ON NGTB75N65FL2WG Igbt Datasheet

NGTB75N65FL2WG
IGBT
This Insulated Gate Bipolar Transistor (IGBT) features a robust and
cost effective Field Stop (FS) Trench construction, and provides
superior performance in demanding switching applications, offering
both low on state voltage and minimal switching loss.
Features
•
•
•
•
•
•
www.onsemi.com
Extremely Efficient Trench with Field Stop Technology
TJmax = 175°C
Soft Fast Reverse Recovery Diode
Optimized for High Speed Switching
5 ms Short−Circuit Capability
These are Pb−Free Devices
75 A, 650 V
VCEsat = 1.70 V
EOFF = 1.0 mJ
C
Typical Applications
• Solar Inverters
• Uninterruptible Power Supplies (UPS)
• Welding
G
ABSOLUTE MAXIMUM RATINGS
Rating
E
Symbol
Value
Unit
Collector−emitter voltage
VCES
650
V
Collector current
@ TC = 25°C
@ TC = 100°C
IC
Diode Forward Current
@ TC = 25°C
@ TC = 100°C
IF
A
100
75
A
100
75
C
Diode Pulsed Current
TPULSE Limited by TJ Max
IFM
200
A
Pulsed collector current, Tpulse
limited by TJmax
ICM
200
A
Short−circuit withstand time
VGE = 15 V, VCE = 400 V,
TJ ≤ +150°C
tSC
5
ms
Gate−emitter voltage
VGE
$20
V
V
$30
Transient gate−emitter voltage
(TPULSE = 5 ms, D < 0.10)
Power Dissipation
@ TC = 25°C
@ TC = 100°C
PD
Operating junction temperature
range
TJ
−55 to +175
Storage temperature range
Tstg
−55 to +175
°C
Lead temperature for soldering, 1/8”
from case for 5 seconds
TSLD
260
°C
September, 2016 − Rev. 5
TO−247
CASE 340AL
E
MARKING DIAGRAM
75N65FL2
AYWWG
W
595
265
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
© Semiconductor Components Industries, LLC, 2015
G
1
A
Y
WW
G
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
Package
Shipping
NGTB75N65FL2WG
TO−247
(Pb−Free)
30 Units / Rail
Publication Order Number:
NGTB75N65FL2W/D
NGTB75N65FL2WG
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal resistance junction−to−case, for IGBT
Rating
RqJC
0.28
°C/W
Thermal resistance junction−to−case, for Diode
RqJC
0.62
°C/W
Thermal resistance junction−to−ambient
RqJA
40
°C/W
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified)
Parameter
Test Conditions
Symbol
Min
Typ
Max
Unit
VGE = 0 V, IC = 500 mA
V(BR)CES
650
−
−
V
VGE = 15 V, IC = 75 A
VGE = 15 V, IC = 75 A, TJ = 175°C
VCEsat
1.50
−
1.75
2.30
2.00
−
V
STATIC CHARACTERISTIC
Collector−emitter breakdown voltage,
gate−emitter short−circuited
Collector−emitter saturation voltage
VGE = VCE, IC = 350 mA
VGE(th)
4.5
5.5
6.5
V
Collector−emitter cut−off current, gate−
emitter short−circuited
VGE = 0 V, VCE = 650 V
VGE = 0 V, VCE = 650 V, TJ = 175°C
ICES
−
−
−
−
0.1
4.0
mA
Gate leakage current, collector−emitter
short−circuited
VGE = 20 V , VCE = 0 V
IGES
−
−
200
nA
Cies
−
7500
−
pF
