS compliant product1)
TABLE 1
Performance Table
Product Type Speed Code
-3S
–3.7
–5
Units
Speed Grade
PC2-5300
PC2–4200
PC2–3200
—
CAS-RCD-RP latencies
5-5-5
4-4-4
3-3-3
tck
333
266
200
MHz
266
266
200
MHz
200
200
200
MHz
15
15
15
ns
15
15
15
ns
45
45
40
ns
60
60
55
ns
Max. Clock Frequency
@CL5
@CL4
@CL3
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK5
fCK4
fCK3
tRCD
tRP
tRAS
tRC
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 0.5, 2007-05
05212007-7F24-MITO
3
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
1.2
Description
feature serial presence detect based on a serial E2PROM
device using the 2-pin I2C protocol. The first 128 bytes are
programmed with configuration data and are write protected;
the second 128 bytes are available to the customer.
The QIMONDA HYS64T128020EML–[3S/3.7/5]–B module
family are low power Unbuffered Micro-DIMM modules
“MDIMMs” with 30 mm height based on DDR2 technology.
DIMMs are available as 128M × 64 organisation and density,
intended for mounting into 214-pin mezzanine connector
sockets.The memory array is designed with 1 Gb DoubleData-Rate-Two (DDR2) Synchronous DRAMs. Decoupling
capacitors are mounted on the PCB board. The DIMMs
TABLE 2
Ordering Information
Product Type
1)
2)
Compliance Code
Description
SDRAM
Technology
HYS64T128020EML-3S-B
1GB 2R×16 PC2–5300M–555–12–A0
two ranks, Non-ECC
1 Gbit
HYS64T128020EML–3.7–B
1GB 2R×16 PC2–4200M–444–12–A0
two ranks, Non-ECC
1 Gbit
HYS64T128020EML–5–B
1GB 2R×16 PC2–3200M–333–12–A0
two ranks, Non-ECC
1 Gbit
1) All part numbers end with a place code, designating the silicon die revision. Example: HYS64T128020EM–3.7–B, indicating Rev. “B” dies
are used for DDR2 SDRAM components. For all QIMONDA DDR2 module and component nomenclature see Chapter 6 of this data sheet.
2) The Compliance Code is printed on the module label and describes the speed grade, e.g. “PC2–4200M–444–11–A0, where 4200M means
Micro-DIMM modules with 4.26 GB/sec Module Bandwidth and “444-11” means Column Address Strobe (CAS) latency = 4, Row Column
Delay (RCD) latency = 4 and Row Precharge (RP) latency = 4 using the latest JEDEC SPD Revision 1.1 and produced on the Raw Card
“A”.
TABLE 3
Module-Component Mapping Table
QAG DDR2 Memory Module
QAG DDR2 SDRAM Component
Part Number1)
Density
Ranks SDRAM
Organization
Organizatio
Type
n Nos.
Raw Part Number
Card
Density
Address Bits
Organization Row/Bank/Col
umn
HYS64T128020EML
1 GB
128Mx64
Non-ECC
A
1 Gbit,
64Mx16
2
x16
8
1) Green Product
Rev. 0.5, 2007-05
05212007-7F24-MITO
4
HYB18T1G160BFL
13/3/10
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
2
Pin Configuration and Block Diagrams
This chapter contains the pin configuration and block diagrams.
2.1
Pin Configuration
The pin configuration of the DDR2 SDRAM Micro-DIMM is listed by function in Table 4 (214 pins). The abbreviations used in
columns Pin and Buffer Type are explained in Table 5 and Table 6 respectively. The pin numbering is depicted in Figure 1.
TABLE 4
Pin Configuration of MDIMM
Ball No.
Name
Pin
Type
Buffer
Type
Function
Clock Signal CK 1:0, Complementary Clock Signal CK 1:0
Note: The system clock inputs. All address and command lines are
sampled on the cross point of the rising edge of CK and the falling
edge of CK. A Delay Locked Loop (DLL) circuit is driven from the
clock inputs and output timing for read operations is synchronized
to the input clock.
Clock Signals
122
CK0
I
SSTL
194
CK1
I
SSTL
123
CK0
I
SSTL
195
CK1
I
SSTL
43
CKE0
I
SSTL
147
CKE1
I
SSTL
Clock Enables 1:0
Note: Activates the DDR2 SDRAM CK signal when HIGH and
deactivates the CK signal when LOW. By deactivating the clocks,
CKE0 initiates the Power Down Mode or the Self Refresh Mode.
1. 2-rank module
NC
NC
Not Connected
Note: 1-rank module
165
S0
I
SSTL
62
S1
I
SSTL
NC
NC
Control Signals
Chip Select Rank 1:01)2)
Not Connected
Note: 1-rank module
163
RAS
I
60
CAS
I
SSTL
56
WE
I
SSTL
Row Address Strobe (RAS), Column Address Strobe (CAS), Write
Enable (WE)
Note: When sampled at the cross point of the rising edge of CK,and
falling edge of CK, RAS, CAS and WE define the operation to be
executed by the SDRAM.
Address Signals
55
BA0
I
SSTL
162
BA1
I
SSTL
Rev. 0.5, 2007-05
05212007-7F24-MITO
Bank Address Bus 1:0
Note: Select internal SDRAM memory bank
5
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
46
BA2
I
SSTL
Bank Address Bus 2
Note: Greater than 512Mb DDR2 SDRAMS
NC
NC
–
Not Connected
Note: Less than 1Gb DDR2 SDRAMS
161
A0
I
SSTL
159
A1
I
SSTL
52
A2
I
SSTL
158
A3
I
SSTL
51
A4
I
SSTL
50
A5
I
SSTL
157
A6
I
SSTL
48
A7
I
SSTL
155
A8
I
SSTL
154
A9
I
SSTL
54
A10
I
SSTL
Address Inputs 12:0, Address Input 10/Autoprecharge
Note: During a Bank Activate command cycle, defines the row address
when sampled at the crosspoint of the rising edge of CK and falling
edge of CK. During a Read or Write command cycle, defines the
column address when sampled at the cross point of the rising edge
of CK and falling edge of CK. In addition to the column address, AP
is used to invoke autoprecharge operation at the end of the burst
read or write cycle. If AP is HIGH, autoprecharge is selected and
BA[2:0] defines the bank to be precharged. If AP is LOW,
autoprecharge is disabled. During a Precharge command cycle, AP
is used in conjunction with BA[2:0] to control which bank(s) to
precharge. If AP is HIGH, all banks will be precharged regardless
of the state of BA[2:0] inputs. If AP is LOW, then BA[2:0] are used
to define which bank to precharge.
