IRF IRF6617PBF Ideal for cpu core dc-dc converter Datasheet

PD -97082
IRF6617PbF
IRF6617TRPbF
l
l
l
l
l
l
l
l
l
RoHS Compliant ‰
Lead-Free (Qualified up to 260°C Reflow)
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
Low Conduction Losses
High Cdv/dt Immunity
Low Profile (<0.7mm)
Dual Sided Cooling Compatible ‰
Compatible with existing Surface Mount Techniques ‰
DirectFET™ Power MOSFET Š
VDSS
RDS(on) max
Qg(typ.)
30V
8.1mΩ@VGS = 10V
10.3mΩ@VGS = 4.5V
11nC
Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details)
SQ
SX
ST
MQ
MX
DirectFET™ ISOMETRIC
ST
MT
Description
The IRF6617PbF combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of a Micro8™ and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6617PbF balances both low resistance and low charge along with ultra low package inductance to reduce both
conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that
power the latest generation of processors operating at higher frequencies. The IRF6617PbF has been optimized for parameters that are critical in synchronous buck converters including RDS(on) and gate charge to minimize losses in the control FET
socket.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VDS
Drain-to-Source Voltage
30
VGS
Gate-to-Source Voltage
±20
i
f
@ 10V f
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
55
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
14
ID @ TA = 70°C
Continuous Drain Current, VGS
11
IDM
Pulsed Drain Current
PD @TC = 25°C
Power Dissipation
42
PD @TA = 25°C
Power Dissipation
2.1
PD @TA = 70°C
i
f
Power Dissipation f
c
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
A
120
W
1.4
d
27
mJ
12
A
W/°C
°C
Linear Derating Factor
0.017
TJ
Operating Junction and
-40 to + 150
TSTG
Storage Temperature Range
Thermal Resistance
Parameter
fj
gj
Junction-to-Ambient hj
Junction-to-Case ij
Typ.
Max.
RθJA
Junction-to-Ambient
–––
58
RθJA
Junction-to-Ambient
12.5
–––
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
20
–––
–––
3.0
1.0
–––
Units
°C/W
Notes  through Š are on page 2
www.irf.com
1
5/3/06
IRF6617PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
30
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
Typ. Max. Units
–––
–––
–––
25
–––
–––
6.2
8.1
–––
7.9
10.3
V
mΩ
Gate Threshold Voltage
1.35
–––
2.35
V
Gate Threshold Voltage Coefficient
–––
-5.4
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
39
–––
–––
Qg
VGS = 10V, ID = 15A e
VGS = 4.5V, ID = 12A e
VGS(th)
Gate-to-Source Forward Leakage
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
∆VGS(th)/∆TJ
IGSS
Conditions
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 12A
Total Gate Charge
–––
11
17
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.0
–––
Qgd
Gate-to-Drain Charge
–––
4.0
–––
ID = 12A
Qgodr
See Fig. 16
VDS = 15V
nC
VGS = 4.5V
Gate Charge Overdrive
–––
2.9
–––
Qsw
Switch Charge (Qgs2 + Qgd)
–––
5.0
–––
Qoss
Output Charge
–––
10
–––
td(on)
Turn-On Delay Time
–––
11
–––
VDD = 16V, VGS = 4.5Ve
tr
Rise Time
–––
34
–––
ID = 12A
td(off)
Turn-Off Delay Time
–––
12
–––
tf
Fall Time
–––
3.7
–––
Ciss
Input Capacitance
–––
1300
–––
Coss
Output Capacitance
–––
430
–––
Crss
Reverse Transfer Capacitance
–––
160
–––
Min.
Typ. Max. Units
nC
VDS = 15V, VGS = 0V
ns
Clamped Inductive Load
pF
VDS = 15V
VGS = 0V
ƒ = 1.0MHz
Diode Characteristics
Parameter
Conditions
IS
Continuous Source Current
–––
–––
53
ISM
(Body Diode)
Pulsed Source Current
–––
–––
120
showing the
integral reverse
VSD
(Body Diode)c
Diode Forward Voltage
–––
0.81
1.0
V
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V e
trr
Reverse Recovery Time
–––
16
24
ns
TJ = 25°C, IF = 12A
Qrr
Reverse Recovery Charge
–––
7.2
11
nC
di/dt = 100A/µs e
MOSFET symbol
A
D
G
S
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.40mH,
RG = 25Ω, IAS = 12A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
2
Used double sided cooling, mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of part.