VCE = 20 V, VGE = 0 V, f = 1 MHz
Coes
−
300
−
Cres
−
190
−
Gate−emitter threshold voltage
DYNAMIC CHARACTERISTIC
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge total
Gate to emitter charge
VCE = 480 V, IC = 50 A, VGE = 15 V
Gate to collector charge
Qg
−
310
−
Qge
−
60
−
Qgc
−
150
−
td(on)
−
110
−
tr
−
48
−
td(off)
−
270
−
nC
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD
Turn−on delay time
Rise time
Turn−off delay time
Fall time
TJ = 25°C
VCC = 400 V, IC = 75 A
Rg = 10 W
VGE = 0 V/ 15 V
tf
−
70
−
Eon
−
2.2
−
Eoff
−
1.1
−
Total switching loss
Ets
−
3.3
−
Turn−on delay time
td(on)
−
100
−
tr
−
50
−
td(off)
−
280
−
tf
−
100
−
Turn−on switching loss
Turn−off switching loss
Rise time
Turn−off delay time
Fall time
Turn−on switching loss
TJ = 150°C
VCC = 400 V, IC = 75 A
Rg = 10 W
VGE = 0 V/ 15 V
ns
mJ
ns
Eon
−
2.8
−
Turn−off switching loss
Eoff
−
1.6
−
Total switching loss
Ets
−
4.4
−
VF
1.50
−
2.20
2.40
2.90
−
V
trr
−
80
−
ns
mC
mJ
DIODE CHARACTERISTIC
Forward voltage
Reverse recovery time
Reverse recovery charge
Reverse recovery current
Reverse recovery time
Reverse recovery charge
Reverse recovery current
VGE = 0 V, IF = 75 A
VGE = 0 V, IF = 75 A, TJ = 175°C
TJ = 25°C
IF = 75 A, VR = 400 V
diF/dt = 200 A/ms
TJ = 175°C
IF = 75 A, VR = 400 V
diF/dt = 200 A/ms
Qrr
−
0.40
−
Irrm
−
8
−
A
trr
−
143
−
ns
Qrr
−
1.45
−
mC
Irrm
−
16
−
A
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
2
NGTB75N65FL2WG
TYPICAL CHARACTERISTICS
200
VGE = 20 V
to 13 V
180
TJ = 25°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
200
160
140
11 V
120
100
10 V
80
60
40
9V
20
8V
7V
7
0
0
1
2
3
4
5
6
140
TJ = 150°C
120
11 V
100
10 V
80
60
9V
40
8V
7V
20
0
0
1
2
3
4
5
7
6
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 1. Output Characteristics
Figure 2. Output Characteristics
8
160
VGE = 20 V
to 13 V
TJ = −55°C
IC, COLLECTOR CURRENT (A)
180
160
11 V
140
120
100
10 V
80
60
7V
40
9V
20
0
8V
0
1
2
3
4
5
6
7
140
120
100
80
60
40
TJ = 150°C
20
TJ = 25°C
0
8
0
1
2
3
4
5
6
7
8
9
10 11 12 13
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VGE, GATE−EMITTER VOLTAGE (V)
Figure 3. Output Characteristics
Figure 4. Typical Transfer Characteristics
2.50
100,000
TJ = 25°C
IC = 75 A
2.00
IC = 50 A
1.50
C, CAPACITANCE (pF)
IC, COLLECTOR CURRENT (A)
13 V
160
8
200
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VGE = 20 V
to 15 V
180
IC = 25 A
1.00
0.50
0
−75 −50 −25
Cies
10,000
1000
Coes
100
Cres
10
1
0
25
50
75 100 125 150 175 200
0
10
20
30
40
50
60
70
80
90 100
TJ, JUNCTION TEMPERATURE (°C)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 5. VCE(sat) vs. TJ
Figure 6. Typical Capacitance
www.onsemi.com
3
NGTB75N65FL2WG
