PD -97082 IRF6617PbF IRF6617TRPbF l l l l l l l l l RoHS Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques DirectFET Power MOSFET VDSS RDS(on) max Qg(typ.) 30V 8.1mΩ@VGS = 10V 10.3mΩ@VGS = 4.5V 11nC Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details) SQ SX ST MQ MX DirectFET ISOMETRIC ST MT Description The IRF6617PbF combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a Micro8™ and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6617PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6617PbF has been optimized for parameters that are critical in synchronous buck converters including RDS(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 30 VGS Gate-to-Source Voltage ±20 i f @ 10V f ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 55 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 14 ID @ TA = 70°C Continuous Drain Current, VGS 11 IDM Pulsed Drain Current PD @TC = 25°C Power Dissipation 42 PD @TA = 25°C Power Dissipation 2.1 PD @TA = 70°C i f Power Dissipation f c EAS Single Pulse Avalanche Energy IAR Avalanche Current c A 120 W 1.4 d 27 mJ 12 A W/°C °C Linear Derating Factor 0.017 TJ Operating Junction and -40 to + 150 TSTG Storage Temperature Range Thermal Resistance Parameter fj gj Junction-to-Ambient hj Junction-to-Case ij Typ. Max. RθJA Junction-to-Ambient ––– 58 RθJA Junction-to-Ambient 12.5 ––– RθJA RθJC RθJ-PCB Junction-to-PCB Mounted 20 ––– ––– 3.0 1.0 ––– Units °C/W Notes through are on page 2 www.irf.com 1 5/3/06 IRF6617PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 30 ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Typ. Max. Units ––– ––– ––– 25 ––– ––– 6.2 8.1 ––– 7.9 10.3 V mΩ Gate Threshold Voltage 1.35 ––– 2.35 V Gate Threshold Voltage Coefficient ––– -5.4 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 39 ––– ––– Qg VGS = 10V, ID = 15A e VGS = 4.5V, ID = 12A e VGS(th) Gate-to-Source Forward Leakage VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA ∆VGS(th)/∆TJ IGSS Conditions VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 12A Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– Qgd Gate-to-Drain Charge ––– 4.0 ––– ID = 12A Qgodr See Fig. 16 VDS = 15V nC VGS = 4.5V Gate Charge Overdrive ––– 2.9 ––– Qsw Switch Charge (Qgs2 + Qgd) ––– 5.0 ––– Qoss Output Charge ––– 10 ––– td(on) Turn-On Delay Time ––– 11 ––– VDD = 16V, VGS = 4.5Ve tr Rise Time ––– 34 ––– ID = 12A td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 3.7 ––– Ciss Input Capacitance ––– 1300 ––– Coss Output Capacitance ––– 430 ––– Crss Reverse Transfer Capacitance ––– 160 ––– Min. Typ. Max. Units nC VDS = 15V, VGS = 0V ns Clamped Inductive Load pF VDS = 15V VGS = 0V ƒ = 1.0MHz Diode Characteristics Parameter Conditions IS Continuous Source Current ––– ––– 53 ISM (Body Diode) Pulsed Source Current ––– ––– 120 showing the integral reverse VSD (Body Diode)c Diode Forward Voltage ––– 0.81 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V e trr Reverse Recovery Time ––– 16 24 ns TJ = 25°C, IF = 12A Qrr Reverse Recovery Charge ––– 7.2 11 nC di/dt = 100A/µs e MOSFET symbol A D G S Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.40mH, RG = 25Ω, IAS = 12A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. www.irf.com IRF6617PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 1 ≤ 60µs PULSE WIDTH Tj = 25°C 2.5V 100 BOTTOM 10 2.5V 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100.0 T J = 150°C 10.0 T J = 25°C 1.0 VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 ID = 15A VGS = 10V 1.5 1.0 0.5 6.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 12A C oss = C ds + C gd C, Capacitance (pF) ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 0.1 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss Crss VDS= 24V VDS= 15V 10 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6617PbF 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.0 100.0 T J = 150°C 10.0 T J = 25°C 1.0 100 10 100µsec 1msec 1 VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 60 VGS(th) Gate threshold Voltage (V) 2.5 50 ID , Drain Current (A) 10msec Tc = 25°C Tj = 150°C Single Pulse 40 30 20 10 2.0 ID = 250µA 1.5 0 1.0 25 50 75 100 125 150 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ2 τ1 τAτ τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τi (sec) Ri (°C/W) R5 R5 0.6676 0.000066 1.0462 0.000896 1.5611 0.004386 29.282 0.68618 25.455 32 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 120 24 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRF6617PbF ID = 15A 20 16 T J = 125°C 12 8 T J = 25°C ID 5.2A 7.9A BOTTOM 12A TOP 100 80 60 40 20 4 0 2.0 4.0 6.0 8.0 10.0 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 14a. Unclamped Inductive Test Circuit LD Fig 14b. Unclamped Inductive Waveforms VDS VDS + 90% VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 15a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. tr td(off) Fig 15b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 16a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16b. Gate Charge Waveform 5 IRF6617PbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D G D 6 S S D D www.irf.com IRF6617PbF DirectFET Outline Dimension, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.79 G 0.75 0.57 H 0.53 0.30 J 0.26 0.98 K 0.88 2.28 L 2.18 M 0.616 0.676 R 0.020 0.080 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.023 0.024 0.023 0.024 0.030 0.031 0.021 0.022 0.010 0.012 0.035 0.039 0.086 0.090 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking www.irf.com 7 IRF6617PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6617TRPBF). For 1000 parts on 7" reel, order IRF6617TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MAX MAX MIN 6.9 12.992 A N.C N.C 330.0 177.77 N.C N.C B 0.75 0.795 N.C 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 13.2 12.8 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 N.C 11.9 11.9 0.606 15.4 12.01 Loaded Tape Feed Direction CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 11.90 0.484 12.30 0.215 5.45 0.219 5.55 0.158 0.165 4.00 4.20 0.197 5.00 0.205 5.20 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.5/06 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/