AP
I
SSTL
47
A11
I
SSTL
153
A12
I
SSTL
167
A13
I
SSTL
Address Input 13
Note: Modules based on ×4/×8 component
NC
NC
–
Not Connected
Note: Modules based on ×16 component
3
DQ0
I/O
SSTL
4
DQ1
I/O
SSTL
Data Bus 0:38
Note: Data Input/Output pins
9
DQ2
I/O
SSTL
10
DQ3
I/O
SSTL
109
DQ4
I/O
SSTL
110
DQ5
I/O
SSTL
114
DQ6
I/O
SSTL
115
DQ7
I/O
SSTL
12
DQ8
I/O
SSTL
13
DQ9
I/O
SSTL
21
DQ10
I/O
SSTL
22
DQ11
I/O
SSTL
117
DQ12
I/O
SSTL
118
DQ13
I/O
SSTL
Data Signals
Rev. 0.5, 2007-05
05212007-7F24-MITO
6
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
125
DQ14
I/O
SSTL
126
DQ15
I/O
SSTL
Data Bus 0:38
Note: Data Input/Output pins
24
DQ16
I/O
SSTL
25
DQ17
I/O
SSTL
30
DQ18
I/O
SSTL
31
DQ19
I/O
SSTL
128
DQ20
I/O
SSTL
129
DQ21
I/O
SSTL
133
DQ22
I/O
SSTL
134
DQ23
I/O
SSTL
33
DQ24
I/O
SSTL
34
DQ25
I/O
SSTL
38
DQ26
I/O
SSTL
39
DQ27
I/O
SSTL
136
DQ28
I/O
SSTL
137
DQ29
I/O
SSTL
142
DQ30
I/O
SSTL
143
DQ31
I/O
SSTL
67
DQ32
I/O
SSTL
68
DQ33
I/O
SSTL
73
DQ34
I/O
SSTL
74
DQ35
I/O
SSTL
174
DQ36
I/O
SSTL
175
DQ37
I/O
SSTL
179
DQ38
I/O
SSTL
180
DQ39
I/O
SSTL
76
DQ40
I/O
SSTL
77
DQ41
I/O
SSTL
81
DQ42
I/O
SSTL
82
DQ43
I/O
SSTL
182
DQ44
I/O
SSTL
183
DQ45
I/O
SSTL
188
DQ46
I/O
SSTL
189
DQ47
I/O
SSTL
84
DQ48
I/O
SSTL
85
DQ49
I/O
SSTL
92
DQ50
I/O
SSTL
93
DQ51
I/O
SSTL
191
DQ52
I/O
SSTL
192
DQ53
I/O
SSTL
Rev. 0.5, 2007-05
05212007-7F24-MITO
Data Bus 39:57
7
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
200
DQ54
I/O
SSTL
Data Bus 39:57
201
DQ55
I/O
SSTL
95
DQ56
I/O
SSTL
96
DQ57
I/O
SSTL
101
DQ58
I/O
SSTL
102
DQ59
I/O
SSTL
203
DQ60
I/O
SSTL
204
DQ61
I/O
SSTL
208
DQ62
I/O
SSTL
209
DQ63
I/O
SSTL
7
DQS0
I/O
SSTL
6
DQS0
I/O
SSTL
19
DQS1
I/O
SSTL
18
DQS1
I/O
SSTL
28
DQS2
I/O
SSTL
27
DQS2
I/O
SSTL
140
DQS3
I/O
SSTL
139
DQS3
I/O
SSTL
Data Strobes 7:0
Note: The data strobes, associated with one data byte, sourced with data
transfers. In Write mode, the data strobe is sourced by the
controller and is centered in the data window. In Read mode the
data strobe is sourced by the DDR2 SDRAM and is sent at the
leading edge of the data window. DQS signals are complements,
and timing is relative to the crosspoint of respective DQS and DQS.
If the module is to be operated in single ended strobe mode, all
DQS signals must be tied on the system board to VSS and DDR2
SDRAM mode registers programmed appropriately.
71
DQS4
I/O
SSTL
2. See block diagram for corresponding DQ signals
70
DQS4
I/O
SSTL
186
DQS5
I/O
SSTL
185
DQS5
I/O
SSTL
198
DQS6
I/O
SSTL
197
DQS6
I/O
SSTL
99
DQS7
I/O
SSTL
98
DQS7
I/O
SSTL
112
DM0
I
SSTL
120
DM1
I
SSTL
131
DM2
I
SSTL
36
DM3
I
SSTL
177
DM4
I
SSTL
79
DM5
I
SSTL
90
DM6
I
SSTL
206
DM7
I
SSTL
105
SCL
I
CMOS
Serial Bus Clock
Note: This signal is used to clock data into and out of the SPD EEPROM.
104
SDA
I/O
OD
Serial Bus Data
Note: This is a bidirectional pin used to transfer data into or out of the
SPD EEPROM. A resistor must be connected from SDA to VDDSPD
on the motherboard to act as a pull-up.
Data Masks 7:0
Note: The data write masks, associated with one data byte. In Write
mode, DM operates as a byte mask by allowing input data to be
written if it is LOW but blocks the write operation if it is HIGH. In
Read mode, DM lines have no effect.
3. ×8 based module
EEPROM
Rev. 0.5, 2007-05
05212007-7F24-MITO
8
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Ball No.
Name
Pin
Type
Buffer
Type
Function
211
SA0
I
CMOS
213
SA1
I
CMOS
Serial Address Select Bus 1:0
Note: Address pins used to select the Serial Presence Detect base
address.
VREF
AI
–
I/O Reference Voltage
Note: Reference voltage for the SSTL-18 inputs.
PWR
–
Power Supply
Note: Power and ground for the DDR SDRAM
Power Supplies
1
42, 45, 49, 53, VDD
57, 61, 64, 146,
149, 152, 156,
160, 164, 168,
171
107
VDDSPD
PWR
–
EEPROM Power Supply
Note: Serial EEPROM positive power supply, wired to a separate power
pin at the connector which supports from 1.7 Volt to 3.6 Volt.
2, 5, 8, 11, 14,
17, 20, 23, 26,
29, 32, 35, 37,
40, 66, 69, 72,
75, 78, 80, 83,
86, 89, 91, 94,
97, 100, 103,
108, 111, 113,
116, 119, 121,
124, 127, 130,
132, 135, 138,
141, 144, 173,
176, 178, 181,
184, 187, 190,
193, 196, 205,
199, 202, 207,
210
VSS
GND
–
Ground Plane
Note: Power and ground for the DDR SDRAM
166
ODT0
I
SSTL
63
ODT1
I
SSTL
On-Die Termination Control 1:0
Note: Asserts on-die termination for DQ, DM, DQS, and DQS signals if
enabled via the DDR2 SDRAM mode register.
Other Pins
4. 2-rank module
NC
15, 16, 41, 44,
58, 59, 65, 87,
88, 106, 145,
148, 150, 151,
167, 169, 170,
172, 212, 214
NC
Rev. 0.5, 2007-05
05212007-7F24-MITO
Not Connected
Note: 1-rank module
NC
Not connected
Note: Pins not connected on Qimonda MDIMMs
9
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
1) Enables the associated DDR2 SDRAM command decoder when LOW and disables the command decoder when HIGH. When the
command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0; Rank 1 is selected
by S1. The input signals also disable all outputs (except CKE and ODT) of the register(d) on the DIMM when both inputs are high. When
S is HIGH, all register outputs (except CK, ODT and Chip select) remain in the previous state.
2) 2-rank module
TABLE 5
Abbreviations for Pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 6
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and
allows multiple devices to share as a wire-OR.
Rev. 0.5, 2007-05
05212007-7F24-MITO
10
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
FIGURE 1
Pin Configuration for Two-Piece Mezzanine Socket on MDIMM (214 pins)
6 2%&
0IN $1
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN $1
0IN .#
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN $1
0IN $13
0IN 6 33
0IN $1
0IN $1
0IN 6 33
0IN 6 33
0IN $1
0IN .#
0IN #+%
0IN 6 $$
0IN !
0IN 6 $$
0IN !
0IN 6 $$
0IN "!
0IN 6 $$
0IN .#
0IN 6 $$
0IN /$4.#
.#
0IN 0IN $1
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN $1
0IN $-
0IN $1
0IN 6 33
0IN $1
0IN .#
0IN 6 33
0IN 6 33
0IN $1
0IN $1
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN 3#,
0IN 6 $$30$
0IN 6 33
0IN 0IN $1
0IN 0IN $1
6 33
$13
0IN 0IN 6 33
6 33
0IN 0IN $1
$1
0IN 0IN $1
$1
0IN 0IN 6 33
6 33
0IN 0IN 6 33
.#
0IN 0IN #+
$13
0IN 0IN $1
6 33
0IN 0IN 6 33
$1
0IN 0IN $1
$1
0IN 0IN $-
6 33
0IN 0IN $1
$13
0IN 0IN 6 33
$1
0IN 0IN $1
6 33
0IN 0IN $13
$1
0IN 0IN 6 33
$-
0IN 0IN $1
$1
0IN 0IN .#
6 33
0IN 0IN #+%.#
6 $$
0IN 0IN 6 $$
.#
0IN 0IN .#
.#"!
0IN 0IN !
!
0IN 0IN !
!
0IN 0IN !
!
0IN 0IN !
!!0
7%
0IN 0IN 0IN 0IN !
2!3
.#
0IN 0IN 3
#!3
0IN 0IN .#
3.#
6 $$
0IN 0IN 0IN 0IN .#
6 $$
6 33
0IN 0IN 6 33
$1
0IN 0IN $1
$13
0IN 0IN $-
6 33
0IN 0IN $1
$1
0IN 0IN 6 33
$1
0IN 0IN $1
6 33
0IN 0IN $13
6 33
0IN 0IN 6 33
$1
0IN 0IN $1
$1
0IN 0IN $1
6 33
0IN 0IN 6 33
.#
0IN 0IN #+
$-
0IN 0IN $13
$1
0IN 0IN 6 33
6 33
0IN 0IN $1
$1
0IN 0IN $1
$13
0IN 0IN 6 33
6 33
0IN 0IN 6 33
$1
0IN 0IN $1
3$!
0IN 0IN 3!
.#
0IN 0IN 3!
0IN 6 33
0IN $1
0IN $-
0IN $1
0IN 6 33
0IN $1
0IN $-
0IN #+
0IN 6 33
0IN $1
0IN $1
0IN 6 33
0IN 6 33
0IN $1
0IN $1
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN 6 $$
0IN .#
0IN .#
0IN 6 $$
0IN !
0IN 6 $$
0IN !
0IN 6 $$
0IN "!
0IN 6 $$
0IN /$4
0IN 6 $$
0IN 0IN .#
.#
0IN $1
0IN 6 33
0IN 6 33
0IN $1
0IN $1
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN $1
0IN #+
0IN 6 33
0IN $13
0IN $1
0IN 6 33
0IN $1
0IN $-
0IN $1
0IN 6 33
0IN .#
0IN .#
-004
Rev. 0.5, 2007-05
05212007-7F24-MITO
11
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
3
Electrical Characteristics
This chapter lists the electrical characteristics.
3.1
Absolute Maximum Ratings
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 7 at any time.
TABLE 7
Absolute Maximum Ratings
Symbol
VDD
VDDQ
VDDL
VIN, VOUT
TSTG
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)2)
Voltage on any pin relative to VSS
–0.5
+2.3
V
1)
°C
1)2)
Storage Temperature
–55
+100
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 8
DRAM Component Operating Temperature Range
Symbol
TCASE
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
3.2
DC Operating Conditions
This chapter contains the DC operating conditions tables.