ˆ Rθ is measured at TJ of approximately 90°C.
‰ Click on this section to link to the appropriate technical paper.
Š Click on this section to link to the DirectFET Website.
www.irf.com
IRF6617PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
1
≤ 60µs PULSE WIDTH
Tj = 25°C
2.5V
100
BOTTOM
10
2.5V
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
100.0
T J = 150°C
10.0
T J = 25°C
1.0
VDS = 15V
≤ 60µs PULSE WIDTH
0.1
1.0
2.0
3.0
4.0
5.0
ID = 15A
VGS = 10V
1.5
1.0
0.5
6.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
10000
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 12A
C oss = C ds + C gd
C, Capacitance (pF)
≤ 60µs PULSE WIDTH
Tj = 150°C
1
0.1
0.1
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Ciss
1000
Coss
Crss
VDS= 24V
VDS= 15V
10
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6617PbF
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
100.0
T J = 150°C
10.0
T J = 25°C
1.0
100
10
100µsec
1msec
1
VGS = 0V
0.1
0.1
0.2
0.4
0.6
0.8
1.0
0
1.2
1
10
100
1000
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
60
VGS(th) Gate threshold Voltage (V)
2.5
50
ID , Drain Current (A)
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
40
30
20
10
2.0
ID = 250µA
1.5
0
1.0
25
50
75
100
125
150
-75
-50
-25
T J , Junction Temperature (°C)
0
25
50
75
100
125
150
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
0.01
1
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ2
τ1
τAτ
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τi (sec)
Ri (°C/W)
R5
R5
0.6676
0.000066
1.0462
0.000896
1.5611
0.004386
29.282
0.68618
25.455
32
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
120
24
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRF6617PbF
ID = 15A
20
16
T J = 125°C
12
8
T J = 25°C
ID
5.2A
7.9A
BOTTOM 12A
TOP
100
80
60
40
20
4
0
2.0
4.0
6.0
8.0
10.0
25
VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 14a. Unclamped Inductive Test Circuit
LD
Fig 14b. Unclamped Inductive Waveforms
VDS
VDS
+
90%
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 15a. Switching Time Test Circuit
Current Regulator
Same Type as D.U.T.
tr
td(off)
Fig 15b. Switching Time Waveforms
Id
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 16a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 16b. Gate Charge Waveform
5
IRF6617PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
„
-
-
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
G
D
6
S
S
D
D
www.irf.com
IRF6617PbF
DirectFET™ Outline Dimension, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.62
E
0.58
0.62
F
0.58
0.79
G
0.75
0.57
H
0.53
0.30
J
0.26
0.98
K
0.88
2.28
L
2.18
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.023
0.024
0.023
0.024
0.030
0.031
0.021
0.022
0.010
0.012
0.035
0.039
0.086
0.090
0.0235 0.0274
0.0008 0.0031
0.003
0.007
DirectFET™ Part Marking
www.irf.com
7
IRF6617PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6617TRPBF). For 1000 parts on 7"
reel, order IRF6617TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
MIN
CODE
MAX
MIN
MAX
MAX
MIN
6.9
12.992
A
N.C
N.C
330.0
177.77 N.C
N.C
B
0.75
0.795
N.C
20.2
19.06
N.C
N.C
N.C
C
0.53
0.504
0.50
12.8
13.5
0.520
13.2
12.8
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
N.C
12.4
11.9
0.567
14.4
12.01
H
0.47
0.469
N.C
11.9
11.9
0.606
15.4
12.01
Loaded Tape Feed Direction
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.158
0.165
4.00
4.20
0.197
5.00
0.205
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.5/06
8
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages