ON MPSA14RLRP Darlington transistors npn silicon Datasheet

MPSA13, MPSA14
MPSA14 is a Preferred Device
Darlington Transistors
NPN Silicon
Features
http://onsemi.com
• Pb−Free Packages are Available*
COLLECTOR 3
MAXIMUM RATINGS
Rating
BASE
2
Symbol
Value
Unit
Collector −Emitter Voltage
VCES
30
Vdc
Collector −Base Voltage
VCBO
30
Vdc
Emitter −Base Voltage
VEBO
10
Vdc
Collector Current − Continuous
IC
500
mAdc
Total Device Dissipation
@ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
MARKING DIAGRAM
Total Device Dissipation
@ TC = 25°C
Derate above 25°C
PD
1.5
12
W
mW/°C
−55 to
+150
°C
MPS
A1x
AYWWG
G
Operating and Storage Junction
Temperature Range
TJ, Tstg
1
2
THERMAL CHARACTERISTICS
Characteristic
EMITTER 1
Symbol
Max
Unit
Thermal Resistance,
Junction−to−Ambient
RqJA
200
°C/mW
Thermal Resistance,
Junction−to−Case
RqJC
83.3
°C/mW
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
3
TO−92
(TO−226AA)
CASE 29−11
STYLE 1
x
= 3 or 4
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Preferred devices are recommended choices for future use
and best overall value.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2005
June, 2005 − Rev. 3
1
Publication Order Number:
MPSA13/D
MPSA13, MPSA14
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
V(BR)CES
30
−
Vdc
Collector Cutoff Current
(VCB= 30 Vdc, IE = 0)
ICBO
−
100
nAdc
Emitter Cutoff Current
(VEB= 10 Vdc, IC = 0)
IEBO
−
100
nAdc
5,000
10,000
10,000
20,000
−
−
−
−
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage
(IC = 100 mAdc, IB = 0)
ON CHARACTERISTICS (Note 1)
DC Current Gain
(IC = 10 mAdc, VCE = 5.0 Vdc)
hFE
MPSA13
MPSA14
MPSA13
MPSA14
(IC = 100 mAdc, VCE = 5.0 Vdc)
−
Collector −Emitter Saturation Voltage
(IC = 100 mAdc, IB = 0.1 mAdc)
VCE(sat)
−
1.5
Vdc
Base −Emitter On Voltage
(IC = 100 mAdc, VCE = 5.0 Vdc)
VBE(on)
−
2.0
Vdc
fT
125
−
MHz
SMALL− SIGNAL CHARACTERISTICS
Current−Gain − Bandwidth Product (Note 2)
(IC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)
1. Pulse Test: Pulse Width v 300 ms; Duty Cycle v 2.0%.
2. fT = |hfe| S ftest.
ORDERING INFORMATION
Package
Shipping †
TO−92
5000 Units / Box
TO−92
(Pb−Free)
5000 Units / Box
TO−92
2000 / Tape & Reel
TO−92
(Pb−Free)
2000 / Tape & Reel
TO−92
2000 / Ammo Pack
TO−92
(Pb−Free)
2000 / Ammo Pack
TO−92
2000 / Ammo Pack
TO−92
(Pb−Free)
2000 / Ammo Pack
TO−92
2000 / Ammo Pack
TO−92
(Pb−Free)
2000 / Ammo Pack
TO−92
5000 Units / Box
TO−92
(Pb−Free)
5000 Units / Box
TO−92
2000 / Tape & Reel
TO−92
(Pb−Free)
2000 / Tape & Reel
TO−92
2000 / Ammo Pack
TO−92
(Pb−Free)
2000 / Ammo Pack
Device
MPSA13
MPSA13G
MPSA13RLRA
MPSA13RLRAG
MPSA13RLRM
MPSA13RLRMG
MPSA13RLRP
MPSA13RLRPG
MPSA13ZL1
MPSA13ZL1G
MPSA14
MPSA14G
MPSA14RLRA
MPSA14RLRAG
MPSA14RLRP
MPSA14RLRPG
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
2
MPSA13, MPSA14
RS
in
en
IDEAL
TRANSISTOR
Figure 1. Transistor Noise Model
NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, TA = 25°C)
2.0
BANDWIDTH = 1.0 Hz
RS ≈ 0
200
BANDWIDTH = 1.0 Hz
i n, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
500
100
10 mA
50
100 mA
20
IC = 1.0 mA
10
1.0
0.7
0.5
IC = 1.0 mA
0.3
0.2
100 mA
0.1
0.07
0.05
10 mA
0.03
5.0
10 20
50 100 200
500 1k 2k 5k 10k 20k
f, FREQUENCY (Hz)
50k 100k
0.02
10 20
50 100 200
50k 100k
Figure 3. Noise Current