Rev. 0.5, 2007-05
05212007-7F24-MITO
12
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
TABLE 9
Supply Voltage Levels and DC Operating Conditions
Parameter
Device Supply Voltage
Output Supply Voltage
Input Reference Voltage
SPD Supply Voltage
DC Input Logic High
DC Input Logic Low
Symbol
VDD
VDDQ
VREF
VDDSPD
VIH(DC)
VIL (DC)
IL
Values
Unit
Note
Min.
Typ.
Max.
1.7
1.8
1.9
V
1.7
1.8
1.9
V
1)
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)
1.7
—
3.6
V
VREF + 0.125
—
V
– 0.30
—
VDDQ + 0.3
VREF – 0.125
V
3)
In / Output Leakage Current
–5
—
5
µA
1) Under all conditions, VDDQ must be less than or equal to VDD
2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ.
3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin
TABLE 10
Operating Conditions
Parameter
Symbol
Values
Unit
Min.
Max.
0
+65
°C
0
+95
°C
Storage Temperature
TOPR
TCASE
TSTG
– 50
+100
°C
Barometric Pressure (operating & storage)
PBar
+69
+105
kPa
Operating Humidity (relative)
HOPR
10
90
%
Operating temperature (ambient)
DRAM Case Temperature
1)
2)
3)
4)
Note
1)2)3)4)
5)
DRAM Component Case Temperature is the surface temperature in the center on the top side of any of the DRAMs.
Within the DRAM Component Case Temperature Range all DRAM specifications will be supported
Above 85 °C DRAM Case Temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs
When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%.
5) Up to 3000 m.
Rev. 0.5, 2007-05
05212007-7F24-MITO
13
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
3.3
AC Characteristics
This chapter describes the AC characteristics.
3.3.1
Speed Grade Definitions
This chapter contains the Speed Grade Definition tables.
TABLE 11
Speed Grade Definition Speed Bins for DDR2–667D
Speed Grade
DDR2–667D
QAG Sort Name
–3S
CAS-RCD-RP latencies
5–5–5
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Notes
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0)
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 12
Speed Grade Definition Speed Bins for DDR2–533C
Speed Grade
DDR2–533C
QAG Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
Rev. 0.5, 2007-05
05212007-7F24-MITO
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
45
70000
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
14
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Speed Grade
DDR2–533C
QAG Sort Name
–3.7
CAS-RCD-RP latencies
4–4–4
Unit
Note
tCK
Parameter
Symbol
Min.
Max.
—
RAS-CAS-Delay
tRCD
tRP
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
Row Precharge Time
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0)
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
TABLE 13
Speed Grade Definition Speed Bins for DDR2-400B
Speed Grade
DDR2–400B
QAG Sort Name
–5
CAS-RCD-RP latencies
3–3–3
Parameter
Clock Frequency
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
5
8
ns
1)2)3)4)
40
70000
ns
1)2)3)4)5)
55
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) .
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 0.5, 2007-05
05212007-7F24-MITO
15
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
3.3.2
AC Timing Parameters
This chapter contains the AC Timing Parameters
TABLE 14
DRAM Component Timing Parameter by Speed Grade - DDR2–667
Parameter
Symbol
DDR2–667
Unit
Notes1)2)3)4)5)6)
7)8)
Min.
Max.
tAC
tCCD
tCH.AVG
tCK.AVG
tCKE
–450
+450
ps
2
—
nCK
0.48
0.52
tCK.AVG
3000
8000
ps
3
—
nCK
12)
tCL.AVG
Auto-Precharge write recovery + precharge time tDAL
Minimum time clocks remain ON after CKE
tDELAY
0.48
0.52
tCK.AVG
10)11)
WR + tnRP
—
nCK
13)14)
tIS + tCK .AVG +
tIH
––
ns
tDH.BASE
DQ and DM input pulse width for each input
tDIPW
DQS output access time from CK / CK
tDQSCK
DQS input high pulse width
tDQSH
DQS input low pulse width
tDQSL
DQS-DQ skew for DQS & associated DQ signals tDQSQ
DQS latching rising transition to associated clock tDQSS
175
––
ps
0.35
—
tCK.AVG
–400
+400
ps
0.35
—
0.35
—
tCK.AVG
tCK.AVG
—
240
ps
16)
– 0.25
+ 0.25
tCK.AVG
17)
tDS.BASE
DQS falling edge hold time from CK
tDSH
DQS falling edge to CK setup time
tDSS
Four Activate Window for 1KB page size products tFAW
Four Activate Window for 2KB page size products tFAW
CK half pulse width
tHP
100
––
ps
18)19)20)
17)
tHZ
Address and control input hold time
tIH.BASE
Control & address input pulse width for each input tIPW
Address and control input setup time
tIS.BASE
DQ low impedance time from CK/CK
tLZ.DQ
DQS/DQS low-impedance time from CK / CK
tLZ.DQS
MRS command to ODT update delay
tMOD
Mode register set command cycle time
tMRD
tOIT
OCD drive mode output delay
DQ/DQS output hold time from DQS
tQH
DQ output access time from CK / CK
CAS to CAS command delay
Average clock high pulse width
Average clock period
CKE minimum pulse width ( high and low pulse
width)
Average clock low pulse width
asynchronously drops LOW
DQ and DM input hold time
edges
DQ and DM input setup time
Data-out high-impedance time from CK / CK
Rev. 0.5, 2007-05
05212007-7F24-MITO
16
9)
10)11)
19)20)15)
9)
0.2
—
0.2
—
tCK.AVG
tCK.AVG
37.5
—
ns
31)
50
—
ns
31)
Min(tCH.ABS,
tCL.ABS)
__
ps
21)
—
tAC.MAX
ps
9)22)
275
—
ps
25)23)
17)
0.6
—
tCK.AVG
200
—
ps
24)25)
2 x tAC.MIN
ps
9)22)
tAC.MIN
tAC.MAX
tAC.MAX
ps
9)22)
0
12
ns
31)
2
—
nCK
0
12
ns
31)
tHP – tQHS
—
ps
26)
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Parameter
Symbol
DDR2–667
Unit
Notes1)2)3)4)5)6)
7)8)
Min.