TYPICAL CHARACTERISTICS
16
VGE, GATE−EMITTER VOLTAGE (V)
IF, FORWARD CURRENT (A)
70
60
50
40
30
20
TJ = 150°C
10
TJ = 25°C
0
0
0.5
1.0
1.5
10
8
6
4
VCE = 400 V
VGE = 15 V
IC = 75 A
2
2.5
3.0
3.5
0
4.0
50
100
250
200
150
300
VF, FORWARD VOLTAGE (V)
QG, GATE CHARGE (nC)
Figure 7. Diode Forward Characteristics
Figure 8. Typical Gate Charge
350
1000
SWITCHING TIME (ns)
Eon
2.5
SWITCHING LOSS (mJ)
12
0
2.0
3.0
2.0
Eoff
1.5
1.0
VCE = 400 V
VGE = 15 V
IC = 75 A
Rg = 10 W
0.5
0
0
20
40
60
80
100
120
140
td(off)
td(on)
100
tf
tr
VCE = 400 V
VGE = 15 V
IC = 75 A
Rg = 10 W
10
0
160
20
40
60
80
100
120
140
TJ, JUNCTION TEMPERATURE (°C)
TJ, JUNCTION TEMPERATURE (°C)
Figure 9. Switching Loss vs. Temperature
Figure 10. Switching Time vs. Temperature
160
1000
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
5
SWITCHING TIME (ns)
6
SWITCHING LOSS (mJ)
VCE = 400 V
14
Eon
4
3
Eoff
2
td(off)
tf
100
td(on)
tr
VCE = 400 V
VGE = 15 V
TJ = 150°C
Rg = 10 W
1
0
15
25
35
45
55
65
75
85
95
10
105
15
25
35
45
55
65
75
85
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
Figure 11. Switching Loss vs. IC
Figure 12. Switching Time vs. IC
www.onsemi.com
4
95
105
NGTB75N65FL2WG
TYPICAL CHARACTERISTICS
10,000
VCE = 400 V
VGE = 15 V
TJ = 150°C
IC = 75 A
SWITCHING LOSS (mJ)
12
10
SWITCHING TIME (ns)
14
Eon
8
6
Eoff
4
VCE = 400 V
VGE = 15 V
TJ = 150°C
IC = 75 A
td(off)
1000
td(on)
tr
tf
100
2
0
10
5
15
25
35
45
55
65
75
85
5
35
45
55
65
75
Rg, GATE RESISTOR (W)
Rg, GATE RESISTOR (W)
Figure 14. Switching Time vs. Rg
85
1000
5
Eon
SWITCHING TIME (ns)
SWITCHING LOSS (mJ)
25
Figure 13. Switching Loss vs. Rg
6
4
3
Eoff
2
VGE = 15 V
TJ = 150°C
IC = 75 A
Rg = 10 W
1
0
150 200 250 300
350 400
td(off)
td(on)
100
tf
tr
VGE = 15 V
TJ = 150°C
IC = 75 A
Rg = 10 W
10
450 500 550 600 650
150 200 250 300 350 400 450 500 550 600 650
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 15. Switching Loss vs. VCE
Figure 16. Switching Time vs. VCE
1000
1000
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
15
100
50 ms
dc operation
10
100 ms
Single Nonrepetitive
Pulse TC = 25°C
Curves must be derated
linearly with increase
in temperature
1
0.1
1
10
1 ms
100
10
VGE = 15 V, TC = 150°C
100
1
1000
1
10
100
1000
VCE, COLLECTOR−EMITTER VOLTAGE (V)
VCE, COLLECTOR−EMITTER VOLTAGE (V)
Figure 17. Safe Operating Area
Figure 18. Reverse Bias Safe Operating Area
www.onsemi.com
5
NGTB75N65FL2WG
Qrr, REVERSE RECOVERY CHARGE (mC)
TYPICAL CHARACTERISTICS
trr, REVERSE RECOVERY TIME (ns)
150
130
TJ = 175°C, IF = 75 A
110
90
TJ = 25°C, IF = 75 A
70
50
300
500
700
900
1100
1300
TJ = 175°C, IF = 75 A
2.5
2.0
1.5
TJ = 25°C, IF = 75 A
1.0
0.5
0
100
300
500
700
900
1100