14
200
BANDWIDTH = 10 Hz TO 15.7 kHz
12
BANDWIDTH = 10 Hz TO 15.7 kHz
100
NF, NOISE FIGURE (dB)
VT, TOTAL WIDEBAND NOISE VOLTAGE (nV)
Figure 2. Noise Voltage
500 1k 2k 5k 10k 20k
f, FREQUENCY (Hz)
IC = 10 mA
70
50
100 mA
30
20
1.0 mA
10
1.0
2.0
10
10 mA
8.0
100 mA
6.0
4.0
IC = 1.0 mA
2.0
5.0
10
20
50 100 200
RS, SOURCE RESISTANCE (kW)
500
1000
0
1.0
Figure 4. Total Wideband Noise Voltage
2.0
5.0
10
20
50 100 200
RS, SOURCE RESISTANCE (kW)
Figure 5. Wideband Noise Figure
http://onsemi.com
3
500
1000
MPSA13, MPSA14
SMALL−SIGNAL CHARACTERISTICS
4.0
|h fe |, SMALL−SIGNAL CURRENT GAIN
C, CAPACITANCE (pF)
20
TJ = 25°C
10
7.0
Cibo
Cobo
5.0
3.0
2.0
0.04
0.1
0.2
0.4
1.0 2.0 4.0
10
VR, REVERSE VOLTAGE (VOLTS)
20
VCE = 5.0 V
f = 100 MHz
TJ = 25°C
2.0
1.0
0.8
0.6
0.4
0.2
0.5
40
1.0
200k
hFE , DC CURRENT GAIN
TJ = 125°C
100k
70k
50k
25°C
30k
20k
10k
7.0k
5.0k
−55 °C
VCE = 5.0 V
3.0k
2.0k
5.0 7.0
10
20 30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
500
TJ = 25°C
2.5
IC = 10 mA
RθV, TEMPERATURE COEFFICIENTS (mV/°C)
TJ = 25°C
V, VOLTAGE (VOLTS)
1.4
VBE(sat) @ IC/IB = 1000
1.2
VBE(on) @ VCE = 5.0 V
1.0
VCE(sat) @ IC/IB = 1000
5.0 7.0
10
50 mA
250 mA
500 mA
2.0
1.5
1.0
0.5
0.1 0.2
0.5 1.0 2.0 5.0 10 20 50 100 200
IB, BASE CURRENT (mA)
500 1000
Figure 9. Collector Saturation Region
1.6
0.6
500
3.0
Figure 8. DC Current Gain
0.8
0.5 10 20
50
100 200
IC, COLLECTOR CURRENT (mA)
Figure 7. High Frequency Current Gain
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 6. Capacitance
2.0
20 30
50 70 100 200 300
IC, COLLECTOR CURRENT (mA)
500
−1.0
−2.0
*APPLIES FOR IC/IB ≤ hFE/3.0
25°C TO 125°C
*RqVC FOR VCE(sat)
−55 °C TO 25°C
−3.0
25°C TO 125°C
−4.0
qVB FOR VBE
−5.0
−55 °C TO 25°C
−6.0
5.0 7.0 10
Figure 10. “On” Voltages
20 30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
Figure 11. Temperature Coefficients
http://onsemi.com
4
500
r(t), TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
MPSA13, MPSA14
1.0
0.7
0.5
D = 0.5
0.2
0.3
0.2
0.1
0.05
SINGLE PULSE
0.1
0.07
0.05
SINGLE PULSE
ZqJC(t) = r(t) • RqJCTJ(pk) − TC = P(pk) ZqJC(t)
ZqJA(t) = r(t) • RqJATJ(pk) − TA = P(pk) ZqJA(t)
0.03
0.02
0.01
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
t, TIME (ms)
100
200
500
1.0k
2.0k
5.0k 10k
Figure 12. Thermal Response
IC, COLLECTOR CURRENT (mA)
1.0k
700
500
300
200
FIGURE A
1.0 ms
TA = 25°C
tP
TC = 25°C
100 ms
PP
1.0 s
100
70
50
t1
30
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
20
10
PP
0.4 0.6
1/f
t
DUTYCYCLE + t1f + 1
tP
PEAK PULSE POWER = PP
40
1.0
2.0
4.0 6.0
10
20
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 13. Active Region Safe Operating Area
Design Note: Use of Transient Thermal Resistance Data
http://onsemi.com
5
MPSA13, MPSA14
PACKAGE DIMENSIONS
TO−92
TO−226AA
CASE 29−11
ISSUE AL
A
B
R
P
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
L
SEATING
PLANE
K
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
SECTION X−X
1
N
N
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
−−−
0.250
−−−
0.080
0.105
−−− 0.100
0.115
−−−
0.135
−−−
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
−−−
6.35
−−−
2.04
2.66
−−−
2.54
2.93
−−−
3.43
−−−
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
6
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MPSA13/D
Similar pages