Max.
tQHS
tRPRE
tRPST
tRRD
—
340
ps
27)
0.9
1.1
28)29)
0.4
0.6
tCK.AVG
tCK.AVG
7.5
—
ns
31)
Active to active command period for 2KB page
size products
tRRD
10
—
ns
31)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
tWTR
tXARD
tXARDS
7.5
—
ns
31)
0.35
—
0.4
0.6
tCK.AVG
tCK.AVG
15
—
ns
31)
7.5
—
ns
31)32)
2
—
nCK
7 – AL
—
nCK
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
nCK
Exit self-refresh to a non-read command
tRFC +10
—
ns
Exit self-refresh to read command
tXSNR
tXSRD
200
—
nCK
Write command to DQS associated clock edges
WL
RL–1
DQ hold skew factor
Read preamble
Read postamble
Active to active command period for 1KB page
size products
Write preamble
Write postamble
Write recovery time
Internal write to read command delay
Exit power down to read command
Exit active power-down mode to read command
(slow exit, lower power)
28)30)
31)
nCK
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
10) Input clock jitter spec parameter. These parameters are referred to as 'input clock jitter spec parameters' and these parameters apply to
DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
11) These parameters are specified per their average values, however it is understood that the relationship between the average timing and
the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations ).
12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
Rev. 0.5, 2007-05
05212007-7F24-MITO
17
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 3.
16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 3.
19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
23) Input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 4.
24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 4.
25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
26) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
27) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
28) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
29) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
30) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
31) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
Rev. 0.5, 2007-05
05212007-7F24-MITO
18
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
32) tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
FIGURE 2
Method for calculating transitions and endpoint
6/( X M6
644
X M6
6/( X M6
644
X M6
T,:
T(:
T202% BEGIN POINT
T2034 END POINT
6/,
X M6
644 X M6
6/,
X M6
644 X M6
4 4
4 4
T(: T2034 END POINT 4 4
T,: T202% BEGIN POINT 4 4
FIGURE 3
Differential input waveform timing - tDS and tDS
$13
$13
T$3
T$(
T$3
T$(
6$$1
6)(AC MIN
6)(DC MIN
62%&DC
6),DC MAX
6),AC MAX
633
FIGURE 4
Differential input waveform timing - tlS and tlH
#+
#+
T)3
T)(
T)3
T)(
6$$1
6)(AC MIN
6)(DC MIN
62%&DC
6),DC MAX
6),AC MAX
633
Rev. 0.5, 2007-05
05212007-7F24-MITO
19
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
TABLE 15
DRAM Component Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Notes1)2)3)4)5)
6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–500
+500
ps
2
—
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
Minimum time clocks remain ON after CKE
asynchronously drops LOW
tDELAY
tIS + tCK + tIH
––
ns
9)
DQ and DM input hold time (differential data
strobe)
tDH(base)
225
––
ps
10)
–25
—
ps
11)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
0.35
—
tCK
–450
+450
ps
0.35
—
tCK
—
300
ps
tDQSS
tDS(base)
– 0.25
+ 0.25
tCK
100
—
ps
11)
–25
—
ps
11)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
Write command to 1st DQS latching transition
DQ and DM input setup time (differential data
strobe)
DQ and DM input setup time (single ended data tDS1(base)
strobe)
DQS falling edge hold time from CK (write
cycle)
Four Activate Window period
Four Activate Window period
Clock half period
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Rev. 0.5, 2007-05
05212007-7F24-MITO
tFAW
tFAW
tHP
tHZ
tIH(base)
tIPW
20
11)
13)
12)
MIN. (tCL, tCH)
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
8)18)
—
tAC.MAX
ps
13)
375
—
ps
11)
0.6
—
tCK
250
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Parameter
Symbol
DDR2–533
Unit
Notes1)2)3)4)5)
6)7)
Min.
Max.
tQHS
tREFI
tREFI
tRFC
—
400
ps
—
7.8
µs
14)15)
—
3.9
µs
16)18)
127.5
—
ns
17)
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
—
ns
15 + 1tCK
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
7.5
—
ns
14)18)
Active bank A to Active bank B command
period
tRRD
10
—
ns
16)22)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
tWTR
tXARD
7.5
—
ns
20)
2
—
tCK
21)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
21)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
WR
tWR/tCK
tCK
tCK
Data hold skew factor
Average periodic refresh Interval
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
14)
19)
22)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
Rev. 0.5, 2007-05
05212007-7F24-MITO
21
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information” on
Page 4.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
TABLE 16
DRAM Component Timing Parameter by Speed Grade - DDR2-400
Parameter
Symbol
DDR2–400
Unit
Notes1)2)3)4)5)
6)7)
Min.
Max.
tAC
tCCD
tCH
tCKE
tCL
tDAL
–600
+600
ps
2
—
0.45
0.55
Minimum time clocks remain ON after CKE
asynchronously drops LOW
DQ and DM input hold time (differential data
strobe)
DQ output access time from CK / CK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery + precharge
time
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
tDELAY
tIS + tCK + tIH
––
ns
9)
tDH(base)
275
––
ps
10)
–25
—
ps
11)
0.35
—
tCK
–500
+500
ps
0.35
—
tCK
—
350
ps
– 0.25
+ 0.25
tCK
150
—
ps
DQ and DM input hold time (single ended data tDH1(base)
strobe)
DQ and DM input pulse width (each input)
DQS output access time from CK / CK
DQS input low (high) pulse width (write cycle)
DQS-DQ skew (for DQS & associated DQ
signals)
tDIPW
tDQSCK
tDQSL,H
tDQSQ
Write command to 1st DQS latching transition tDQSS
DQ and DM input setup time (differential data
strobe)
Rev. 0.5, 2007-05
05212007-7F24-MITO
tDS(base)
22
8)21)
11)
11)
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Parameter
Symbol
DDR2–400
Unit
Notes1)2)3)4)5)
6)7)
Min.
Max.