diF/dt, DIODE CURRENT SLOPE (A/m)
diF/dt, DIODE CURRENT SLOPE (A/m)
Figure 19. trr vs. diF/dt (VR = 400 V)
Figure 20. Qrr vs. diF/dt (VR = 400 V)
50
1300
3.5
VF, FORWARD VOLTAGE (V)
Irm, REVERSE RECOVERY CURRENT (A)
100
3.0
TJ = 175°C, IF = 75 A
40
30
20
TJ = 25°C, IF = 75 A
10
300
500
700
900
1100
IF = 75 A
2.5
IF = 50 A
2.0
IF = 25 A
1.5
1.0
−75 −50 −25
0
100
3.0
1300
0
25
50
75 100 125 150 175 200
diF/dt, DIODE CURRENT SLOPE (A/m)
TJ, JUNCTION TEMPERATURE (°C)
Figure 21. Irm vs. diF/dt (VR = 400 V)
Figure 22. VF vs. TJ
www.onsemi.com
6
NGTB75N65FL2WG
TYPICAL CHARACTERISTICS
SQUARE−WAVE PEAK R(t) (°C/W)
1
RqJC = 0.282
50% Duty Cycle
0.1 20%
10%
5%
0.01 2%
R1
Junction
R2
C1
0.001
0.000001
Case
Ri (°C/W)
Ci (J/°C)
0.0270
0.0243
0.0225
0.0554
0.1121
0.0409
0.0037
0.0130
0.0445
0.0571
0.0892
0.7725
Cn
C2
Duty Factor = t1/t2
Peak TJ = PDM x ZqJC + TC
Single Pulse
0.0001
Rn
0.00001
0.001
0.0001
0.01
0.1
1
ON−PULSE WIDTH (s)
Figure 23. IGBT Transient Thermal Impedance
SQUARE−WAVE PEAK R(t) (°C/W)
1
50% Duty Cycle
RqJC = 0.622
20%
0.1 10%
5%
Junction R1
R2
Rn
C1
C2
Cn
Case
2%
0.01
Single Pulse
Duty Factor = t1/t2
Peak TJ = PDM x ZqJC + TC
0.001
0.000001
0.00001
0.0001
0.001
0.01
ON−PULSE WIDTH (s)
Figure 24. Diode Transient Thermal Impedance
www.onsemi.com
7
0.1
Ri (°C/W)
Ci (J/°C)
0.006394
0.007900
0.008527
0.025491
0.022800
0.121738
0.363338
0.000156
0.001266
0.003708
0.003923
0.013870
0.008214
0.275226
1
NGTB75N65FL2WG
Figure 25. Test Circuit for Switching Characteristics
www.onsemi.com
8
NGTB75N65FL2WG
Figure 26. Definition of Turn On Waveform
www.onsemi.com
9
NGTB75N65FL2WG
Figure 27. Definition of Turn Off Waveform
www.onsemi.com
10
NGTB75N65FL2WG
PACKAGE DIMENSIONS
TO−247
CASE 340AL
ISSUE B
B
A
NOTE 4
E
SEATING
PLANE
0.635
M
P
A
Q
E2
D
S
NOTE 3
1
2
4
DIM
A
A1
b
b2
b4
c
D
E
E2
e
L
L1
P
Q
S
3
L1
NOTE 5
L
2X
b2
c
b4
3X
e
A1
b
0.25
NOTE 7
M
B A
M
NOTE 6
E2/2
NOTE 4
B A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. SLOT REQUIRED, NOTCH MAY BE ROUNDED.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE
DIMENSIONS ARE MEASURED AT THE OUTERMOST
EXTREME OF THE PLASTIC BODY.
5. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY
L1.
6. ∅P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE
TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.
7. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED
BY L1.
M
MILLIMETERS
MIN
MAX
4.70
5.30
2.20
2.60
1.00
1.40
1.65
2.35
2.60
3.40
0.40
0.80
20.80
21.34
15.50
16.25
4.32
5.49
5.45 BSC
19.80
20.80
3.81
4.32
3.55
3.65
5.40
6.20
6.15 BSC
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
◊
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NGTB75N65FL2W/D
Similar pages