MITSUBISHI HVIGBT MODULES CM600HB-90H HIGH POWER SWITCHING USE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules INSULATED TYPE CM600HB-90H ● IC ................................................................... 600A ● VCES ....................................................... 4500V ● Insulated Type ● 1-element in a pack APPLICATION Inverters, Converters, DC choppers, Induction heating, DC to DC converters. OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm 130 114 57±0.25 4 - M8 NUTS C 3 - M4 NUTS E E E G E 140 124 ±0.25 40 C C C E CM C C 20 57±0.25 E G CIRCUIT DIAGRAM 10.35 10.65 6 - φ7MOUNTING HOLES 48.8 15 61.5 40 28 38 5 LABEL 29.5 5.2 18 HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM600HB-90H 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE MAXIMUM RATINGS (Tj = 25°C) Symbol VCES VGES IC ICM IE (Note 2) IEM (Note 2) PC (Note 3) Tj Tstg Viso Item Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Junction temperature Storage temperature Isolation voltage — Mounting torque — Mass Conditions Ratings Unit — — Charged part to base plate, rms, sinusoidal, AC 60Hz 1min. Main terminals screw M8 Mounting screw M6 Auxiliary terminals screw M4 Typical value 4500 ±20 600 1200 600 1200 7400 –40 ~ +125 –40 ~ +125 6000 6.67 ~ 13.00 2.84 ~ 6.00 0.88 ~ 2.00 1.5 V V A A A A W °C °C V N·m N·m N·m kg VGE = 0V VCE = 0V DC, TC = 85°C Pulse (Note 1) Pulse TC = 25°C, IGBT part (Note 1) ELECTRICAL CHARACTERISTICS (Tj = 25°C) Symbol Collector cutoff current Gate-emitter VGE(th) threshold voltage Gate-leakage current IGES Collector-emitter VCE(sat) saturation voltage Input capacitance Cies Output capacitance Coes Reverse transfer capacitance Cres Total gate charge QG td (on) Turn-on delay time tr Turn-on rise time td (off) Turn-off delay time tf Turn-off fall time V EC(Note 2) Emitter-collector voltage trr (Note 2) Reverse recovery time Q rr (Note 2) Reverse recovery charge Rth(j-c)Q Thermal resistance Rth(j-c)R Rth(c-f) Contact thermal resistance ICES Note 1. 2. 3. 4. VCE = VCES, VGE = 0V Min — Limits Typ — Max 12 IC = 60mA, VCE = 10V 4.5 6.0 7.5 V VGE = VGES, VCE = 0V Tj = 25°C IC = 600A, VGE = 15V Tj = 125°C — — — — — — — — — — — — — — — — — — 3.00 3.30 108 8.0 2.4 5.4 — — — — 4.00 — 240 — — 0.010 0.5 3.90 — — — — — 2.40 2.40 6.00 1.20 5.20 1.80 — 0.0135 0.027 — µA Item Conditions (Note 4) VCE = 10V VGE = 0V VCC = 2250V, IC = 600A, VGE = 15V VCC = 2250V, IC = 600A VGE1 = VGE2 = 15V RG = 15Ω Resistive load switching operation IE = 600A, VGE = 0V IE = 600A, die / dt = –1200A / µs Junction to case, IGBT part Junction to case, FWDi part Case to fin, conductive grease applied (Note 1) Unit mA V nF nF nF µC µs µs µs µs V µs µC K/W K/W K/W Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed T jmax rating. IE , VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter to collector free-wheel diode. Junction temperature (Tj) should not increase beyond 125°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. HVIGBT MODULES (High Voltage Insulated Gate Bipolar Transistor Modules) Mar. 2003 MITSUBISHI HVIGBT MODULES CM600HB-90H 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES TRANSFER CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR CURRENT IC (A) 800 VGE=15V VGE=14V 600 400 VGE=8V 200 4 2 6 8 Tj = 25°C Tj = 125°C 10000 8000 6000 4000 2000 0 10 0 4 8 12 16 20 COLLECTOR-EMITTER VOLTAGE VCE (V) GATE-EMITTER VOLTAGE VGE (V) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 8 VGE = 15V 6 4 2 Tj = 25°C Tj = 125°C 0 0 200 400 600 800 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) VGE=20V 0 VCE = 10V VGE=12V VGE=10V 1000 0 EMITTER-COLLECTOR VOLTAGE VEC (V) 12000 Tj = 25°C 8 6 Ic=1200A 4 Ic=600A 2 Ic=240A 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) CAPACITANCE CHARACTERISTICS (TYPICAL) 6 4 2 Tj = 25°C Tj = 125°C 0 Tj = 25°C COLLECTOR CURRENT IC (A) 8 0 10 0 1000 1200 200 400 600 800 1000 1200 EMITTER CURRENT IE (A) CAPACITANCE Cies, Coes, Cres (nF) COLLECTOR CURRENT IC (A) 1200 103 7 VGE = 15V, Tj = 25°C 5 Cies, Coes : f = 100kHz 3 Cres : f = 1MHz 2 Cies 102 7 5 3 2 101 7 5 3 2 Coes Cres 100 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) Mar. 2003 MITSUBISHI HVIGBT MODULES CM600HB-90H SWITCHING ENERGY (J/P) 5 7 102 5 7 103 2 3 2 3 REVERSE RECOVERY TIME trr (µs) 10–1 7 5 5 REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 5 5 VCC = 2250V, Tj = 25°C 3 Inductive load 3 2 IGBT drive conditions 2 VGE = ±15V, RG = 15Ω 100 7 5 103 7 5 trr Irr 3 2 3 2 10–1 7 5 5 7 102 2 3 5 7 103 2 3 5 102 7 5 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 5.0 VCC = 2250V, VGE = ±15V, Eon RG = 15Ω, Tj = 125°C, Inductive load 4.0 HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL) 3.0 3.0 Eoff 2.0 1.0 SWITCHING ENERGY (J/P) SWITCHING TIMES (µs) HALF-BRIDGE SWITCHING TIME CHARACTERISTICS (TYPICAL) 5 VCC = 2250V, VGE = ±15V 3 2 RG = 15Ω, Tj = 125°C Inductive load 101 7 5 td(off) 3 2 td(on) 100 tr 7 5 tf 3 2 REVERSE RECOVERY CURRENT Irr (A) HIGH POWER SWITCHING USE INSULATED TYPE 2nd-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules 2.5 2.0 1.5 1.0 0.5 Erec 0 0 200 400 600 0 800 1000 1200 10 15 20 25 GATE RESISTANCE (Ω) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS VCC = 2250V IC = 600A NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j – c) GATE-EMITTER VOLTAGE VGE (V) 5 CURRENT (A) 20 16 12 8 4 0 0 0 2000 4000 6000 8000 GATE CHARGE QG (nC) 10000 101 7 5 3 2 30 Single Pulse TC = 25°C Rth(j – c)Q = 0.0135K/ W Rth(j – c)R = 0.027K/ W 100 7 5 3 2 10–1 7 5 3 2 10–2 10–3 2 3 5 7 10–2 2 3 5 7 10–1 2 3 5 7 100 TIME (s) Mar. 2003