DQ and DM input setup time (single ended
data strobe)
tDS1(base)
–25
—
ps
DQS falling edge hold time from CK (write
cycle)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write cycle) tDSS
0.2
—
tCK
37.5
—
ns
50
—
ns
Four Activate Window period
Four Activate Window period
Clock half period
tFAW
tFAW
tHP
tHZ
tIH(base)
tIPW
11)
13)
12)
MIN. (tCL, tCH)
—
tAC.MAX
ps
13)
475
—
ps
11)
0.6
—
tCK
350
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
2
—
tCK
0
12
ns
tHP –tQHS
—
—
450
ps
—
7.8
µs
14)15)
—
3.9
µs
16)18)
127.5
—
ns
17)
tRP
tRP
tRPRE
tRPST
tRRD
tRP + 1tCK
15 + 1tCK
—
ns
—
ns
0.9
1.1
14)
0.40
0.60
tCK
tCK
7.5
—
ns
14)18)
Active bank A to Active bank B command
period
tRRD
10
—
ns
16)22)
Internal Read to Precharge command delay
tRTP
tWPRE
tWPST
tWR
7.5
—
ns
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
tWTR
tXARD
10
—
ns
20)
2
—
tCK
21)
tXARDS
6 – AL
—
tCK
21)
Data-out high-impedance time from CK / CK
Address and control input hold time
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
Mode register set command cycle time
OCD drive mode output delay
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
Average periodic refresh Interval
tIS(base)
tLZ(DQ)
tLZ(DQS)
tMRD
tOIT
tQH
tQHS
tREFI
tREFI
Auto-Refresh to Active/Auto-Refresh
command period
Precharge-All (4 banks) command period
Precharge-All (8 banks) command period
Read preamble
Read postamble
Active bank A to Active bank B command
period
Write preamble
Write postamble
Write recovery time for write without AutoPrecharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit active power-down mode to Read
command (slow exit, lower power)
Rev. 0.5, 2007-05
05212007-7F24-MITO
23
14)
19)
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Parameter
Symbol
DDR2–400
Unit
Notes1)2)3)4)5)
6)7)
Min.
Max.
—
tCK
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
Exit Self-Refresh to non-Read command
tXSNR
tXSRD
tRFC +10
—
ns
200
—
WR
tWR/tCK
tCK
tCK
Exit Self-Refresh to Read command
Write recovery time for write with AutoPrecharge
22)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ±0.1 V.
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode.
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT.
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C
16) 85 °C < TCASE ≤ 95 °C
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Table 2 “Ordering Information” on
Page 4.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 0.5, 2007-05
05212007-7F24-MITO
24
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
3.3.3
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 17
ODT AC Characteristics and Operating Conditions for DDR2-667& DDR2-800
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Note
Min.
Max.
ODT turn-on delay
2
2
nCK
1)
ODT turn-on
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
1)2)
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
1)
ODT turn-off delay
2.5
2.5
nCK
1)
ns
1)3)
ns
1)
nCK
nCK
1)
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ODT to Power Down Mode Entry Latency
3
—
ODT turn-off
1)
ODT Power Down Exit Latency
8
—
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the
ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is 2 clock
cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the
actual input clock edges.
Rev. 0.5, 2007-05
05212007-7F24-MITO
25
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
TABLE 18
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Min.
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
tCK
tCK
Note
1)
ns
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 0.5, 2007-05
05212007-7F24-MITO
26
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
3.4
IDD Specifications and Conditions
This chapter describes the IDD Specifications and Conditions.
TABLE 19
IDD Measurement Conditions
Parameter
Symbol Note
1)2)3)4)5)
Operating Current 0
IDD0
One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between
valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.
Operating Current 1
One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN,
tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and
control inputs are SWITCHING, Databus inputs are SWITCHING.
IDD1
6)
Precharge Standby Current
IDD2N
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING,
Databus inputs are SWITCHING.
Precharge Power-Down Current
Other control and address inputs are STABLE, Data bus inputs are FLOATING.
IDD2P
Precharge Quiet Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE,
Data bus inputs are FLOATING.
IDD2Q
Active Standby Current
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA.
IDD3N
Active Power-Down Current
IDD3P(0)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);
Active Power-Down Current
IDD3P(1)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);
Operating Current - Burst Read
IDD4R
All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX;
tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data
bus inputs are SWITCHING; IOUT = 0mA.
Operating Current - Burst Write
All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING;
IDD4W
Burst Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5B
Distributed Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5D
Rev. 0.5, 2007-05
05212007-7F24-MITO
27
6)
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Parameter
Symbol Note
1)2)3)4)5)
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data
bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max.
All Bank Interleave Read Current
IDD7
All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control
and address bus inputs are STABLE during DESELECTS. Iout = 0 mA.
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled.
3) Definitions for IDD see Table 20
4) For two rank modules: for all active current measurements the other rank is in Precharge Power-Down Mode IDD2P
6)
5) For details and notes see the relevant Qimonda component data sheet
6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output
buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.
TABLE 20
Definitions for IDD
Parameter
Description
LOW
VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN
STABLE
Inputs are stable at a HIGH or LOW level
FLOATING
Inputs are VREF = VDDQ /2
SWITCHING
Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control
signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ
signals not including mask or strobes
Rev. 0.5, 2007-05
05212007-7F24-MITO
28
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
TABLE 21
IDD Specification for HYS64T128020EML–[3S/3.7/5]–B
Product Type
HYS64T128020EML-3S-B
HYS64T128020EML-3.7-B
HYS64T128020EML-5-B
Organization
1GB
1GB
1 GB
2 Ranks
2 Ranks
2 Ranks
x64
x64
×64
-3S
-3.7
–5
Symbol
IDD0
IDD1
IDD2P
IDD2N
IDD2Q
IDD3P( MRS = 0)
IDD3P( MRS = 1)
IDD3N
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
Unit
Note1)
Max.
588
548
528
mA
2)
628
568
548
mA
2)
96
96
96
mA
3)
520
440
400
mA
3)
480
400
360
mA
3)
360
304
280
mA
3)
120
120
120
mA
3)
560
480
440
mA
3)
868
748
648
mA
2)
868
748
648
mA
2)
888
848
808
mA
2)
104
104
104
mA
3)
32
32
32
mA
3)
1248
1168
1108
mA
2)
1) Calculated values from component data. ODT disabled. IDD1, IDD4R, and IDD7, are defined with the outputs disabled.
2) The other rank is in IDD2P Precharge Power-Down Standby Current mode
3) Both ranks are in the same IDDcurrent mode
Rev. 0.5, 2007-05
05212007-7F24-MITO
29
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
4
SPD Codes
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands
for serial presence detect. All values with XX in the table are module specific bytes which are defined during production.
List of SPD Code Tables
• Table 22 “SPD Codes for HYS64T128020EML-[3S/3.7/5]-B” on Page 30
TABLE 22
Product Type
HYS64T128020EML–3S–B
HYS64T128020EML–3.7–B
HYS64T128020EML–5–B
SPD Codes for HYS64T128020EML-[3S/3.7/5]-B
Organization
1 GByte
1 GByte
1 GByte
×64
×64
×64
2 Ranks (×16)
2 Ranks (×16)
2 Ranks (×16)
Label Code
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333
JEDEC SPD Revision
Rev. 1.2
Rev. 1.2
Rev. 1.2
Byte#
Description
HEX
HEX
HEX
0
Programmed SPD Bytes in EEPROM
80
80
80
1
Total number of Bytes in EEPROM
08
08
08
2
Memory Type (DDR2)
08
08
08
3
Number of Row Addresses
0D
0D
0D
4
Number of Column Addresses
0A
0A
0A
5
DIMM Rank and Stacking Information
61
61
61
6
Data Width
40
40
40
7
Not used
00
00
00
8
Interface Voltage Level
05
05
05
9
tCK @ CLMAX (Byte 18) [ns]
tAC SDRAM @ CLMAX (Byte 18) [ns]
30
3D
50
45
50
60
11
Error Correction Support (non-ECC, ECC)
00
00
00
12
Refresh Rate and Type
82
82
82
13
Primary SDRAM Width
10
10
10
14
Error Checking SDRAM Width
00
00
00
10
Rev. 0.5, 2007-05
05212007-7F24-MITO
30
Preliminary Internet Data Sheet
Product Type
HYS64T128020EML–3S–B
HYS64T128020EML–3.7–B
HYS64T128020EML–5–B
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Organization
1 GByte
1 GByte
1 GByte
×64
×64
×64
2 Ranks (×16)
2 Ranks (×16)
2 Ranks (×16)
Label Code
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333
JEDEC SPD Revision
Rev. 1.2
Rev. 1.2
Rev. 1.2
Byte#
Description
HEX
HEX
HEX
15
Not used
00
00
00
16
Burst Length Supported
0C
0C
0C
17
Number of Banks on SDRAM Device
08
08
08
18
Supported CAS Latencies
38
38
38
19
DIMM Mechanical Characteristics
01
01
01
20
DIMM Type Information
08
08
08
21
DIMM Attributes
00
00
00
22
Component Attributes
07
07
07
23
3D
3D
50
50
50
60
50
50
50
60
60
60
30
tCK @ CLMAX -1 (Byte 18) [ns]
tAC SDRAM @ CLMAX -1 [ns]
tCK @ CLMAX -2 (Byte 18) [ns]
tAC SDRAM @ CLMAX -2 [ns]
tRP.MIN [ns]
tRRD.MIN [ns]
tRCD.MIN [ns]
tRAS.MIN [ns]
31
Module Density per Rank
32
38
tAS.MIN and tCS.MIN [ns]
tAH.MIN and tCH.MIN [ns]
tDS.MIN [ns]
tDH.MIN [ns]
tWR.MIN [ns]
tWTR.MIN [ns]
tRTP.MIN [ns]
1E
1E
1E
39
Analysis Characteristics
00
00
00
40
tRC and tRFC Extension
06
06
06
24
25
26
27
28
29
33
34
35
36
37
Rev. 0.5, 2007-05
05212007-7F24-MITO
31
3C
3C
3C
28
28
28
3C
3C
3C
2D
2D
28
80
80
80
20
25
35
27
37
47
10
10
15
17
22
27
3C
3C
3C
1E
1E
28
Preliminary Internet Data Sheet
Product Type
HYS64T128020EML–3S–B
HYS64T128020EML–3.7–B
HYS64T128020EML–5–B
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Organization
1 GByte
1 GByte
1 GByte
×64
×64
×64
2 Ranks (×16)
2 Ranks (×16)
2 Ranks (×16)
Label Code
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333
JEDEC SPD Revision
Rev. 1.2
Rev. 1.2
Rev. 1.2
Byte#
Description
HEX
HEX
HEX
41
3C
3C
37
45
tRC.MIN [ns]
tRFC.MIN [ns]
tCK.MAX [ns]
tDQSQ.MAX [ns]
tQHS.MAX [ns]
22
28
2D
46
PLL Relock Time
00
00
00
47
TCASE.MAX Delta / ∆T4R4W Delta
5D
59
55
42
43
44
7F
7F
7F
80
80
80
18
1E
23
48
Psi(T-A) DRAM
58
60
58
49
∆T0 (DT0)
43
3F
33
50
∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM)
32
2A
1D
51
∆T2P (DT2P)
27
2B
27
52
∆T3N (DT3N)
24
20
1A
53
∆T3P.fast (DT3P fast)
39
35
28
54
∆T3P.slow (DT3P slow)
1E
21
1E
55
∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W)
48
40
30
56
∆T5B (DT5B)
21
22
1E
57
∆T7 (DT7)
34
31
2B
58
Psi(ca) PLL
00
00
00
59
Psi(ca) REG
00
00
00
60
∆TPLL (DTPLL)
00
00
00
61
∆TREG (DTREG) / Toggle Rate
00
00
00
62
SPD Revision
12
12
12
63
Checksum of Bytes 0-62
16
47
68
64
Manufacturer’s JEDEC ID Code (1)
7F
7F
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
7F
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
7F
7F
Rev. 0.5, 2007-05
05212007-7F24-MITO
32
Preliminary Internet Data Sheet
Product Type
HYS64T128020EML–3S–B
HYS64T128020EML–3.7–B
HYS64T128020EML–5–B
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Organization
1 GByte
1 GByte
1 GByte
×64
×64
×64
2 Ranks (×16)
2 Ranks (×16)
2 Ranks (×16)
Label Code
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333
JEDEC SPD Revision
Rev. 1.2
Rev. 1.2
Rev. 1.2
Byte#
Description
HEX
HEX
HEX
67
Manufacturer’s JEDEC ID Code (4)
7F
7F
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
7F
7F
69
Manufacturer’s JEDEC ID Code (6)
51
51
51
70
Manufacturer’s JEDEC ID Code (7)
00
00
00
71
Manufacturer’s JEDEC ID Code (8)
00
00
00
72
Module Manufacturer Location
xx
xx
xx
73
Product Type, Char 1
36
36
36
74
Product Type, Char 2
34
34
34
75
Product Type, Char 3
54
54
54
76
Product Type, Char 4
31
31
31
77
Product Type, Char 5
32
32
32
78
Product Type, Char 6
38
38
38
79
Product Type, Char 7
30
30
30
80
Product Type, Char 8
32
32
32
81
Product Type, Char 9
30
30
30
82
Product Type, Char 10
45
45
45
83
Product Type, Char 11
4D
4D
4D
84
Product Type, Char 12
4C
4C
4C
85
Product Type, Char 13
33
33
35
86
Product Type, Char 14
53
2E
42
87
Product Type, Char 15
42
37
20
88
Product Type, Char 16
20
42
20
89
Product Type, Char 17
20
20
20
90
Product Type, Char 18
20
20
20
91
Module Revision Code
0x
0x
0x
92
Test Program Revision Code
xx
xx
xx
Rev. 0.5, 2007-05
05212007-7F24-MITO
33
Preliminary Internet Data Sheet
Product Type
HYS64T128020EML–3S–B
HYS64T128020EML–3.7–B
HYS64T128020EML–5–B
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Organization
1 GByte
1 GByte
1 GByte
×64
×64
×64
2 Ranks (×16)
2 Ranks (×16)
2 Ranks (×16)
Label Code
PC2–5300M–555 PC2–4200M–444 PC2–3200M–333
JEDEC SPD Revision
Rev. 1.2
Rev. 1.2
Rev. 1.2
Byte#
Description
HEX
HEX
HEX
93
Module Manufacturing Date Year
xx
xx
xx
94
Module Manufacturing Date Week
xx
xx
xx
95 - 98
Module Serial Number
xx
xx
xx
99 - 127 Not used
00
00
00
128 255
FF
FF
FF
Blank for customer use
Rev. 0.5, 2007-05
05212007-7F24-MITO
34
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
5
Package Outlines
This chaper contains the package outlines of the products.
FIGURE 5
Package Outline Raw Card A L-DIM-214-1
-!8
-!8
›
"
›
›
›
›
›
›
›
#
›
#
!
›
›
$
- # " -
"
!
"
!
X $ETAIL OF CONTACTS
!!
""
%
›
- ! " -
#ONTACT !REA
›
# $ % X
"URNISHED NO BURR ALLOWED
',$
Notes
1. General tolerances +/- 0.15
2. Drawing according to ISO 8015
Rev. 0.5, 2007-05
05212007-7F24-MITO
35
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
6
Product Type Nomenclature
Qimonda’s nomenclature uses simple coding combined with some proprietary coding. Table 23 provides examples for module
and component product type number as well as the field number. The detailed field description together with possible values
and coding explanation is listed for modules in Table 24 and for components in Table 25.
TABLE 23
Nomenclature Fields and Examples
Example for
Field Number
1
2
3
4
5
6
7
8
9
10
11
Micro-DIMM
HYS
64
T
64/128
0
2
0
K
M
–5
–A
DDR2 DRAM
HYB
18
T
512/1G 16
0
A
C
–5
TABLE 24
DDR2 DIMM Nomenclature
Field
Description
Values
Coding
1
Qimonda Module Prefix
HYS
Constant
2
Module Data Width [bit]
64
Non-ECC
72
ECC
3
DRAM Technology
T
DDR2
4
Memory Density per I/O [Mbit];
Module Density1)
32
256 MByte
64
512 MByte
128
1 GByte
256
2 GByte
512
4 GByte
5
Raw Card Generation
0 .. 9
Look up table
6
Number of Module Ranks
0, 2, 4
1, 2, 4
7
Product Variations
0 .. 9
Look up table
8
Package, Lead-Free Status
A .. Z
Look up table
9
Module Type
D
SO-DIMM
Rev. 0.5, 2007-05
05212007-7F24-MITO
M
Micro-DIMM
R
Registered
U
Unbuffered
F
Fully Buffered
36
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Field
Description
Values
Coding
10
Speed Grade
–2.5F
PC2–6400 5–5–5
–2.5
PC2–6400 6–6–6
11
Die Revision
–3
PC2–5300 4–4–4
–3S
PC2–5300 5–5–5
–3.7
PC2–4200 4–4–4
–5
PC2–3200 3–3–3
–A
First
–B
Second
1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall
module memory density in MBytes as listed in column “Coding”.
TABLE 25
DDR2 DRAM Nomenclature
Field
Description
Values
Coding
1
2
Qimonda Component Prefix
HYB
Constant
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology
T
DDR2
4
Component Density [Mbit]
256
256 Mbit
512
512 Mbit
1G
1 Gbit
2G
2 Gbit
40
×4
80
×8
16
×16
0 .. 9
Look up table
5+6
Number of I/Os
7
Product Variations
8
Die Revision
9
10
Package, Lead-Free Status
Speed Grade
Rev. 0.5, 2007-05
05212007-7F24-MITO
A
First
B
Second
C
FBGA, lead-containing
F
FBGA, lead-free
–25F
DDR2-800 5-5-5
–2.5
DDR2-800 6-6-6
–3
DDR2-667 4-4-4
–3S
DDR2-667 5-5-5
–3.7
DDR2-533 4-4-4
–5
DDR2-400 3-3-3
37
Preliminary Internet Data Sheet
HYS64T128020EML-[3S/3.7/5]-B
Unbuffered DDR2 SDRAM MicroDIMM Modules
Table of Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
Pin Configuration and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
I
12
12
12
14
14
16
25
27
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Rev. 0.5, 2007-05
05212007-7F24-MITO
38
Preliminary Internet Data Sheet
Edition 2007-05
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages